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1 Introduction

What is the relationship between the Second Law of Thermadynamica and the
approach 1o equilibrinm of mechanical systems? “This deep question has per-
mealed scicnee far over a century, yet is still poorly understood. Particidarly
obseure is the connection hetween the way the question is traditionally analysed
at dilferent. Yevels of mathematical modelling, for exatple those of classical and
guantuwim particle mechanics, statistical physics and continuum mechanics.

1u this article | make some remarks, and disciiss examples, concerning one
part of the picture, the justification of varialional principles for dynamical sys-
tems (especially in infinile dimensions) endowed with a Lyapnnov funclion. For
dynamical systemns arising from physics the Lyapumov hunction will typically
fiave a thermodynamic interpretation {entropy, free energy, availability), but. its
arigin will nol. concern us here. Modern continnnm thermomechanics provides
such Lyapunov Tunctions for general defornming materials as a consequenee of
assmied statemends of the Second Law such as the Clausing-Duhen inequalily
(.. Coleman & 1l [I8}, Duhem [20), Ericksen [21], Ball & Knowles [12]). By
contrast, stalistical physics provides Lyapunov Rinctions only For very special
materials (the paradigm being the 1l-Tunctional for the Boltziman equation,
which models a moderately rarified imonatomic gas).

Lot T(1),5 4 be a dynamical system on sone (say, (opological} space X T'huos
() T(0) = identity, (it) T(s + ) = T(sYI'(2) for all 5,0 > &, and (1) the wap
ping (1,0} v~ T(Lhp is contimons. We suppose thal 7(t),,, , is eidowsd with a
cantinmons Lyapunov fanetion V0 X = I, that is V(T(ikp) is nowinereasing
on [0, ) for rach @ € X. ([0 some siluations variations on these assumptions
wonkd he appropriate; for example, solulions may not be unique or always gloh-
ally defined. ) The contral conjecture s that if £ — o thea Tt ) wall be a
mingmezeny sequeniee Jor VoA tene, this woukd give a dynamical justitication
for the variatienal principle:

Miniwmize V. {1.1}



Whit aee the whaticles o waking this more precise? Fiest, there may exist
constants of otion Lhat force the: solution T Lo retain on sanie subanan
il Phiese constauts of melion nust be Meorporated as constramls i Uhe
vinrtabonad pramciple. For example, if tw constants of motion e e, DX -0 3
P10 /M, sutha

(U = oy 0) foralld >0, i=1,.. . N, (1.4)
then e wodidied varnatinal principle would be

Min  V(g),
ctvrn, | P {3)
=L, N

whewe the o, are constants. Second, there may be puints ¢ € X which ace
locsl winiogers (in some seuse) but ot absolute minpnizers of V', e that an
apprspriate definition of a ‘loca) nnlLEINg sequencs’ s needed. Thicd, the
cotgectire s false for itial data g belonging to the region of attraction of
eesk potal that is wol a bocal miniizer of V', such exeeptional initial data mast
stetichiow be excluded Fourth, the wininwn of V may not be atvained, render-
ing even more peolilemiatical a goud defiuition of a local nininezing scguence
(e Badl [4]5. We are thus searching for 4 result (applying Lo a generil class of
dymivical systeins, or to interesting examples) of the Lype:

Mrotothueorom For most wuttial data o, and any sequence b=,
Ty a3 a docal nenmezing sequence for V subject to appropriale constramds

The trivial one-dinnensional example in Figure ) illustrates o further dif-
licully. In Lae example there are Uhree critical points A B.C. The Lyapunov

v A

(&
Figure 1:

function Voas the vertical coutdinate. There is clearly no wantrivial coustant of
mohion, siee sueh a fchion would have 1o be colstant i the closed wibvrvals

(AL} and 1B.C]L Yot for any p € [A13] the solution Lends as £ — oo Lo a rest
Pt wlich s wot a local miniizer of V. One could have at Jeast thiee reac-
tiona b Lhis example () thal staying in the invariant region [A,H) should be
mcorporabed as a constraint in the variational principle, (1) that the example
is ol generi, because Wie rest point B 18 not hyperbolic, or () that stuchastic
elfvets should be mitroduced so that the upper orbil can gel Lhrongh the barner
ab B For, exanple, taking the point of view {11), a vorsion of Lhe protutheorain
can be proved for an ordinary diflereutial equation in R* .

Thevrew 1 Consider the cquation
i= f(), fER", (1.4)

where [ RY — R i O, Suppose that there ezists 4 conbanous Lyupunoy
Junction V o B" — R for (1.4) satisfyang

Jim Vig) = o, (1.5)

and such thut if £ 15 a solulion of (1.4) with V(£lt)) =coust. forallt > 0 then &
w8 u rest pund. Suppuse further that there ure just a fimte namber of rest ponts
w, t= 1. N of (1L4), and that they are cach hyperbolic. Then the xmon of
the regions of atirection of the local manmiizers of V an L™ 15 open and dense,

Proof, I sketel the standard argument. By (1.5) vach solution z(1) is
bounded for £ > 0, 50 Lhat by the invariance principle (Barbashin & Krasovskii
[14], LaSulle [25]) £(2) — a; as ¢ — oo for some 5. Thus

N
R" = | JA@), (1.6)
=1

where A(s) denotes the cegion of atleaction of o, Bul a by perbolic rest point
4 15 stable if and only if it is a Jocal minimizer of V., while if o; s unstable then
Afa,) w clused and nowhere dense. [a]

Note that from (1.6) it follows Lhat under the hypotheses of 'Theorem 1 there
i5 W0 nontrivial continuous constant of wotion ¢ - R" — IL.

Sintar results 10 Theorem 1 can be proved for some classes of {enpecially
sewilinear) partial ditferential equations by combiniug the invariance principle
with tincaciaation (c.f. Wale [25}, lency [24), Daferios {19], Hall [6,5]), provided
the set of rest poiuts is, in an appropriate sense, hyperbolic. {lowever, many
witeresting examples lie well ontside the scope of Lhese results, and io version
of the prototheorem of wide applicability is known Lo me.

"Fhe work of Caee & Pego [16] ou the Gingburg Landau equalion with stall
diflusion shows that, even whea the prototheorein haleds, solutions may in prac-
tice take an extsnely dong tisue Lo approach their asymplotic stale, getling
stuck along the way in metastable states thal sre not close to local wininizers,



2 Two variational problems of elasticity

The examples in this section illusirate some of the features deseribed in See-
tion 1. Lo the lirst there are nontrivial constanis of molion, while i the seeond
the mininmmi is pol. aldained.

Exninple 2.1, {The pure traction problem of thermoelasticily)

“oisicher a Lhertuoe astic body in free space, occupying in a reference conlig
uration a bounded domain @ € B2, Tt is assumed that the external hody foree
aml volumetric heat supply are zero, that there are no applicd surface forces,
and that the boundary of the body is insulated. Let y = y(x,2) € R denote
the position al Lime £ of Lhe particle at 2 € 1 in the referenes configuration,
ol y{x, 1} Lhe velocity, « = {2, 4) the internal eneegy density, and pp = pplr)
the given density iy the reference configuration. Then the balance laws of linear
mementmm, angular nomentum and energy imply that

-t%fnpmld:l::ﬂ, (2.1)

d o

i npnyl\vd:=0. (2.8

d i p

m'/pﬂ(f + 3 Jv[Mdz =0, (2.
n

respectively, while as a consequence of the Clausius-Duhem inequality we have
that

—d—] —pri{r, Dy, }de €0, (24)
dt fo

where 5 denotes Lhe entropy density and Dy the gradient of y. W s assuned
that i is frame indillerent, Ahat is

iz, RA ¢) = nlx, A () (2.5)

for alt 2. A, e and all ! € SO(1). By changing Lo centre of mass coordinales we
may assuine that

/pny der =0, [ pavidzs = 0. {2.6)
s i

This motivales e var ational principle

Minimize / —pun(x, Dy, e)dr (2.7)
1]

subject 10 the constraints

1 .
/pﬁ(!+ 3 Jv |9 dr = a, (2.8)
W
j pryde =0, [ prvde =0, (2.9)
i n
[pnyl\lidt:b. (2.10)
[

where n € I and b € RR? are constant.

"The iinamization problem (2.7)-{2.10) has recently been studied by Lin |26],
who proved Uhat under reasonable polyconvexity and growth conditions on  the
o s attained at some state (§,¥,7). Of course §,%,7 are functions of
£ alone. Ay a consequence of (2.5), the minimization problem is invariant Lo
the transfornation (y, v, ) — {2y, ftu, €) for any R € SOH3) satisfying b = b.
Hence, for any such R, (R, KU, ¢) is also & minimizer. In fact it is proved in [26]
that for auy minuuizer (F, 7, %) there exists a skew natrix A such that Ab = b,
v = AY, and such that

iz, t) = eM(z) (21
oz,1) = €z) (2.12)

is & weak solution of the equations of motion. Furthermore
‘;—':(:. Dy(x,t),¢(z,t)) = 87" {2.13)

for all ¢, where 8 is a constant. The motion (2.11), {2.12) corresponds 1o & rigid
rotation at constanl temperature 8. Note that in this example the Lyapunov
function V is constani along nontrivial orbits, such us thal given by (2.13). In
particular, solutions to the dynamic equations need not tend to a rest poinl as
titne & — 0o,

Example 2.2. (A theory of crystal microsiruciniv)

Consider an elastic crystal, occupying in a reference conlignration a bounded
domain £ C RY with sufficiently smoolh boundary M2, Asswte that part of
the houndary @42y is maintained at 4 constant teinperature 8 and al a Eiven
deforuied position

Vo = 7. (2.14)
where § = F(-), while the remainder of the boundary is insulated and lraction
free. "Phen an argument sipgilar 1o that in Example 2.1, bt wsing a different
Lyapunov function, Lhe availability, inotivates the variational principle

Minimize / W(Dy(z))dr (2.15)
it



sulyjeel ko

#l =¥ (2.18)
where W is the Nebnlol Teee energy al temperature @y {see Ericksen [21], Hall
18]} 1t is supposed that W oas frune indifferent, ie.

WiiA) = W(A) (217)

for all A in the donin of Woand all B € SO{3). In addition Lo (2.17), W has
ollier synnnetries insing frong the crystal latlice structure, a8 a consequence of
which W is nonelliptic. This Tack of ellipticity implies it turn that the minimum
in (2.15),(2.16) is in gencral nel atlained in the natural spaces of admissible map-
pings. In this case, in order Lo get choser and closer Lo the nfimuim of the energy

it is necessary to mtrodicce more and more microstructure. Such microstrue-
e i frequently observed in optical and electron micrographs, where one miy
see pmltiple interleces (occurring, for example, in the form of very fine parallel
batds), vacl corresponding Lo a jump in Dy, The observed microstoucture is
nob, of conrse, infinitely fine, as would be predicted by the model here. "Uhe
conventional explanation lor this is that one ghould incorporate in the energy
functional contribn tivs due o intesfacial energy; this should predict a linated
fineness and iinpose additional geometric structure {e.f Pacry [29), Fonseca [22]).
Since the iteelacial coctgy is very small (withess Lhe large amounl of surface
ohserved) it is a reasanable expedient to ignore it, and in fact this successfully
predicts many features of the observed microstructuge (see Ball & Jaes [10],
Chipot & Kinderleheer {17)). An example in which the nonattainment of a min-
irnum can be rigorously estalilished is the following (a special case of a result of
Bakl & James [11]). Let W > 0 with W(A) = 0 if and only if A € M, where

M = SO{3)8* LUSO{3)S~, {2.18)
W'I(frl‘

St =148e3@e, (2.19)
amd where 8 > U aml {e,eq,e3} is an orthonormal basis of M. Suppose that
My = 352 and that

Blr) = (ASY + (1 - A)57 ), AE (0, 1) (2.20)

Then mader somne Lechuicil hypotheses it is proved in [L1] that the infimm of
{2.19) subjeet Lo (2.16) 15 zero, and that if y97 is a minimizing sequence Lhen
the Young measare corresponding Lo Dyld) is unigue and given by

1y = Mys + (1= AWg-, for a.e. z €42 (2.21)

In particnlar, becawse #, is pet a Dirac mass a.e., it follows that the mininmin
15 not allamed. The mintimizing set A in (2.18) occurs, for example, i e cnse
of an oithoelhoabiz (o monodinie transformation.

U wonld be very interesting Lo carry oul a dynamical anabysis corresponding
to the above vapiational problem, to see if the dynamics produces minnniz-
ing sespuences with nicrostructuee after the fashion of te prototheorem. "Fhis
combd lead Lo mportant insight into a controversial area of netallusgy, that of
martensitic nticleaion.

3 Some dynamnical examples

bn thas section some infinite-dimensional problems are discussed for which the
prototheorem can either be proved or, in the case of Exuniple 3.2, related infor-
salion ubiained.

Example 3.1, (Stabalriation of a rod using the avial foree ds g conirol)
The problem of leedback stabilization of an clastic rod using the axial force
as a conbrol leads 1o the initial-boundary value problem

'
u,.+u““+(f u,,u.d;) U, =0, b, (3.1)
(]
u=u, =0, r=0,1, (3.2)
u(L,0) = ug(e), ufe,0) = uy(x), U<zl 3.3)

{lere ulz, t) denotes Lhe trauaverse displaceinent of Lthe rod, while e boundacy
conditions (3.2) correspond 1o the case of simply supported ends. This and

sunilar probleins were forlated and snalyzed in Ball & Slewwrod [13]. Using
the Lyapunov function

)
V(!):fn %(uf+uf,)dx, (3.4)

which huy Line derivative

Vi =- ([ Ussliy d-r)u. (3.5)

it was proved that if {ug, u,} € X & (20, 1) 0 HAD, 1)) x L2(0,1) then the

unigie weak solution {u, u,} of (3.1)-(3.3) satisfics
fum} —{0,0)  weakly in X as i — o0, (3.6)

Comsidered ws a functional on X, V has only one critical puint {0,0}, which is
au absolute winimiger. The conclusion of the prototheorens therefore holds if
and only if

{u, ) — {0,0}  strongly in X as ¢ — oo. (3.7)



This lias recently heen proved by Miiller (28] by means of a deficate analysis of
the infimite system of o-dinary differential cquations satisfied by the coeflicients
(1) of Lhe Fourier expansion

oa

ulz,t) = ¥ uit)sinijnr) (3.8)

=t

o.l' a solution. Miiller abso established the interesting resull that given any con
limuons function g : [0,00) — (0,00) with lim_og(f) = 0 there cxista initial
data fug, 14} € X such that the solution of (3.13-(3.3} satisfies

‘ Vi{t) =z Cglt) {3.9)

for all £ > 0 and soe constant ¢ > 0. Thus solutions niay have an arbitrary
slow rade of decay as £ -+ co. I is an open question whether BLTONE convergeure
holds Tur the case of elianped ends

u=uy =40 atz =101, {3.10)
or for various other feedback stabilization problems for which the analogue of

(3.6) was establislied in [13).

Fxumphe 3.2, [ Phase transitions 1n one-dimensional viscorlashicily)
Consider one-dinwi sional motien of a viscoelastic rod.  The equation of
molion is taken Lo be

U = (o(ng) + ngeds, t<zrel, (3.11)
with boundary conditicns
w=laltz=0 eflujtu,=0alzr=1I, (3.12)
and initial comditions

u(x,0) = ug{r), {2, 0) = up(r}, Dt (3.13)

For siniplicity, assuine that

ofi) = W), Wlu)=(u? 1), (3.14)
Let
LA
Viup) = f lip‘!-i—ﬂf(u,)ldr. (415)
o
Then V{n, 1) is a Lyapunov function for (3. H)-(3.13) with time derivative
) 1
Viw,ug) = -/ ulode <0 (3.15)
]
8

‘The corresponding variational problem
MinV,

X
where X = {lu.p) : w € WH{0, 1), u(0) = 0, p € L2(0, 1)} has unconntably
many absolute minimizers, given by any paic {u,0) € X with u, = &1 ae.
In particular it is casily proved that given any smooth function v on [0, 1] with
{0} = 0 and | v |< 1, thete exista a sequence (1), 0] of absolute minimiz-
ors auch that ntf) 2 o jn W1o9(D,1). This taises the interesting question as
to whether a solution {1, u} to (3.£1)-(3.13) could exhibit siniilar hehaviour,
canverging weakly but nol strongly to a pair {e,0} which is not a rest point.
"Fhia yuestion was resolved by T'ego [30], following eatrlier work of Andrews &
Hall {I]). Pego showed that for any sclution {u,ne), as & — 0o,

uf-, t) — v} strongly in W10, 1), (1.18)
wl ) —0 strongly in W30, 1), {3.19)

(3.17)

fot alt p > 1, where (0,0} is a rest point of {3.11)-(3.13). Thus solutions
to the dynamical equalions do not mimie the Lypical hehaviour of minimizing
sequences, The results of Pego do not seem, however, to he suflicient Lo establish

whether or not a version of the prototheorem holds.

Example 3.3, (The Becker-Déring cluster equations)
These are e infinite set of ordinary differential equations

b= hooalel®)) = L(e(t)), P22,

(3.20}
é = =di(elh)y = 3 Tlelt)),
r=1
where c(f) denotes the infinite vector e (1)),
Je(e) = areier — bryateyr, (3.21)

and the cocflicients a, > 0, b, > 0 are constani. The physical significance of
(3.20) is discussed in the article in this vohnme by Carr [15].

Let X = {uw= () lrll ! Yo rlw l< o). X is a HBanach space
with Lhe indicated norm. Solutions of (3.20) are sought as continwous funclions
e [0,00) — X, where

Xt={yeX:yp >0, r=12._} {3.22)
T'he systesn (320 possesses Uhe Lyapunov Tunclion

Vie) = ir, (l.. (6—) - |) , £.24)

r=l r



wheee @ < 1L Q1 /U = drfbeyy, and there is o coustant of wiotion, the

denaly
o
p= ZI'L‘,-. (3.24)
r=1
For suitable coclficicuts d,, b, ticre exists Pi > G such that there s a wnigue
tesl puint o) of (3.20) with densily p for # € [0,p,], and no wst puint with
any density o > gy Farthennore ¢ iy the uniyne absolute minimizer of the
probilein
Minimize Vie).
cE XNt S:‘:l rep = p
The cquations (3.20) were analyzed in Ball, Carr & Penrose [8], Hall & Carr
[7]: see also Ball {2] for remarks on the vaniational problenn (3.25). It follows
froa [8],[7] that under suitable hypotheses on the g b, the conclusion of the
peototheorenm holds. That is, given c(0) € X+ with Z:‘;. ree(0) = p, and any
sugience £ — oo, o{t;) is a minimizing sequence for {3.25). Note Lhat this
conclusion holds even w the case p > #a. when the amninwm i (3.25) is not
atlaimed.

(3.25)

Exnple 3.4, (Medel equatiens reluted to phase trunsilions 1 solids)

In Example 32, the Lyapunoy function V given by (1.15) has wininkzing
seyuences that oscilliate ore and nore Suely, converging weakly Lo a state Lhat
is wot a minimizer. Ou the other band there sre minimizing sequences which
do ot beliave like this, consisting, for example, of a single minimizer. The
resubls of Pego show that the dynanncs chooses 1o imitate the latter kind of
tuinuaizing scquence ratlher than the former. In the erystal probdens described
in Example 2.2 minimizing sequences ace forced Lo oscilate wmure snd more
linely, leading Lo interesting possibilitics for a correspouding dynamical model.
Does the dymanics imitate the minimizing sequences, or is it still the case that
all sulutions taid Lo equilibria? This is a formidable problem, so it makes sense
Lo irst ey oul seine one-diniensional examples. The most obvious candidate is
the prollein

uy = (o(ug) + Urele — 2u, V<<, (3.26}
will bonudary condilions
u=fal =01, (3.27)
il llul'm_l conditivus
(e, 0) = uglx), wlr,0) = wi{r), U<ae< ) (328)
As hefure, assiine Chat
oluc) = Wilae),  Wiw) = (uf - 1)* (3.20)
]

‘Then V(u,ue) is a Lyapunov fuuclion for (3.26)-(3.28), where

it o 2 (3.40)
V(mp):[) {Ep + Wu,) + v’]de. R

The mininnzing sequences of V subject to (3.27) alll‘oucillute fi;.‘l'-t‘l‘ amd ‘I'a:iler,
converging weakly bul not strongly to {0,0} in IrVu“ (0, i) x LA0, 1), (See l_!u-
paper in this volumie by Miller (27] for a study of this variational problem witlt
sucface energy added.) o

The problem (3.26)-(3.28) has been studied in joint work of 1M .lolnwes,
K 1).James, i L.Pego, P.Swart and the author [U], together with the much more
Lractable problem consisting of the equation

! i
uu:(j u:d:—l)u,,+u,,|—2u, Dce<l, (3.31)
o

with boundary and initial conditions (3.27},(3.28). This problem has the Lya-
panov Tunclion Vi, u,), where

] 1 1 2 .
V(u,p):f [l(p’-—uf.)ivu’]dc+ - ([ u:d::) . (3.32)
o 2 i\Jo
‘There are countably many rest points of (3.31),(3.27) given by
ug = agsinkwz, k an integer, (3.33)

fur suitable coellicients ag. It can easily be proved that

nfV = -1, (3.34)
X 4

where X = H{(U,1) x L2(0,1). Then we have Le result
Thearcin 2 Let u be any weak solutron of {3.31),{3.27). Asl — oo esther
(1) {u,u} — {uy, 0} strongly in X for some k, or
(i) {u,u} — (0,0} weakly in X, dut not strongly, and
Vs I iy 9
lim V(t) = —~. (4.35)
= 4
The alternalives (i),(ii) both oceur for dense sels of mehial dala i X, the set
corresponding {o (ii) dewng of sccond category.

fly contrast, for the problem (3.26)-(3.28) it is shown in [U] that there is no
solution {u,w} for which

‘Iim V{t) =0, (3.96)

e no solution which realizes an absolule iinimizing sequence.

il
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