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O.Introduction
A boundary value problem with the linear part at resonance was

firstly studied by Landespan-Lazer in 1870. They considered the
boundary value problem:

Yy +y=g, (v)+h(t) te(0,m)

¥(0)=y(n)=0, (0.1)
where By<C{([R) is bounded. Under the conditiocn that the function
G(y)=Galy)+h(t)y, Go(y)=4Yg (x)dx, satisfies

IZG(asint)dt~+w (or -w) as falsw (0.2)

(0.1) possesses a solution.

Since then » vast litersture extended and improved their results
to various types of problenms.

Because the linear part is sat resonance, in general, there is
neither a priori bound for solutions ‘nor Palais-Smale condition
for the variational approach. Roughly speaking, the difficulty
lies in the lack of compactness. However, the essence of the
Landesman-Lazer conditien is to provide such =& compacthess

condition.
Of course, other kinds of resonance are of interest as well.
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The strong resonance condition:
85(¥)0 and Go(¥)+A, a const. as |y |+» (0.3)
or more generally,

EO‘GO are bounded and uniformly continuous (0.3)".
was posed by Bartolo—Benci—Furtonato [(BBF]. But, they assumed
Go(y)+ﬁ<0.and bade many extra conditions, which enforced a

compactness condition upon (0.1).

A pain step in studying the lack of compactness problem in this
direction was due to Ward [¥]. He studied the case: gu(y)=siny.
and fgh(t) sint dt=0. The study was followed by Solimini ([S],Lupo-
Solimini [LS) and Mawhin [M],

In this paper, the strong resonance problem is ~studied in the
variational approach by & quite different method. The new
ingredients are asg follows:

(1) Although the Palais-Snale condition does not hold for some
values, we could compactify our space by adding somge infinity
points, and extend our functional onto the new space,

(2) Deforreations, and then the critical point theory are extended
to the enlarged space.

(3) We distinguish the genuine and the fake critical points,

(4) Multiple solutions are obtained by the richness of the
topology of the compactified space along with the critical Aroups
of isolated critiecal boints.(ef. Chang [C1]>.

Our work is set up in the functional analytic framework. The

B&ain resylts are Theorems 2.6,2.8, and 3.3. In the applications
to differential equations,Theoren 2.8 implies the results due to
Ward, Solimini, Lupo-Solimini, as special cases. Theorexn 2.8

improves these results to obtain a nontrivial solution jif there is

& trivial solution with certain restrictions on itg Horse index



(ef.Theorem 4.1.). And Theorem 3.3 extends the Landesnann-Lazer
type problem ibout the wmultiple periodic solutions for the
Hemiltonian systems with periodic nonlinearities, studied in Chang
[C2]), and Liu [L2] to the strong resonance case,

The paper is organized azs follows: We compactify the space
and set up the deformation lemma in 51, 62 is devoted to obtain
the existence and the nultiplicity of solutions for semi-definite
functionals. &3 extends the results in 52 to indefinite
functionals via the Garlekin method. And 4 deals Wwith
applications to semi-linear elliptic boundary value problems and

periodiec solutions of Hamiltonian systems.

-3 -

1. Deformation lemma
Let H be a Hilbert space and A be a bounded self-adjeint

operator on H,which splits H into Hy + Ha + H, according to its
spectral decomposition. We denote by P4 and P the orthogonal
prejections onto the pesitive/negative spectrum space H and the
kernel of A, H , respectively. Set O = P4 + E.. The following
assumptions are made:

(Al) The restriction AjHy is invertible, i.e. AlBy has a
bounded inverse on Hy.

(A2} m_:;= dim H_, my:= dim Hg are finite.

{(G) Let G: H - R be a Ci—function and have a bounded,
compact gradient dG. We assume that G{x) — 0, dG{(x) —» @
as jPx| —» o0, uniformly in bounded Qx sets.

We are concerned with the existence of critical peoints of

the function
f£{x) = 1/2(Ax,x) + Gi(x) (1.1}

which is related to the asymptotically linear operator equation
with strong resonance at infinity: Ax + dG(x) = 6. This
problem has been attacked by many authors
our approach is quite different from theirs and easily extended
to the case of function with periodic nonlinearity.

let us recall the (P.S). condition; L I -

We say a function f defiﬁed on a

Hilbert space H satisfies (P.5} condition for ¢ € R, if any
sequence ¥, ulong which fix,) —» c.,onddf(x,) —» & possesses a
convergent subsequence,

The function defined by (1.1} fails to satisfy (P.S%

conditien &l the level ¢ = ¢. In faet any sequence x, of H,,



for which |x | — o, satisfiers fi(x,} — 0, df(x,}) — & and
can have no convergent subsequence. But f does satisfy (P.S),
conditicn for ¢ % 0. Namely we have the following lemma.

Lemma 1.1. Under the assumptions (Al), {(A2) and {G) the
functicn f satisfies (P.Sk condition for ¢ = (0. Moreover if
f(xn) — 0, df{x,} — 8 for a seguence x,, then we can selzct a
subsequence (still denoted by %, } with the property that either

X, COnverges or{|QxH| -+ 0 and |Px,| — cp) as n =+ oo,

Proof. 3uppcse that

fixa) = 1/2{Ax,,%,) + G{x,) —7 c, (1.2}

df (x,} = Ax, + dG(x,}) — 0, as n — @ (1.3)

Decompose x., into X% + x7 +x2, where x% - Pex,, x5 = Px . Then

AXL, %n) | = | (Axy, x5}

= tidfixa) - dG{x.}, xphl € Clxnl. (1.4

Since A is positively/negatively definite on Hg, (1.4) implies
the boundness of x:. If xﬁ is bounded too, then x, has a weazkly
convergent subsequence. By the compactness of dG and the
finite-dimersional condition on H, we get a strongly convergent
subsequence. Now suppose that |Px,] tends to infinity, then
Gixa) — 0, dG(x.) —» 8. From (1.3), x% — 8. Finally (1.2)
implies that f(x,,) — 0, that is ¢ = 0.

The remainder of this section is devoted to proving a
deformation theorem, which is essential in min-max theory.

Lenma 1.2, Let H be the set {xeH| df(x} ¥ 8}. There is a
locally Lipschitz  ccentinuous mapping V: H = H {the so-called
pseudo gradiznt (p.g.)vector field) with a form V{x) = Ax + n{x),
satistying

(1} 14V, Gf (x})) 2 1/20df (x) 12,

(2} (vi{x)t < 2|dE(x) |,
(3) Ih{x}| —~ 0, as |Px| == co, uniformly in bounded Qx sets.
Proof. Let u € A, then Au + dG(u) is a p.g. vector for f at

u with strict inequality in (1} and {2). By the continuity of 4af
z(v) = Av + dG(u) (1.5)

is a p.g. vector for f for all v in an open neighborhood N(u} of
u., The set of all such neighborhoods covers H. Therefore there
exists a locally finite refinement {N(xi), i A}, where A is an
index set. Let p; (x) denotes the distance from x to the

complement of N{x;)}. Then p; is Lipschitz continuous and

vanishes outside N(x;). Set
P lx)
B;ix} =
I piix)

Since {N({x;}} is a locally finite covering, for each x & ﬁ, the

denominator of B;(x) is only a finite sum. Finally let

Vix) = I B;(x} zg(x}

T PBoix){hx + dG(xy))

« Ax + h(x),

where z; is defined by (1.5} for u = X;:

zolx} = Ax + dG(x;),
and

hix}) =T B,(x) dG(x;}.

For each x € H, V is a convex combinatien of p.g. vectors for f
and hence is a p.g. vector. Moreover V is locally Lipschitz
continuous. It remains to verify the condition (3). Of course
“e& can assume the diameters of the neighborhoods K{u) to be less

than 1. Suppose that |0x| is bounded, say Qx| € C. For a given



¢ >0, take M so large that {dG(x)| € € for any x such that
[Qx] £ C+1 and |Px{ » M-1. Now if |Qx;| 2 C+1 or |Px;| £ M-1
then dis(x,x;} 2 1 and PB;(x) ~ 0, otherwise |dGi{x;} g € by the

choice of M. Therefore

IR(x) | € X Prix)1dG(x;}|
< I P:oae

= E.

The proof is complete.

Now we compactify K., the kernel of A, by adding an infinity
point. Namely set £ = H, ¥{®] = §™ and E = H'X I, where
HL = Hy + H.. Along with the function £, we define its
extension F to the space E by

£ (u, s}, (u,s)e H xHq
F{x) = F{u,s) = {J(u), beH s - @,

where f(u,s) = f{x) and J{u) = 1/2(Au,u}. Since G(u,s} — 0 as
s ~» oo, the function F is continuous on E. Though F is not
differentiable in general, we can still work out the necessary
deformation theorem.

Theorem 1.3, If ¢ € R\{0) and N is any neighborhood of
Ke= {x€H|f(x) = ¢, df(x) = 8}, there exist Nit,x) e« C([0,1]¥E,E}
and constants E > £€ > 0 such that

(1) n(0,x) = x for all xekE .

(2) N(t,x) = x for all xgr"[c—"c', c+E) and all t €10.1].
(3) nit,.} is a homeomophism of E for all t e (0,1}, [LGJ
(4) FiN(t,x): is decreasing in t for all x &E, t € (0,1}, |
(5Y ML, Foo o\ W) €F.,
(F) if Ky =@, {1, Fe) € Fog

Froci. The idea is to construct two flows on B and lﬁlitn)

respectively, then glue them. By (P.5). condition, K, is

compact. Hence for 0 < 8§ sufficiently small, N{(§) - {xldiskx,K‘)
< 8§} C N, so it suffices to prove (5) of {i.6) with N replaced
by N(B}.

There are constants b, € > § such that
1df (x}| 2 b, for x¢ L g\{f.7 VW N(1/8 §)}, (1r.m
Since {1.7) remains valid if E is decreased, we can assume
0 < €< min(1/4 85, 1/8 8b) .

Let £ €(0,€), define a smooth function p: R —» [0,1] by

2
0, § 2 c+f or 5 £ c-E,
pis) = 1, c-E £ 5 £ C+E,
between O and 1 otherwise.
Let A = H - K{i/4 &), B = N(b}. Define another function g(x) =
dis(x,B)/[dis(x,A) + dis(x,B)]. g is Lipschitz continucus with

g~ 0on Band g=1ocn A. Next define q{s) =~ 1 if s &€[0,1], q{s}

= 1/s if s 2 1. Finally define
Xix) = ~g{x)pif(x)}q(IV{x) IV(x),

where V{x) is the p.g. vector field for f as shown in Lemma 1.2.
Then X is a locally Lipschitz continuous vector field with
IXi{x) | € 1.

Consider the ordinary differential equation
d/de & = xt£), E(0,x) = x for x €H. (1.9)

Since X is beounded, Lipschitz continuous, by the basic existence
theorem for such equations, for all x ¢ H there exists a unigue
sclution §(t,%) defined on the whole line t € (-oo,+c0}.

It follows in particular that E(t,x) € C{[0,}]xH, H) and



satisfies {1)—(4) of (l.6) with E replaced by H. It remains to
check (5). Since f is decreasing along a trajectory, {5) needs
only be wverified for x¢ fcﬂ.\ (f(.,cU N(B)). The procedure is now
very standard, We are to prove that f{E(3/48,x)) € c-€. If it
is not, for t < 348, c-E s £(E({t,x)) € c+&, and p{f(iL, x)) = 1

Because [Xi{ € 1, we have
e, x) - §(0,x)| g t,
hence tfor t < 348

d(&ie,xy, N{1/4 8))
z dif(0,x), N(1/4 &)y - jE(t,x) - E(0,x)])
> 3/4 8- 3/48 =0,

and g(E{t,x}}) = 1. Now

a/dt £i§(t,x) ~ (df(E(t, %)), d/dt E(t,x))
= —gq{Ivi§it,x) ) (df B, x)), VIE(L,x)))
€ -1/2 UV, %) 1) 1df Bt x)) 12 (1.10)

1f for seme v, |VE(t,x)I £ 1, q(IV{E(t,x)) )= 1, by

(1.10), (1.7}
d7de £(ELE, x)) € -1/21df (e, 0 ) 1P -1/2 B, (1.11}

-
while if IVEit,x)) | 31, qUIVEE(L, x))1) = [VE(t,x)) |, and by
(1.10} and (2) of Lemma 1.2

d/dt £(¢E(t,x)) 5 ~1/2 ldf(“,(t,x}ln |vt§(t.x))f1

€ ~1/4 |df{E(t,x})) < -1/4 b. {1.12)
Combining {1.:l) and (1.12) produces
d/cz f(E(t, %)) € -min(l/2 b3, 1/4 b}, (1.13)
50
- g

£45(1/2 8,%)) € £(E(0,x)} - 1/2 & min(1/2 b2, 1/4b)
1
ccre~-1/28min(d, 174 <c-e, Lo

which is a contradiction.
At the same time we construct ancther flow { on H'x{o0)

by the ordinary differentsidl e%untion:
d/at §{ = W), §i0,u) = u for ue H*, (1.14}
where W(u) = - p(J(u))g{lAul}hu, J(u) = 1/2 (Au,u). We have
1dJ¢uy | 2 b, for xeJg,z\ I, g -

Repeating the above argument we do for the solutions of equation

(1.9), we get a flow { < C([O,l]x[r{l,H’LJ satisfying (1) - (%) of
L

(1.6} with E replaced by H . Now define for t e [0,11

Eft,u,s), (u,s) € B xH, ,
ﬂ(tlul 3) -

(L(t,u), o}, weH ', s = oo,

which is the desired mapping. It is clear that this mapping
satisfies all the conditions of (1.6}, provided we can prove its
continuity at points x = (u,@), uéH. We state it in the
following two lemmas.

Lemma 1.4. For x = {u,s) € HLxH.. set Rix) = X(x) - W(u),.
Then R(x} — 0 as |Px| — w, uniformly @n bounded Qx sets.

Proof. First of all, gix) = 1 as fx| large enough, hence X(x)
= = pUE(x})g{IVI{x)}|}V{x}. Suppose Qx is bounded, then &Ax is
bounded, G(x} and hi(x) tend to zero as |Px| tends to

infinity. Hence

PE(x) ~ J(u)] = IG(x}| = o(l),

IViz) - Au| = |h{x}| ~ o(l),

,,t fu“-‘u.s

—Jo—



ip(f(x)) - p(J(u})] € CIE(x} - J{u)| = o(l}),
JatIVix) 1) - qilAul)i € CIV(x) - Aul = o(l),

[

finally Ri{x}) = X({x) - W{u) = o(l}. The above - symbol o(l)
denctes quantities which tend to zero as IPx| tends to infinity

unifermly on bounded Qx sets.

Lemma 1.5. Suppose that tn—+ te u,—» u, s,~rec, where

tn€(0,1], up€H', s.€H,. Then
PLit Lu .80 — @, Of(r,,u,,8,) — Qte,m.
Proof. Consider the equation
dedt B = X(8), E(0,u,.s,) = (u,,s5,).

Since IXI g 1, it,u,.s,) - &(0.u,,8.0)1 £ 1, hence
eE(t,u, 5001 & Jupl+l <€ C, I1PE(t,u,,5,01 2 Is,) - 1 = oo,

and by Lemma 1.4 R(§(t,u,,s,)) tends to zerc as n — o . We have

d/deilit, ) - O8(t,u,, 8,01
€ IWEGte,w)) = OX(B(t uy 5] |
€ 1ML, m)) - WOkt up,sp) )t 4 I0R(G(E,u 5,00

€ CIfit,u) - QL (truy, sphl + o(l).
By Gronwall inequelity,

G, o) ~ Q4 (t,u,, 8, |
€ CILM0,u) - Q5(0,u,, 5,01 + o(l)

= Clu - un| + o(l}.

But

R N L L e LA

-t —

Ic(tru) _Qg(tnr“hlsn)| < Clu - unlk.t_g.lt - tn,l + o(l).

The proof of Lemma 1.5, hence of Theorem 1.3, is complete.
Notice that the constant E'depends on b and & only, we can
rewrite Theorem 1.3 as the following corollary, which is very
useful later.
Corollary 1.6. Let N and N’ be two bounded subsets of H
such that N'C N and did(N‘, 3N) » 7/8 §. Suppose that there

exist constants b and E such that

IdE(x}| 2 b, for x € fap\{f-r N,
L
0 <€ <min{1/48b , 1/8 &b).

Then for 0 < £ < E, there exists ni(t,x} € C{[0,1]xE, E} satisfying
{1)-{6) of Theor;; 1.3.

Now we turn to the case of ¢ = 0. The point x = (§,00) plays
a role of critical points in some sense., We should exclude a

neighborhood of this point. But first few notations. Set

D(§) = (u(Hl,Iul € 8), L(R) = {s€H,,|s| » R},
M(8,R} = D(BIXLIR), M(B) = D(8) X {e0;,
N{§) = (x¢H, didix,K,} < 6}.
We have the following thecrem.
Theorem 1.7. Assume that the critical set Ky, i3 bounded.
For any neighborhood N of K,u{{B,m:))} in E, the conclusion of
Theorem 1.3 stiil holds, that 1s’there exist N(t,x«}€ C([0,1]XE,E)
and constants E > € > 0 which satisfy (1.6).
Froof. We can assume that N = N(§)U M(8,RYUM(S) and R is
sufficiently large that N(8}N M(8,R) =& . Again we construct
two flows £,{ on HLXb%and HL respectively. By lemma 1.1 there

are constants b and € > 0 such that

idf(x}l > b, for x(fz\(f-i LAN(L/8 8/ M(t/8 S,R»n),

4 —



for otherwise there exist sequences b, — 0, €, ~> 0 and Ky
belongs to £, \{f UN(1/8 8) \UM(1/8 8,R)) with {df {x )i € by.
By Lemma 1.1 either x,converges to¢ a point x, satisfying f{x) = 0
df(x) = & and x € N(1/8 8); or Qx,—» 0 and Px, — @ hence x,
belongs to Mil/8 ﬁ,ﬂR+1) eventually. In both cases we arrive at
a contradiction.
Let

A= HNIN(1/4 8) U n(1/4 §,Re1/2)),

B = N{1/8 & VU M(1/8 §,R+1),

gy = disl(x,B)/ldidix, n) + didix,B)],

X{xy = - g(x)p(f{x})qi{iVix) |)V(x},

Ap= B N\ B(1/4 8), Ba= D(1/8 &),

go(u) = dishx, By} /[did(x, Ra) + didix,B.)],

Wiu) = - gguluip(J{u))qllAul)iu,

Again we consider the equations (1.9} and (1.14). Everything
remains the same, provided we can preve the conclusion of Lemma
1.4, that is R{x}) = X(x) - W(u) — 0 as |Px| —wm, uniformly in
u = Qx being in bounded sets. But it is clear that as Qx is

bounded and Px tends to infinity, dislx,A) - diéﬁu,Au,) and
disix,B) = dis(u,Bg), hence g{x) = gu(u). As in Lemma 1.4 we

get [R{x)| = o(l). The proof is complete.

In parallel with Corollary 1.6 the following corollary helds.

Corellary 1.8, Let N, N' be two bounded subsets of H such
that N'c N and dis(N‘,3N) 2 7/8 §. Suppose that there exist

constants b, R and & such that

fdfdx)l 2 b, for xé £5 \( fp U N/ M(1/8 8, R+l)),
0 <E < min(:x/¢ 8 , 1/8 &b).

Then for 0 <€ <% there exists Nir,x) € C{[0,1])%E,E)

- [d=

4

satisfying (1.6) with N replaced by NM(S,R)M(S5),
Hore generally, one ﬁay extend the above discussion to the

following probleam. f

Let V be a finite didensional compact 02 Riemannian manifolq
without boundary. Let H and & be defined sbove,and let G:Hxva®l be
a cl Function satisfying the essumption:

(Gv) G has s bounded compact gradient dG such that G(x,v)+0
and dG(x,v)+6 as |Px |+ uniformly in (Qx,v), where veV and dx are
bounded .

We are looking for critical points of the functional

P(X,v)=3(AX, X)4G(x,v), (X, v)eHxy. (1.15)
Similarly, we introduce a new functional on the space E=HtxExy:

L
F(f):F(u.s.v):[f(“’s'v) (U, s,v)eH xHoxv,

1 (1.18)

Z(Au.u) (u,v)eﬂ*xv.s:w.

then theorems 1.3 apd 1.7 extend to the following
Theorem 1.8 Let N and N° be two bounded subsets of HxV syeh

that N'<N and dist(N',JN)Bgé. Suppose that there exist positive

constants b,R,and 7 such that

|df(()|2b (1.17)
for (6fc+2\(fc_ELN‘LU). where U=®@,if ¢f0, and U:H(g,R+1)xv, if
¢=0; and
2
G<E<Hin(ég-,éﬁ§) (1.18)

Then for any 0<ecz, there exists neC([0,1]=E,E) satisfying
(1) n(0,+)=id,

(2) n(t, )=t Y tefD,1], ¥ tef '[c-2,c42],

(3) n(t,+) is & homeomorphism of E Yts[0,1],
(4) F(w(t,t)) is nenincreasing in t YIeE,
(5 m(LF , \N)eF___, if c®0, and
n(1.Fc\(NLKH(é,R)LH(é))xV))cF_‘ if c=0,
1
-_ % —



(6) If c*0 and K =@, then n(1,F_, )F, .

&2. Existence and multiplicity,

We want to study the existence and multiplicity of critical
points of the function f vim itsg extension F defined in (1.18).

Hoticing that the function F is not differentiable at points on
the set {(u,w.v)lueﬂl.veV}. it is necessary to single out some
specified points of F, which play the role of critieal points in

.
SOome sense.

Let K denote the critical set of £, we call the set ﬁ:KU((G,m)XV),
the fake critical set of F. Each point Ee? is called a Ffake
critical point. A point, which is not a fake eritical point, is
called a fake regular point.

Aon A
We denote K0=KFF (c). In case KC’O. ¢ is called a fake critical

value. Otherwise, ¢ is called a Fake regular value.
A A
It is easily seen that Kczxc if c¢=0, and K0=KOLK0,m)xV.
Theorem 1.9 now turns out to be the following

Theoren 2.1

>

Assume that KO is bounded, then ¥ ceR'
¥ neighbourhood N of 2;, 3 4>0 such that ¥ O<e<ecd, there exists
a defcormation weC([0,1)»E,E), satisfying

(1> n(0,)=id,
(2) m(t,7)=¢ Y (t,2)€[0,13x(E\F *[c-2,c4£)),
(3) F(n(t,-)) is nonincreasing in t,
(4) n(t,*) is a homeomorphism of E Yie{0,1],

(5) m(1LF  A\NF

(6) If KCZB, then n(],Fc )<F

+& e-c'

Lemma 2.2 Let GEH*(Fb’Fa) be a nontrivial singular relative
homology class, where a<b are two fake regular values. Then

2

inf Sup
Zeo xe]z]

is a fake critical value of F, with acc<h.

o=

F(x)

Proof A stendard Hinimax Principle can be applied,provided

by the conclusions (1),(3), and (6).

Definition 2.3 Let X be & topological space,Y<X. and let &

a, e, (X,Y) be two nontrivial singular homology classes. we say
that a is subordinated to a, and denoted by oca,, if there exists
hﬁﬂ*(X), with dio«w>0 such that a=o o, where N is the cap product,

Lenmna 2.4 Let o ca, be two nontrivial singular homology

classes in H*(Fd'Fa) with aza, Mw, where a<d are fake regular

values of F, And let

_ inf sup 5
c,= zea, xelle(X)' i=1,2.

Assume that there exists a neighbourhood N of KQ and a singular
cochain © €w such that supp «@ M N =8 Then c.c,.
Proof By definition, ¥Ye>0, 3 & singular relative closed

We choose a neighbourhood B of

chain 2, &a, such that IzzICFcz+c.

-

Kc such that NCECH’,and subdivide z, into zz'+zz" such that Izz'lcN‘

and Izz"ICFc +eM. By the assumption, we have
2

=2 M=z Mw
Z1 Zz Z 2 »

which implies lzIIC.'Fc \N.

e
Since c‘scz are fake critical values of F,we have ace, and cz<d.He
choose 0<;<Hin(d—c1,c’—a). and U<£<;. According to Thecrem 2.1,

there exists weC([0,1]xE,E) satisfying (1)-(6), which imply that

n(l'Fcz+c\N)chz—c and  w(1,«)xid, in (Fd‘Fa)' Therefore

n{l,lzlf)chz_E. However, nw(l,z )ea . It follows ¢, Zc,~€<c,

Lemma 2.4 is an extension of & result dve to Chang [C1)



The following corollary emphasizes on the poesitive lower L.und
of the difference c,-c, depending only upon the constants:b,6,s,
and a.

Corollary 2.5 .Let ceR,d>D and a<0, Suppose that K, is bounded
Let s G4 i=1,2, be defined as in Lemma 2.4. Suppose that there

exist neighbourhcods N<H’ of Kc and constants b,;}6>0,satisfying

diSt(R’,oN)276/8, |AP(Z)12b>0,¥CeF _ -\(F,_; W') and 0<S<Hin( b/d,

&°/6, d/2).Then ¥ £e(0, ), c,<c-€/3 whenever c Sc+£/3.
The proof is the same as above.
Theoren 2.6 1If E, is bounded, then there exist at least

cuplength{V)+1l critical points of the function f.

Proof One chooses d and ‘f Yarge enough.which are fake
regular, by the same argument applied in the proof of Theorem B.3
in Cheng [Cl}, we obtain

H*(Fd.Fa)EH*_nU(ZxV).

and

HY(F )2u™ (2xV) .
The later equivalence is in the sense of ring isomorphism.Assume
that cuplength(V)zp, this means that 3 w,..... “, e’ (V) with diw
wi>0, i=l,...,p, such that oUw L. U wp#U.

Since E:S"O. there is mf eﬂ*(i). with dinur=n°. let nl:ExV+Z and
* *

. . *x
nzzixV+V be the two projections. We have n 2% T My.-..,m zub
*x ¢
and n ‘useH*(XxV).Thns
ﬂ*w.ur!*uu ,,,,, un =0

In the following we shall not distinguish the cohomology classes
between H*(IXV) end H*(Fd) in notations.Accordingly, there exists

ap+1eHx(Fd‘Fa) such that

» ¥
[a n*uun*w U, um _w =0
1 z 1 T p

p+l’
Let
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and let
a*i:a iﬁ u*, i=1,2,....,p+1. }

Then we define

c;= i::i o [F), (2.1)
and

o* = ;ggi* i | o, (2.2)
i=1,2,....,p+l.

Because of the special choice of w*, it follows from lenma
2,4, that c*i<ci, i=1,2,....,pt1. Moreover, by definition, we have
eEe 5., .Scp+‘,
and
c*tsc*zs.. ...Sc*p+..

We conclude that there must be at least p+1 nonzero values anong

these 2(p+1) values. In fact, if Osc*l. then 0<c., therefore all

s J3=1,2,....,p+1 are positive, and if c*p+‘<0. then all
x* .
c j .3=1,2,....p+1 are negative. Otherwise, there exists
. * *
Je[1l,pl,such that ¢ j<05c j41° As we have shown above, it follows
< -
0‘°j+g‘°j+:s""‘°p+r

Again we obtain p+l nonzero values.
Provided by Lemma 2.4, if f has only isolated critiecal points
with nonzerc critical values, then f has at least p+l critical

points.Otherwise, the proof is through.

Under additional conditions, we may obtain one nmore solution.
Let us define two index sets. Set

Jj
I={qeZ| q=F dinmi. i=1,2,....,p}.
i=i

~ 18—



and set
I =m_+1, I+=n++n°+1.

Lemma 2.7 Suppose that c<0 (or >0) is & critical value of £
obtained by the Minimax Principle vis & nontrivial singular
homology class aza, (or a*i respectively) for some i in Theorem Z.6.
Assume that f has only isolated critical points,
then 2 x,€k . and q €I_ (or I, resp.) such that

Cq(xo,f)#o.

where C*(xo,f) is the critical group of X,

\\l FProof We only prove for c<0. Set D<;<Hin(d—c,c—a).uhere b

andqba aretlarge enough fake regular values. IF the conclusion is

not true, then Vv xek  and ¥ qeI_. Cq(x,f):D.Since now Kc=Kc,w3

have Hq(Fc+€;FC_£):0 tor sufficiently small £€(0,£). On the other

hand,there is a relative singular closed chain zea with support [z |
<F,.,.- let y=0z be the boundary of z, then IyICFach_s, and then =
:[y]eﬂq“;(Fc_s) is nontrivial, provided by the definition of ¢. I[n

fact, if o is trivial in Hq-x(Fc—c)’ then 3 a singular g-chain T such

that ITIch_e. and d1=¢,which implies that tea. In this case,
_ inf Sup < Sup <.
°T zea xelz] FF yopr| Flx)Ze-e,

This is a contradiction.Noticing the exact sequence
—ap Hq(rcw,Fc_c)—i"f-»Hq_;Fc_;-iT)Hq_ch“;--—}. ...
where i:Fe_€+Fc+£ is the injection, and i,(¢)=0 i.e.ocker i, .we have
ﬁeﬂq(Fc+£,Fc_£) such that &,f=c. This is a contradictidn.
& similar result for homology link was obtained by Liu [L1].
Theorem 2.8 Suppose that the function f, defined in (1.15),
satisfies the assumptions (A;)'(Az)' and (Gv). Moreover, assume that

(xo,vo) is an isolated critical point of f. Then f has at least
cuplength(V)+2 critical points, if either
(1) f(xo.vo):U, or

(2) f(x,.v )<0, and Cq((xo,vo),f)zo ¥ qel , or

i
(3 f(x_,v,)»*0, and Cq((xo,vo),f)=0 ¥ qel | l
This is a direct consequence of Theorem 2.5 and Lemnms 2.7.i

In the argument of the proof of Theoree 2.6, if the condition

that f haes only isclated criticsl points, is dropped out, then our

result may be improved as follows.

Theoren 2.9 Suppose that c<0Q (or ¢»0) is a critical point of
f obteined by the Minimax Principle vis & nontrivial singular

relative homology class a=a, (or a*i) for some i in (2.1) (or {2.2)

resp.).If ¢ is of multiplicity k, i.e. 3 oy, ai+1"""ai+k-1 (or
o, at o resp.) such that
i’ i+1? T idk-1 .
e=C.®C; . ,=....%C, {or o*.=c*. =.,. .=c*. resp. )
i 7i+1 i+k-1 "’ i i+l : ith-1 o
then

cat(Kc)2k+1.

Proof We may choose neighbourhoods N <" of Kc with cat(N")

'=cat(Kc). constants o(ccz, and n:E+E continueus such that nlF

c-£
:ich_z , n (Fc+£\N)ch—c and n=id. provided by Theorem 1.8.
If the conclusion is not true, i.e, cat(Kc)Sk, then 3 k
contractible sets Bj' J=i,i+1,....,i+k-1, covering N". We choose

Z€3; k-1+ With support lzICPc+£. Since dinm aﬁ>0, cne may choose

cochaing wy € w, with supports I«EIrBj:B, Jd=i,i+l,....,i+k-1,
Subdividing 2z into 2Rz tzit... .42, 4 ysSuch that IZOICFC+£\N.and
lzjchj. J=i,i+1,....,i+k-1, one has
- m A. ‘. o
z2 =z (wl v m1+1 Y.V wi+k-1)
TPo MO Uy gy )
Hence iz’lch+€\N and 2"=n(2')CFC_5- However, z" is & singular chain

in @, one obtains ey fe-£. This is a contradiction.

Similarly, we prove for c»0.
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Corcllary 2.10 Let N'<N be defined in Theorem 1.8, such that
(1.17) and (:.18) hold. If either
c—:SciS....Sc.Se+c, or
x *
—r X, < <, - -
c-e£sc (X, . % j_c+8,
then cat(N”")zj-~i+1, for any bounded set N" containing the closure

N.
3 Indefirite functions

If we want to apply the abstract theorems obtained in the
previous section to general Hamiltonian systems, the restriction
on the dimension of H should be dropped, i.e. we shall extend our
absract theorems to the case of indefinite functions. the Galerkin
approximation method will be applied, Cf. Li and Liu [LL]). Instead
of (AZ2), we assume

(A2)" H_ is seperate, and dim H <.

Let H? be a sequence of finite- dimensional subspaces on H_.
Denote by P” the orthogonal projection from H to H"; The following
assunption on the approximation scheme is made.

(F). W® is invariant under the action of A. P"
converges to P_.

It is clear that () 1is fulfilled, if A=P -P_, and =a

suitable sequence of subspaces is chosen.

strongly

Row let us list the notations to be used in the sequel:
{1) Space.

H, & Hilbert space es in the section 1,
V., 8 manifold as in the section 1,

-21 =
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H =Hy+H_+H, H-=H,+H, E =~H'2Z xv
Ho= Hp + B2 + Ho, Hp = Hy + B, Ep=HiXE ¢y
r = H,u[m),

Q, = Byt P2, the orthogonal projection OnLO Hf. s
P, = Q.+ P, the orthogonal projection onto Hn’
D= (ueH., |ul KR}, § =3D = {u€H_, |u| = R},

Dy= (u€Rrl, jul € R}, S,= 3Dp= {ueH?, |u| = R},

D,~ DNH,, S,= SNH,.

{2} Functions.

Elx,v) = 1/2 {Ax,x}) + Gi{x,v), (x,v)E€ RAV B

{£lu,s,v) {u, s, v} € H'KH, xV
F(x) = F{u,s,v) =

lJ(u) (u,v)eHLxV, 5 =

f,=« LIH XV, the restriction of f to Hpv,

E‘ﬂ =~ FIEy , the restriction of F to E

e = sup F(x}, B = 4inf Fix), Y= sup F(x),
xeSXX sV xe HOEXV XeDrE 2V

]

Clearly B < y. Also we have & < B for R large enough.

(3) Cohomology and homelogy classes.
ry
Orr Wy ilipy € BHY(HLRE £V,
m;lu Oy - umr',. ® 0,
dim o > 0, w* corresponds to H* (1),

Xy EHg(HPT XY, S xExvV),

lfam,,m;‘u O - Uy,) x 0,
Qin= 0,00, 1=1,...,p,
ain- C a0} , i~ 1,...,p,p+l.

{4} Critical values.

C‘-"\r = inf sup F{x) , i = 1,....p41,
zcu_-_,,xelzl

C* = inf sup  F{x) i=1,...,p+1,
vn zear, x€lz|

- i
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C_L - %-J;l'g C,;'” C: —“l_.}l': C.:',,, i=1,...pt}. Morecver if c, = ...= CJ' =C% 0, 1£i< jg p+l, then
Since cat (Kg) 2 j-i+l.

BsCung oo. & CGuat Y (2) If C* % 0 for some i, then it is a critical value of f.

B < Chps -+ € Chps Y Moreover if C¥ = ... =Cr=C=~0, 1gi<]jgprl, then

Cat (K.) 2 j-i+l.

the existence of C; and C; is ensured at least for a subseguence.

. L {3) Supp:cse that K, is a compact : subset of

1t turns out that these C; and C} e&njoy the properities
£ =Y. There is a constant € such that C1 £ E implies Ccr £ -e.
stated  in Theovems 2,6,2.9,
. Prcof. () Chcose a neighborhoeds N" of Kc, NY = N2,
Lemma 3.1. Under the assumptions (Al), (A2)’, {(G.v) and (I i
) Cez(N") = Caz(Kg). Alsc set N = N(8),N* = N(I/88), Ny = N N(HXV),
the function f satisfies (P.5)* for ¢ % 0. More precisely any .
N® = N A{H ¥V}, N° = N'n{H #V), Then N" 28 2N DN’, di:i(N‘ IR 2
sequence (% .V, 1. such that (x ,v,) eHxV, fix,, vy} =»c, n . n t _ n n n L M
. 7/E8. There must be onstants b, £ and An inir§e¥ r, independent
dfy (x5, vp ) —* 0, possesses a subseguence {(still denoted by
. . ci n and satisfying

{#n.ve)) with the property that either (x,.v,) strongly
converges to a critical point of f in HXV or ¢ = 0 and Qx, —» 0, 1€ (x,}1 2 b, for x,& f4 bf - fa.ccf - Ny, for nzn

IPxpl—* 0o and v, = v € V. 0 < &< min(l/4 8, 1/8 8b).

Proof, (Compare with Lemma 1.1.}) First of all we can assume
- Y - £
that v, converges to v, since V is compact. Suppose that For ctherwjse - there is-a sequence x, such that x,e BV, fix,)

- €, dfdx,) —»0 and x EN'. By lemma j.1 Ja

T{xyvp) = 1/2 (Ax ,x.) * G(x,,Ve) == <, (3.1) suosequence cf x, converges to x with f{x) - €, df(x) = 8 and
df (xp,vp) = (Bx + P d,Glxp,vp), dySix,,ve)) — 0. (3.2} XEN’, a contradiction. Take n large encugh so that
From the boundness of dG it follows that Ax, is bounded, C-£ ¢ Cip% . < C, a8 Cie
Ln€ e €08 .

therefore Qx, is bounded. If Px,. is bounded too, then Xy has a

By Cerollary 2.0, cCat H") » j-i+l, a subset of HwV is
weakly convergent subsequence. By the compactness of dG and the v ! ”n”" ’ for "

o . . contractible in HX V, if and only if it is contractible in HxV.
finite dimensicn condition on H., this subsequence strongly n

Hence
converges in H . Since P, strongly converges to the indentity

mapping, the limit of this subsequence is a critical point. Now Cat (K¢) = Cat (N") » Cat(N7) = Cat (N") 3 j-i+l
n Hoay ’
n

suppose |Px,| —* ow, then dG(x'L,vn) — 0. From {3.2) an ~ 0,

- 2 e i .
Finally from (3.2), f‘xﬂ-"n’ - 0. {2} can ¥e proved in the same way

. {3) Chocse R large e h that M({1/8 §, R+1}=zV L™ = ¢,
Propesition 3 .2, Assume that the conditiens (Al), (A2}, ) e fongh 8o ? ( T ' 51‘
(G.v) and (T are satisfied.

{1}y If Ci. $ 0 bnf Some J{, then it is a critical value of f. ‘-!P = M(1/8 O, Ril)xV " (H_xV}
" ! n



= {{x,v) €EH =V, Qx| < 1/8 &, |Px| 2 R+l}.

There exist an integer n, and constants b, £, independent of n

and satisfying

ldf (=) | 2 b, for x,€ fﬂ.i \ (fh,“r LU MY
0 < €< min(l/4 5%, 1/8 8.

For otherwyse , there is a seguence (%, vp) such that

(7, 0V )€ HoxV, fix,,vy) — O, df ix..v,) -~ 8 and

(%, ve} € NjLM,. By Lemma 3.1, turning toc a subsequence, either

(#,,Vvq) converges to (x,v) with f(x,v} = 0, df(x,v) = 8 and

{» ,v) €N, or Qx| => 0, |Pxy) =@, v, —>v, and (x,,v,) belong
tc M, eventually. Ir both cases we arrive at a contradiction.

Take n large enough sc that CJ p<§g, for any qiren 52

ﬂchYJlHj te Csro]fdry 15,

C:ﬂ\s-&&, herce C: = lim C:"s -€.

Theorem 3.3. Sﬁppose that the operator A arnd the function G
satisfy the conditions (Al), (A2}’ and (Gv). Then the function f
has at least Cuplength(V}+l critical points.

Procf. We first prove the theorem under the additional

condition (I'}. Suppose that

et

€. .¢C, ~0<C, g ... ¢ Cay-

By Proposition 3.2 (1), £ has at least p-i+l critical points
corresponding to positive critical values. We can assume that K,
is a compact set, otherwise we are done. By
Froposition 3.7 {3}, Cys ... ¢ C; < €; = 0. Finally by
Proposition 3.2 (2), f has at least i critica: puints
corresponding to negdtive critical values. Altigether we obtain
et least p+l critical points.

Next we are going 1o drop the restric:iicn (). Define a

~ eI —

new functioj EBly,v)=1/2 (A‘y.y)+G‘(y,v), where A’=P+—P and

—-1/2 T -
6,0y, WZ0A " ya(-A_ 3% B ysby,v). A and G, satisty the
assumptions (A’),(Az)', (Gv) and (F), hence has at least p+1
critical points (Y-,vi).i=1.2.....p+1. Set

T V4 <i/2

A=A, P+yi+(—A_) P_yi+Pyi.
(xi,vi),izl,z....,p+1, are critical points of f.The proof is
complete.

4. Applications,

In the last section, we apply the abstract theocrems to some
problems in differential equations.
1. Semilinear elliptic boundary vsalue problexs.
Let 0 <R" pe & bounded domain with smooth boundary &, We
Study the following Dirichlet BVP,with strong resonance.

~Bu(X)TRUC)+ECX, u(x) ) +h(x) xen
(4.1)

ulan:0.
It is assumed that
(H‘) A is an eigenvalue of -A with n, nultiplieity,
(H,) hel®(0), with h eker(-a-il).
Let ¢(x,2):0x<R'R* be 8 Caratheodory function, and let #(x,f) be a

primitive of ¢ w.r.t.r.

n .
H ) v ljem o, e, ¥ useu in H;(n) and ¥ veH;(n), we have

lin 5o #(x,0 00+ E £l (x)) w(x) dx = 0, and
v iz1 91
lin 5 #0x,u,(x)+ z?{j e, (x)) v(x) dx = 0,

jrw i=1
.1 .
where {e,(x)} o is an orthonormal basis of the eigenspace ker{-a-
Al), and & .=(¢_ 1¢ 2 n
Yo and £i=zgie T g R,

There are several sufficient conditions ensure (Hﬁ)' Namely,

CA) #(x,E)+0, and #{x,Z)+0 as 1% 1+om,
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or
(B) ¢ and %, which depend on ;£ only, are bounded and
uniformly continucus on R
see for instance Ward {W]) and Mawhin [M].
Let us define a functional on H;(ﬂ):
Glvy = £, B(x,v(x)+u (x)) dx,
where u,(x) is & solution of the equation:
“Bu_(x) = Au_(x)+h(x) in 0,
ua(x)lﬂﬂ = 0.
The equation (4.1) turns out to be
-Av(x) = iV(x) + d(x,v(x)+u (x)) in 0,
v(x)lan:U‘ (4.2)
with usviu .

However, (4.2) is of the form (1.1), satisfying the assumptions

(A‘) (Az) and (G). According to Theorem 2.6, in which v={8}, We

proved that (4.2) possesses at least one solution.

The results due to Ward (n=1, i:k‘), Selimini (n=1, i:KRJ,Lupo-
Solimini, are -all included as special cases of the apove
conclusion.

In addition, iF u=6 is & triviael solution, and if some
conditions are imposed on the Morse index at u=8, we mpay improve
the above conclution to obtain a nontrivial solution.

We consider the following problem:

~A(x) = kku(x) + #{u(x)) X en
u(x)Ian:D.

where we assume that ¢ < CZ(R‘).and ¢ - ¥, satisfying
(L340, @(E)+0 as |¢ [+, and ¢.0)=0.

The sssocisted finctional reads as follows

feuy = 2 o (1% %A u®) dx-/. #(u) dx.
z 0 k 9]

2

vy

Hence

f(8) = 2(0) meas(1}, fr(8)=8,
and
£7(8) = Id- (A +6°(0)) ()",
It follows,
Cq(@.f):ém_1 if §<xk+¢'(o)<i
=0 if 9 « [mD,n] and Ak+¢‘(0):A,

where A<A is & pair of consecutive eigenvalues of -4, and

B = Ldin ker (-A-x. Id), D = m+din ker (-a-% Id)
T oAl = J
352

Set n- =¥ dim ker (—A—Kjld) and m_= dim ker (-A-Ak 1d), we have

J<k . )
Cm_(B,f):O if ti"(lil)<-7kk+i‘t|‘hi or ¢ (0)>0,
Cn—+no(6'f):0 if #(0)<0 or ¢‘(0)>kk+1-kk.
Theorem 4.1 The equation (4.3) possesses & nontrivial

solution provided either
(1. ¢#(D)=0, or

(2). #(0)<0, and ¢'(05 [ [—Ak+k 0],or

k-1°

(3). #(0)>0, and @' (0) & [0, A

k+1 ]
Proof This is an spplication of Theorem 2.8.
For the special case #(u)=a exp{-u’}, if either a<-Ak+kk_1
or a>Kk+1—Ak; then the equation (4.3) possesses a nontrivial
solution. Similarly, the eguation
0" C)+k u(x)=a sin u(x) X e (O,Qg.
u(0)=u (/=0 n
possesses a nontrivial solution provided a e [-2k+1,2k+1]

2. Periodic solutions of Hamiltonian systems.
Let Hz=H(t,p,q): P'xmnanam', be a C' function. We
3
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partition Lhe variasbles (p,q)el!xr" inte several groups as

follows:
5=(p‘.pz......pi), E=(ql,q2,.....qi).
;Z(pi+‘,....,pj). : ;=(qi+t,..-.,qj).
;:(pj*l,....,pk), a=(qj+‘......qk),
and
BBy B, §=Qy g0,

1=15jSk=sn.
Assume that
(H5 1) H is periodic in the variables: t,5,q.p and a.
(HS 2) H and grad H:(;E, gg ) tend to zero as l;l+lal+|5|
+!d|+®, uniforsly in t.ﬁ,a,; and ;.
Theoren 4.2 The Hamiltonian system
P 3 (te.a),
q° =- gﬂﬁ (t,p,q)
bossesses at least i+k+1 periodic solutions.

Proof Let us denote z=(p,q),J= [? "én]. the Sobolev space
n

H:H‘/Z(S‘.Rzn). Define a bounded self adjoint operator A on H
satisfying
(Az,2)=fgs -J2°(t).2(t) dt , ¥ ze C'(s', &™),

where (,) is the scalar product of the space H.we have ker & =R z?
According to the assumption (HS 1), the functional
f(z) = 172 (Az,z)-Isl H(t,z(t)) dt

is well defined on H’-H_szn'k_lxuk+1, where H is the positive
/ negative invariant subspace according to the spectral
decomposition of A. Set Hormzn_ktl, and H =H+0H_$Hu,1t is easy to

verify the conditions (Al),(Az') and (Gv).According to Thecrem 3.3

there exist at least cuplength (Uk+1)+1 = K+i+1 periodic soluticons.

—-2§—

3. Other applications.

Theorens 2.8, 2.8 and 3.3 may be applied to s variety of
semilinear problems with strong resonance. For instance, the
semilinear elliptic systems, cf.Chang [C2], semnilinear forced
oscillation of strings, cf.Rebinowitz [R}, semilinear beam
oscillation equations, eof. Chang-Sanchez {C5], and Liu [L3]),as
Wwell as the semilinear spherical wave equations, e¢f. Chang-Hong

[CH].
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