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Lecture 1 : Thermal Fluctuations and Noise in Plasma Simuiation
Models

Ints oduction to Plasma Simulation

It is a dufficult task to review the progress and current areas of
research in particle sirnulation of plasmas in such a short time. In order
not to give a large volume of material and gloss over important and
subtle details I chose to describe to you a couple of topics covered in
some depth and ] hope to impress upen you the amount of detailsd
structure and insight one can gain into plasmas with the tools of
particte simulalion. Before beginning, 1 would like to give the following
references which are helpful for the self-learner and where some of
the background of the topics I will present will be found. The
references are:

(i R. W. Hockney and | Eastwood, "Computer Smulation Usihig
Fartndes McGraw-Hill, NY,(1961).

(i) JM. Dawson, "Particle Simulation ¢of Plasmas”, Rev. Mod.
Phys,55,403,(1983).

(m) CK birdsall and AB. Llangdon, "Alasma FUysics via Computer
Semndation” McGraw-HIlLNY (1985).

(v) T Tejimna, “Computalusal Flasms Fhysis: Kith Applications to
Fussons and Astropkysis | Addison-Wesley, Redwood City, Ca., (1989).

The Neld of plasma simulation is rapidly evalving because of the
progrese an the development of supsreomputers. in fact, plasma
aifulation always pushes to the limits of what is currently avanable.
The snnplest 1-D ¢lectrastatic moedel can easity fill the memory of the
largest Cray or 1BM comnputer with a few million parlicles and a few

thousand grid points. These simple models can easily {ind the
computing machine limits and its weak points. It is ever so tmportant
to e able to miniraize the discreteness effects in plasma simulations
by using many more particles and modes in order to approach a more
coltisionless limit, as described by the Viasov equation.

Particle simulations began about thirty years ago, as you will note in
the references, and they started out as a method used to eXamine
collective pilasma behavior in the kinetic regime, with wirtually no
approximations. What it has resulted in is a powerful tool for
interpreting highly nonfinear kinetic effects like wave instabilities and
associated plasma diffusion, heating and acceleration in such diverse
areas as fusion research, space and astrophysics, industrial plasma
processing (ie. plasma eiching and sofid state plasmas) and more
recently in advanced high energy plastaa particle accelerators.

The plasma simulation models are now evolving in order w cover a
wider range of spatial and temporal scales which reflects the
hierarchical nature of the plasma. Since the rate at which computing
speed and efficiency being made available to us is roughly known, it is
still not possible for us to simulate many of the interesting regimes of
the plasma and this has been the motivation for looking at long titne
scale sitnulation models. We must, however, carefully analyze the
approximationis which are made in order that the emall (or large) scales
we attempt to neglect do not affect the long tume or large spatial scale
we want (o resolve. | would like to present some techniques for tooking
at the long time scale behavior of plasmas and consider a useful tool
for investigating the particle dynamics ot a microscopic’ level. Before
doing this a little background is n¢eded and 1 summarize a few basics

Particle Sinulaticn Model Basics

) Finite -Size Particle Representation



This representation is physically motivated by the fact that with a
Coulomb force law between a large humber of interacting particles, the
part of the force law which contains the slow fall-off with distance
gives rise to collective behavior which we wish to simulate, and the
short range part, which is huge and gives rise to collisional effects
should be modified. In order to minimize the effects of two particles
passing near each other and feeling this rapid variation the particles
are treated as charge clouds with finite size, having no internal degrees
of freedom. When the charge clouds are far apart the force is
Coulombic but when they are near each other and begin to overlap this
force goes to zero. The force on a particle centered at (x,v) is given by:

Fuayn= 1{&1' Sta-x) [E taie) + Lk \—’x‘_“é'-*ﬂ

with corresponding charge and current densities given as:
PUa,E) = [dx' SC-X) L) | aemalge:

Tox,b) = SAr'Sx-x) Tocant) fewdu=1
These equations are convolution integrals and lead to a natural
interpretation in Fourier space:
Fir,v,4) = a Sc-k) [Ece) + 2 ¥ x 8 Cetl]
pPLE, &) = Sth)f (e 8) kX

Tied) = Ste)Touet) scs)&'fd* S e

-ate’y
Ga e lle = €7
The standard Viasov and Fokker-Planck tneosy of ﬁlangm“i‘s can be and )

has been redone using this representation. In the sixties and seventies
a great deal of effort was made to show this modifcation of the force
law could lead to a plausible and physical representation of a
collisionless or weakly collisional plasma. See the references for this
development.

b} Components of Simulation Model
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¢) Classes of Models

This section gives an overview ¢of some of the basics modeis used and
how they have been extended to include a broader range of spatial and

temporal scales.
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The investigation of linear and nonlinear behavior in plasma simulation mod-
els can be very difficult due to the enhanced discretenéss eflects aszociated with
the use of a finile number of parlic.]es. Diagnostics to demonstrate the correct
physical behavior in simulation models are often made using two time correlation
functions of 1he field quantities, such as the electrostatic potential and current,
in order to determine the normal mode damping and frequency spectrum. Also,
the time averaged field energy of each Fourier mode is measured in order 1o verily

the correct equipartition of wave energy density.

More stringent tests on the simulation models such as the verification of the
test particle behavior {i.e. dynamic shielding and {riction} are more difficult due
to the noize produced by the finite number of macro-particles as well as the errors
in interpolation on 2 spatial grid which is used to mediate the pasticle interaction.
Some effort has been given to the siudy of collisional processes in the finite-sized
particle models [1,21, however. little effort has been given to quantifying the
dynamic shielding and diffusion of individual lest charges 13i which ultimately
leads to the development of noise {incoherent spectral components) and collective

effects in the simulations 4],

The particle simulations can be regarded more closely as a real experiment
because the model is independent of any statistical assumptions. Statistical quan-
tities such as the two point temporal and spatial correlations can be constructed
from the data and compared with theories. Unlike real experiments, bowever,
the numerical experiments are reproducible exactly but like a real experiment
it can be difficult 1o extract the desired eflects because of the large number of

physical processes which occur. The concept of a test charge or test wave has



proved to be an important tool in the theorctical development of plasma kinetics.
For instance in a thermal plasma one is interesled in probing the response of the
plasma to a test charge or current {rom an antenna or the effects of a test wave
coupling to a turbulent bath of coupled waves and particles. These may be re-
garded as subtle effects generally difficult 1o measure with satisfactory statistical

accuracy.

In this paper we present an alternative method for investigating subtle plasma
behavior and this method is not based on a statistical formulation. but on the
reproducibility of the simuiation experiments. We use the physical process of
dynamic shielding of test charges as an illustration of the technique and detail one
can acheive in the dynaniics of the model. In section 2 the diagnostic procedure is
presented and we discuss the details of the implementation in simulation models.
In section 3 examples are presented illustrating the utility of the method and
how the technique is able to be used in verification of physical behavior in new

models. In section 4 further applications are discussed and conclusions are given.
The Subtraction Method

The basic procedure in the subtraction technique is to perform two simulation
runs with exactly the same initial conditions, however. in one of the runs a small
perturbing influence is added such as an extra charge or small current. The
resultant electric and magnetic field data from each run is retained at selected
time steps and the two results are subtraclted at each scl:cted time step. In
essence this may be regarded as the perfect data filter and if it is computationally
feasible to perform many simulation runs with nearly the same initial conditions

and subtract the results, then we are able 10 probe subtle processes which occur,

The procedure is not limited to small perturbations. Those effects in both

simulations, which do not depend on the perturbation, will be identical in both
runs and hence will be identically subtracied out. However, il the perturbation is
strong, there will be little in the simulation which will depend on the perturbation
and the subtraction is nol necessary. This simple procedure can be extended in
many ways. For instance, one could also perform a sequence of subtractions for
a system with many different test charges or a system driven by a low amplitude
source current at different wavenumbers and frequencies. The total perturbed

plasma response would be given as:
oI 11 =i 1) - o,(r.t) . ]=2,...N (1

where oy is the electrostatic potential, {or example. of the reference run and
the subscript j refers to runs with different perturbations. If one is interested in
probing the response of the plasma at a certain scale, a test wave can be launched
which may or may not be a normal mode of the system. The coupling of the 1es:

wave to other waves and its decay rale can be measured with good accuracy.

The subtraction method can be further generalized to the study of weakly
unstable systems. A simulation run at thermal equilibrium can be made and a

second run with the free energy source included can be subtracted.
Applications of the Method
Test Particle Shielding

A first application of the subtraction method has been to the problen of De-
bye screening of test particles. The test particle can be thought of as generating
all . and k's in the Fourier transform sense. The subtraction technique gives the

plasma response and thus we can investigate the dielectric in detail. The



electrostatic potential surrounding a test charge moving at constant velocity, v,

is given by: -

—qgpe ' o
ol k) = ——— (2)
2w — k)l k)

where the lest charge density is p{7.1) = qrfl& — Lo — ¢t} for ¢ > 0. To obtain

the response in (Z,!) space one first inverts the Laplace transforin in time and

applying Cauchy’s theorem. integrates over k. assuming poles at w = k- ¢ and

w = w;, where w; are roots of the dielectric ¢ This gives:

o(7,1) = 6p{F21) = GeiF1) (3}

with: it
opli,1) = 4mar /: %%{ﬁ (3a)
o gnp e E—Fa) g1yt (35)

Felw .k-)

oc(z.t) =-imqr
) i

where 1 is the spatial dimensionality [5]. The first term on the right hand side of

o 27V 42 F L F = w))

equation (3) is the Debye cloud potential and the second term 15 the Cérenkov
term which is usually neglected beczuse w; is always damped. For modes near
marginal stability ¢¢c can be larger than op. If 2 cold plasma m()del is used for

the dielectric response:

L3

c(u,k):l—(tj)' (4)
one obtains:
0. I > I~
oplz,t) = { N1y in {2z — 1, ~ 1)}, = < zo 1t (5)
UP v

¢C(1|t) = «2mqrlr - I,icos(uptj {6)
. { d-;ﬂsin{:'f(z —z, - vi}} - ;:fPL".iin(dP!), > z,+ vt

2= .
o sin{wpt), T < 3o+ vl

The unshielded potential, 2wgr|z — o], which oscillates al w = wp is the plasma
response to the sudden ereation of a new charge at t=0. The oscillations at
wp = kv is the excitation of the plasma wake by the test charge. The full kinetic
solution of equation (3) for a test charge moving at v = 3vy, is given in Figure 1.
A large 'ringing’ caused by the sudden creation of the test charge is evident and
masks the wake behind the charge. This effect is prevalent even when the charge
is turned an adiabatically and is also independent of the paiticle velocity. To rid
this efiect an electron-positron pair is crealed instead of a single test charge. One
of the pairs moves ta the right while the other is created at rest. This cancels the
large "ringing and we are left with the plasma wave excited by the test charge as
well as the pularization cloud around the stationary portion of the pair. These
are shown in Figure 2 for four different velocity classes of particles. We next
turn to the simulation results which are compared with the analytic predictions

of test particle behavior.

A standard one-dimensional, electrostatic finite-sized particle-in-cell simula-
tion model with second order spline functions lor interpolating the charge and
forces. was used to obtain the results. In the reference run‘the electrons were
distributed uniformily in space with a Maxwellian velocity distribution from a
Gaussian random number generator. The ions are assumed to be a fixed neutral-
izing background. In addition one extra test charge with zero velocity is included.
A second run is prepared identically except that the extra test charge moves to
the right with velocity v. The time evolution of the electrostatic potential at
each point in space and time is recorded in each run and the difference between
the two is displayed. Both periodic and vacuum boundary condtions have been

used.



The agreement between theory and simulation is quite remarkable, especially
al early times. Figure 3 illustrates the case of a test charge moving at Jve, using
the bounded model. At time step wpt = 40 discreteness effects begin to occur
and theoretical predictions show substantial deviation from the simulation. In
this case nAp = 4000 and WAt = -0.'2. The discreteness effects observed in
the simulation include the excitation of a precursor in {ront of the particle, an
interference pattern in the wake indicating excitation of short wavelength modes

in the wake and locai growth or enhancement of the amplitude in parts of the

wake,

A study of the properties of these eflects has led to some understanding of
their otigin. The precursor does not depend on the test charge itsell and the
leading edge propagates near 4ry which is the velocity of the fastest simulation
particle. Therefore, the precursor is quite likely caused by background elecirons
traversing the wake behind the test charge, overtaking it, and because of the
long time memory propagates the disturbance in front of the test charge. The
enhancement of the short wavelength part of the spectrum behind the wake is
thought to be due to collisions between two fast particles giving rise to elec-
trostatic bremstralung [61. Finally. the local growth in the plasma wake has
been showr to depend only on the discreteness parameter, by making simula-
tion runs with larger numbers of particles pcr. cell, and therefore may depend on

pre-existing fluctuation levels of the waves in the plasma.

ooos
t00h
007
[ 111 ]
o0gay
oo
[L13]
.o00}
_apd
4Ban
- deol
~.200
- €0
-. 0004
- 6008
-.ep08
-.ne?
~.000#
- boay

i

PR

e

—

R PR WS S

POYLHTAL, SCaLE= -10

26. 40000

o
1t
b11]
e
1]
Joa

110

-1
158
=149
=i

F3fTTes2as

(}1)
o

l

(11}
e
110

FRL

168

e b
i1l
11

POTENTAL, SCALE= =10

T = 64. 00000

Fig. 1 Plasma wake emitted by one dimensional test charge moving
at velocity 3uye as predicted by kinetic theory. Vertical bar shows the
location of rhe rest charge and time is normalized to o1

p g



o - . . . -
" M It} —— "
I
(N ]
i ! | wlp wl ]
. - (33 2 - t
- ] | ] 13 ]
v} ! 1
'; . ot :
]
o i J4 o ;
| i
I3 1 F 1
[ 34 b
L]
al al
sir e - -i
o r N
S oF i
-bF -1 3 b
o} ]
. -11
e - = 3 &£ 2z =z $ 3 3 = = =T =z gz M T = =z =z = = = -
.-:7517'::.1::: ;.'.‘5.-:7-3,.,_::: LA S R A 02 5 3 3 3 oz oz 2 7 oz =z =z
POIENIAL. SCALE= 04 POTERTAL, $CaLE= -]
POTENTAL, SCALE= [} POTENTAL, SCaLLa 1
T T4 L) [N ]
0.00000 A = 1,00000 Y= T.HA0E A = 108000 .
a1 " 1
" - " ]
1
" k. 1.
3 . 4 o}
. s}
b
o
af ]
-
- ]
- -~
e} sk )
ar -
: = = = =z z =z T 3 & ™o oz 3o o3 0§ 3 503t orooz ™ 3 o¢ oz o=z 3 3 =z 2z 3z = = =
0§ 0% 3
PATENTAL . SChL = =1] POTENTAL, -
POTERTAL, SCALES 1 1 L. SCALLe a1}
' "os .
S e 1 BODOD L] 1.00000 " Te 2n
Fie. 2 Theorerical aeadierion of Debye shielding and wake - L )
i y ) E ke behind & one Fiz 3a Time cvolerion of -be plasma wake helind resr charge mining
elime: 1 it

sional iest charge for various velocities. Subidd line is che pait
particle resuit and dashed line s the tinit-2ize 2as11cle resule. The test
charge is located at the center and moving to the ngiu.

at velocity deee. Dots tepresent theory predicrion and solid lines are 1he
simulation result.




r

" "
. !
T I -
b 1 N J‘l
4 s :
. J
(38
oS |
7 1
4 “f :
‘ Y
1 -
s s 1
L i
wal — TP P L.
POTENTAL, SCALEs -¥) POTENIAL, SCaLf= -3
- 21 it - 13 4a T
" "
W 4 wh
s 9 . |
o} .
- b
-k al
Ty wl
-0 ...L
e sz = = = PR Y] . = = —=
PATTNIAL, Stalle =13 POTERTSL . SCALEs -3
. L 1] ra 4% 8Q ¥

3h

(L) ]
Ty nt
] " -I»
!
[ o

i
al ak {
I
-1 . 1
.
ot |
-9 -4 - = = - = = - = = = = < "
FOTENTAL, SCaLE= -4 POTEMTAL, SCALLe -1}
« 3100 T« 3170
" " —
" "y ]
» o}
. o}
s o
1t -
fad
. i " ~ *
b .
-
-+ -
-4 bk
=" "R
-1 o
L R 2 ' 3 . s e "
POTERTAL. 3Cas(a -1} POTEMTAL, SCALfe -1}
= biae 1= 1t



Figure 12: simulation Debye cloud
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Figure 14: simulation Debye cloud
v =24

(_'l(,-u((S_

Figure 15 analytic Debye cloud
v=20

i a

Figure 16: analytic Debye cloud
v = 14

el

+ -

Figure 17: analytic Debye cloud
v >>1

Q}\) o h\(":]"( J\\Sl.\l ]

Figure 18: simulation Debye cloud
V= 3vi Q= 04w,

jyo”%

Figure 19: simulation Debye cloud
V=1, = 0.4c,

2.3

R ]

D rive

Dol Cloed s

T T
o 0od »NT.M

Figure 20: potential slice
po= 754,

L. " L " 1 " " " "

T T T T T
b.0000 »r e

Figure 21: potential slice
p = 25i,



References

9

110

Okuda, H., aud Birdsall, C.K., Phys. Fluids 13, 2123-2134,(1970).

Okuda, H., Phys. Fluids 15, 1268-1274.(1972),

Langdon, A.B., and Birdsall, C.l}'., Phys. Fluids 13, 2115-2122 (1970).
Laongdon, A.B., Phys. Fluids 22, 163-171.{1979}.

Krall, N A., and Trivelpiece, A.W.. Principles of Plasma Physics, McGraw-
Hill, NY, (1973).

Dawson, J. M., Shanny, R.. and Birnungham, T.J., Phys. Fluids 12 687~

693.{19G9).

! Birdsall, C. K. and Langdon. A. ., Plesma Physies via Computer Simula-

tion, McGraw-Hill, NY, (1983).

Friedman. A., Langdon, A.B., and Cchen. B.l.,, Comments Plasma Phys.
Cantrol. Fusion 6.225-236.(1981).

Barnes, D.C., Kamimura, T., Leboeuf. J. N . and Tajima, T., J. Comp. Phys.
52, 480-302, (1983).

Lee, W.W ., Phys. Fluids 26, 536-570.(1923).

Lecture 2 : Large Time Step Plastna Simulation Mcdels with Applications

Introduction

Due to the enormous range of spatial and temporal scales in a plasma
realistic simulations are difficult. Therefore, one appreach is to use multiple
ume scale methods. The differential equations we must use become 'stiff’
since the phenomena of interest develope on slow time scales even though
the system supports high frequency normal modes.

The easiest way to master the basics of applying these methods is to look at
the harmonic oscitlator and its normal modes in ordar to get a feel for how to
filter out high frequencies. Then add the plasma to filter out short
wavelengths.

Useful references to begin with include:

(i} AB. Langdon, |. Comp. Phys., 30, 202,{1979).

(i) ]. Denavit, J. Comp. Phys., 42, 337.(1981).

(iii) A Friedman et al, Comm. on Plasma Physics and Controlled Fus,
6,225,(1931).

In this lecture 1 will follow the development of implicit methods in particle
simulations and discuss the modifications to the test particle picture of the
simulation plasma.
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steod. For our juvestigation we use first and second order direct fnuplicit schemes
which are not exactly momentum conserving since filtering is dune cu the mesh
! i 0t : e icl ity (9. [t 15 more dil-

electrostatic potential rather than on the particle quantity 9} s

ficult to quantifly the damping due to phase errors in such algorithms from an
analytival approach and therefore the subtraction method aids usz in this as well
as understanding the physical origins of the damping. The form of the equations

of motion is given by:

n+3/2 n-112
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eP = ot AVEN L ' M ETI (s {7b)
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where S is the particle shape factor. The Poisson equation becomies:

En- in 17 Ay -
9 tr) Zq q’ Az-is(r— rj)/d:’su‘—z;‘ VIES VLY (Te)

- 1= N Nz — !
= dx {\_‘qj.b(.z )
2
where we have expanded S(z"~**) in a Tavlor series about the free streaming
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. 12
pasition 7, nrif

z; vl Al This nondinear Poissson equation i solved itera-
uvely in k-space and the convolutions are performed in real space. This scheme
corresponds to the full implicit scheme and converges provided %’— > (dey /dt) s

is satisfied.
A modification of the above scheme can make the algorithm second order

accurate 9. This is done by replacing equation (7h) with:
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where {) denotes a time average and is given as:

(En+l,n".’) — %(fn-l,ﬂ' + (En—l/'.’)) (9)

The Poisson equation becomes:

Ak M (1) g At q] n+l,f 12 +3
. __na YL Py
3: + 2w e 2 ™ —8(z— )/d.r S z e {z')-{K
Rif2 N & n- o S
=4z Y g;85(z-z] 7" )—4,.At—§ 9uy Sz}t amdto 3 g (o) S
’ ;

(18)

The results of the simulations were made using system size, L = 512\ .ndp =
100, vee = 0.1 — 1, and particle size, ¢ = 1.5 — 2.2A. The tine step was
varied between wp At = 0.2 - 10. Quadratic spline mnterpolation was used fur the
imerpolation of the forces and charge density. The tesi charges were intradueed

the same way as described in the previous section and test particle velocines

trest = 0.25 1, and 3u. were considered.

Figure 4 shows the results of the electrostatic potential from the subtraction
method for a particle moving at Jv,, and with three different time step values.
The results of the implicit <ode simulations were identical 1o the previous time-
centered results with wpAt = 0.2, As an illustration of the detailed behavior one
can explore with the subtraction method, Figure 4a is a comparison of 1est par-
ticle wakes using the subtracted dipole scheme and the more accurate quadralic
vpline interpolation. It is evident that the interpolation scheme accuracy as well
as noise vontributions ¢an be quantified in a detailed manner. The overall shield-
ing behavior is similar to the results of the previous section but in the larger
thne step runs ,as shown in Figure 4b, the short wavelengths in the wake are not
prevalent. There are modulations in the wake amplitude as before, however. the

electrostatic bremstralung contributions are weaker for larger time steps.

The results of nonphysical behavior for the largest time step, wp AL = 10,05

shown in Figure 4b. It is evident from the comparison with the wpdl = 2 case

"

(' 0J
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that there is over-cnhanced shielding and the size of the Debye cloud increases
with increasing time step. There is a strong cooling of the plasma and energy is
no longer conserved. The dominant cooling arises from wave emission by the fast
particles which in turn sufler the largest numerical damping. Measurement of
the slope of the potential at the particle lacalion gives an approximate measure
of the self-forces on the particte and it is found that this increases approximately
linearly with increasing time step. Further studies to evaluate the self-fields of
the parrticles and comparsion with instantaneous wave emission studies for the

imnlicit maodeis are currently being pursued
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