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Morse Theorv for Harmonic Maps

Kung-Ching Chang

Peking Un-versity, Beijing

In the previous paper [(Ch 1], we studied the Minimax Principle as well as
the Ljusternik-Schnirelman category theory for harmonic maps with prescribed
boundary data defined on Riemann surfaces, by the heat flow method. In this
paper, we shall continue our study on the Morse theory. Our main results are
the Morse inequalities (Theorem 1) for isclated harmonic maps, and the Morse
handle bedy decomposition for nondegenerate harmonic maps (Thecrem 2). These
results are extensions of the work of K. Uhlenbeck [Ul}, where the harmonic maps
are defined on manifolds without boundary, and are all assumed to be nendegene-
rate. Qur method is based on the heat flow, by which the deformation is con-~
structed. In contract to the perturbation method developed by K. Uhlenbeck [Ul}l,

cur apprcach seems more direct than hers.

1. Preliminaries

Let (M,g) and (N,h) be two Riemannian manifolds. For a smooth map

1 2
U :M+N, let e(w) EWVu! be the energy density, and let

( e({u)av

E(u)

be the energy. The critical points of the energy functional are harmonic maps,

which satisfy the following Euler-Lagrange equation:

o o ij N_a 5 8
A =A + =
u N u g " {x) FBY{u)u'iu’j 0

N ‘ -
where ' is the Christoffel symbol of N , (gl]) is the inverse of the metric

g ., AM 1s the Laplace-Betrami operator w.r.t. g , and Au is the trace of the

tension tensor field.
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The associate heat flow eguation reads as follows

. 9 f = Af
(1.1} tf A

wnere £ : [0O,®) XM + N .,

We consider the initial-boundary value problem. Find f € ¢

{(1.2) £{0,x) = ¢(x) ,

(1.3) f(t,-)laM =P ,

1+l,2+y _
({O,=) xM,N)

) -
where ¢ € C 'T(BM,N). Y>0 , and ¢ £ C 'Y(M,N) . The later is the class of

c¢“*Y(M,N) functions, which have the common boundary value

Let

inf{E(u) |u ect

o =]
1] it
N =

. . . 2
(if there is no nonconstant harmonic map from S

2,Y -
E=+=) , and let ¥ be a component of C Y(M,N)

Assume that dim M = 2 , and that

E{(¢) <m+b or mg +b  if NZ(N)

where
mg = inf{E(uw |u e F} .

Then we have

{1) The heat flow, i.e. the solution of (1.1),

™M,N 1},

inf{E(v) |v : 8° » N , nonconstant harmonic}

N , then we define

¢ e F,

(1.2) and (1.3}, globally exists.

- 2 -
(2) 2 a harmenic map u € Cw'Y(M,NE » and a sequence tj + + = such that

f(tjr‘) + u(-) in cl(ﬁ,N} )

(3) If the infinitely dimensional manifold CZ'Y(E,N)

2
topelogy WP(M,N) P > . the flow

1-y

(t,)— £, {(t,-)

¢

2 - 2
is continuous from [0Q,=) XCw'Y(M EN} -+ C

flow with initial data ¢

'Y“G-JN) r where

is endowed with a weaker

f¢(t,') denotes the



(4) The set

Kc ={u e Ci'Y(ﬁ,N) lau =0, E(u) =c}

is compact under the above topeology, if ¢ <m+b . (or c<m_ +b, if 7_(N) =0,

F
anéd ¢ < Fy.

{5) Let K= U K. {or U K, ., if wz(N)==O and ¢ €F).
c<m+b c<m_.+k
F

Suppose that 1
dist (£ (t, )},K} > 6>0 Yt € R
2 ¢ - +

W

b

then we have e = £(8) >0 such that

”Af (tr')” 9 iE .

¢ L (M,N)

2 - 2
{6) For any closed neighbourhced U c Cw'Y(M,N) of Kc ; under the Wp-topology,

where ¢ <m+b (or mF +b if wzuﬂ =0 and ¢ €¥Y,3&£>0 , a closed neighbour-

) strong deformation retract " n : [0,1] XE_ .~ E .

2
hood VecU , and a W - (p>
P +E c+e

1-y
satisfying
n(l,EC noy) CEC;WU , and

n(l,Ec+€\ V) CEC—E ,

2 - 1
where E_ = {u e Cw'Y(M,N}iE(u) <al! 1is the level set, Va € R,

It follows from the proof of Th. 7.1 in [Ch 1.

2. The Morse inequalities

In this section, we establish the Morse inequalities for harmonic maps
under the assumption, that all harmonic maps are isolated. As shown in [Ch 2],

the crucial step in the proof is to prove the following deformation lemma.

+Y -
Lemma 2.1. Let F be a component of Ci Y(M,N) . Suppose that there is no
harmonic maps with energy in the interval (c,d] , where d <mF-+b  and that

-1
there are at most finitely many harmonic maps on the level E “(c) . Assume that

wz(N) = ¢ , then Ec is a strong deformation retract of Eq




In order for give the proof, first we turn out to improve the conclusien (2)
in section 1, under the condition that the set of smooth harmonic maps is isolated.

Namely

Lemma 2.2. Let E{¢) < mF-+b , and let

c = 1lim E(f¢(t,-)) .
ttbeo

~ 2
If Kc is isolated, then £ (t,*) +u € Kc in the wp-topology. ¥p > ; &S

¢ 1-vy

t o>+,
Proof. According to the conclusion (2), in combining with a bootstrap iteration,
one shows that 3Ju € KC and tj ++% such that

- 2,v" -
f e 28, C TUM,NY . VYt e (0,7)

¢ ¥
If our conclusion was not true, then there would be a § > 0 , such that

2,y - .
the neighbourhood Ug = {u e Cw Y(M,N)[dist 2(u,u} < 8} contains the single
W

element u in Kc » and a seguence t3‘++w such that f¢(t§,-) £ UG . Therefore

3 {t;.t;*) satisfying

(1) tzft;*‘++m .

(2) £ (t*,*) € aU
i 2

*x .
¢ f¢(ti ,") € 3u

§ 7 &'

and
. *
ﬁ3) f¢(t, ) €U25\ Ua Yt € (t;'ti*)

On. one hand, we had

Y/2

* ) - -
6 5-|f¢‘ti' ) - £, (ex < Cgler-trx] :

=l
w2
=

provided by the embedding theorem. On the other hand, according to conclusion (5),

* - - .
E(f¢(ti*f )} E(f¢(t;, 1)

T 5
J * J |3 _£(t,) [“av_at
i g

1

raw ,

J * j |Af(t,-) |av_dt
er M g

*
i

v

5 -
e )lt{* tzl )




Since the LES of the inequality tends to zero as i -+ « , this ig a contradiction.®

Now we return to the proof of lemma 2.1., the basic idea is to reparametrize

the heat flow f¢(t") .

Let 1T = p(t) , where

-1t 2
ot} = (E(¢$)-c) J HAf¢<s,-)H Lds

o L

if E{¢) » ¢ and let

glt,-)} = £(t,*)

Then we have the following r=lations:

t . .
(1) aTg(T, o= e otf(t, )
. _(Ele)-c) dg(t,”) ,
lagir, ) ]?
2
L
(2) Ji'E( (T,-)) = <3 .(T <) JAg{T, ) »dv
ar gii, = Tg r 1 89 [] g
M
= -(E(¢)-c) .
Therefore
E(g(T,")) = (1-T)E(¢) + T¢c , ¥T € [0,1]
(3) The function p : [0,=) 4-R; ¢ 1s continuous and monotone increasing,

which satisfies the following properties:

0(0) =0,
pl+w) =1 if £,00,0) > Qe K, as t >+,
p+m) > 1 If lim E(f,(c,")) <c .

Tt

Let us define a function n : [0Q,1] XEd - Ed as follows:

g¢(r.-) if {1.¢) € [0,1] x (Ed\ Ec) .

¢ if (1,9} € [0,1] XE_

ni{t,¢) =

In order to show that Ec is a deformation retract ¢f E_. , only the continuity

d

at the following sets is needed:
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-

(L) {1}xa, where A = {¢ €E,\ Ec|f¢(w,-} €k}
() to,11 x& (a)

Verification for case (1). V¢O €A , Ve > Q , want to find & >0 such that

dist 2(¢:¢0) < § .
W | implies dist (g {T,) ,u) < ¢
P f w2 ¢

T > 1-§& P

where u = f (@, )

¢

o

Chocse Eo = eo(él) as in the conclusion (5), i.e.

oy | . , .
HAf¢(t, ) , 2 €, if dist (Ey (e 0Ky > 6 Ve
L W
B
and choose 2
2/y ¢
£ o
0 < & < —_—
1 (2C£ ) E{¢) -c
such that
. Ly L E
dist 2(g¢ {1 Gl, }eul< 5
W o] N
P

Again, we choose §, > 0 such that dist ,(9:8) <&, implies

W
P

£

dist (g (1-¢_,")) < =

W2 ¢O 1 2
P

1-8. .,
( 1 ) g¢

Therefore we have

dist 2(g¢(1-61,-),u) <g V¢ e BG (¢O)

W 2
P
We want to prove
disth(g¢(T,-),u) <e Vi{t,¢) € (l—Gl,l] XB62(¢0)
P
If not, ™ >71'>1-4§ and ¢, € B, (¢ )} such that
1 1 62 o
g¢l(1 ') € BBE/Q(u) ro9, {t",) € aBE(u) '
1
and .
g¢ (t,°) € BE(u)\ BE/2(u)

1




Then we have

£
> < dist (g, (t',*),g, (T",*))
2 W2 ¢l ¢l
P
= gist (£, (¢',-),£. ( ","))
w4 a1
b

| A

C |t‘-t"|Y/2 )
e

On the other hand

tll
eler-tn| < f Naf
o -

2
(£, )| L4t
tl

¢l L

= E{(f (t",*)) -E(f
51 1)

= E(g¢ (", ")} -E(g¢ (t',))
1

1
= (E(¢)-c) |t"-1"]

< Gl(E(¢)-C) '

which 4dmplies that

(', -))

2 ] 2
5 5 [ e
S rrowe b B (E(e)-c) \ 2C_

This is a contradiction.

-1
Verification for case (2). V¢O €E (¢) ,¥e >0 want to find & >0

dist($,¢o) < & implies dist(n(T'¢);¢o) < g

Similar to the above argument, let us choose

0 cs <2 (YT
1 Eo 2CE )

Find 0 < § < ¢/2 such that

E(¢)-c < 6 Yo € B (s) .

such that

If our conclusion was not true, by the same procedure, we would have

(1) Z<c It‘-t"lY/2 '
2= "¢

and 5
{id) Eolt'-t"| < (E(@)=-c) |1 -1 < &, .




This is again a contradiction.
The continuity of n  is proved, sc that Ec is a strong deformation retract

’ +b.
of Ed 4 < mF b. B

Before going to set up the Morse inequalities, we define the critical groups

for an isolated harmonic map.

Let G be an Abelian group. Let uo € F be an isolated harmonic map

c = E(uo) . Choose a neighbourhocod U of u_  such that XNUNF = {uo}

Definition
C (u;G) =H (E nU,(EN {u D) nuje)
g o g c < o]
qg=20,1,2,... are defined@ to be the critical groups with coefficient group G
cf E at uO + where H_(X,Y;G) stands for the singular relative homology group

with coefficient group G .

The excision property of the relative homology groups assures that these
critical groups are well defined, i.e. they do not depend on the special choice
of U .

Suppose that V4 <mF-+b + there are only isolated harmonic maps. Since
KNE is compact, they are finite. There are only isolated critical values

d

(at most with accumulate point mF-+b )

=¢c < c. <,..9¢, <...<m.+b .
T o 1 i F

For each ¢, , there are finitely many harmonic maps:
i

K = ) = r oy .
e, {uij|j 1,2, mi}

Yd <m_+ b, let

m,

i
M = L I rank € (u,.;G)
c.<d 3=t T 4

be the g-th Morse type number, qg=0,1,2,..., for the manifold Ed N Fl and let

Bd = rank B (E_nF,q)
q g d
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h

be the qt Betti number, @ = C,1,2,..., for Edsﬁf

It follows from a direct cemputation (cf. [Ch 2]) that there exists a formal

. d
power geries with nonnegative ccoefficients @ {(t) such that

o =]

P S o 3 thq + (l+t)Qd{t) .

g=o g=o
This includes a series of Morse inequalities. Namely, we have proved:

2,y ,-2
M
" (

that ﬂ2(N) = 0 , and that in the level set Edfﬁf there are only isoclated

Theorem 1. Let F be a component of C (N} , and let 4 < My + b . Assume

harmenic maps. Then we have the following Morse inegualities:

Md > Bd ’
o — ©
4 .d g .4
- > - '
M1 Mo - 8l Bo
A TUTT I L e B P L
n n-1 o} n n-1 o}

Thecrem 1'. Let & < m+b . Assume that there are only isolated harmonic maps

in the level set Ed , then the above inequalities hold, wherein, the Morse type
d . . a | .

numbers Mq count all harmonic maps in the level set Ed , and Bq is the Betti

number of Ed rq=20,1,2,...

3. Morse decomposition

In this section, we study the handle body deccomposition of the level sets of
the energy function, under the assumption that all harmonic maps in these level
sets are nondegenerate. As a conseguence, we explain the Morse type numbers M
which was studied before.

Let uo be a harmonic map from M to N.. Let E = ugTN be the pull back
bundle over M . Let ® be a neighbourhood of Cm{M,N) which contains the
section uO(M) . It is obvious that ¢ is diffeomorphic to a neighbourhood
OE of the zero section of the tangent space Tu (E}) . The diffeomorphism is

o}
realized by the expcnential map:
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Since then, we deo not distinguish the tangent vector ¢ with its

exponential map expu (x)o(x) . We shall restrict our studies in the neighbourhood
o}

OE of the vector space Tu (E) . The Taylor expansion of the energy functiocnal
o}

at uo is as follows:

1l 2
E(u) = E{u ) + = d E(u ) {(c,0) +R(0)
o] 2 o
where u(x) = eXp (x}c(x) . and the remainder R(0) satisfies

=]

2
lR(0) | = o([ |ve |5
M

and 2,1/2,

ldar (o) |= o((J |va|
M

2
As to the Hessian d E{uo) ¢+ it is well known {see Eells-Lemaire [EL;]) that,

Yo,n e c“(wu (E)) .,

)
2
4 E(uo)(c,n) = J <Ju g,n>dv_ ,
M o] g
ahere

u
o N

J 0= -A "g-Trace R (du ,o)du ,

uo o o

is the Jacobi operator.

Noticing that Ju is a linear self-adjoint elliptic differential operator,
2 o1 °©
with domain wzﬁwz(Tu (E)) ., Ju can be extended to be & continuous kilinear
ol ©
form on the Hilbert space W_(T (E)}) . And since

2 u
=}

2 2 2
d"E(u ) (v,0) > |l L Cl(uo)ﬂoﬂ

W
2

where Cl(no) is a constant depending on u . the negative eigenspace of J
u
e

must be finitely dimensional. The dimension of the negative eigenspace of J
u
o

is called the Morse index of the harmonic map uo + and is denoted by ind(uo) .
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uo is called nondegenerate, if Ju is invertible.
c

For the self adjoint operator Ju . it is well known that we have a spectral
o

decomposition EA and two projections P+ and P , which correspond the positive

2
and negative eigenspaces respectively. For any 0o € Cw'Y(u;TN) , we have

¢ :=POEC 'Y(u;’I’N) )

The two sguare roots

_ 1/2
A= (P (+J )P

are well defined, and we have that

HA+0”L2 is equivalent to “Gi“%l
2

In the fcllowing, we shall denote UA+UH 5 by |c+l . and let lc}2= lo !

Thus, the energy functicn is written as follow:
1 2 2
Ew) = c+3([o ["=]o_|%) +R(®) .

For any given O<y <l , we choose 7T > O , satisfying

B A 5 §
le-T l+y

and ¢ » 0 such that for a W;-ball 85 with radius & , centered at the zero

section of C2'Y(U;TN) . we have,
2
(3.1) IR (0) | <'j§_-‘r|0i
and
(3.2) lar(o) | <1 |o]

Yo e U = B5 . (In the following we always dencte Bé by U ). These imply that

1 2 1 2 1 2
{3.3) E%I-Y)[O+[ —5%l+y)!0_l < E(u) ~c 5_511+Y)!G+|

=

2
(L-v)je_1° .
Now we are going to construct a series of deformations, which deform the level set

E {for suitable £ >Q) to E attached with cells:
C+E c=£
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(1) According to lemma 2.1 we have a strong deformation retract nl . which

-1
deforms Ec+€ into Ec  for €3>0 small, if E “(c,c+elnK = ¢ .

i+
(2) By the conclusion (B), we have £ > 0 ané a strong deformation retract

n., , which deforms E intc E V(E_nU) , and satisfies n_(l,E NnV) cE N U ,
2 c c-t c 2 c c

n (l:E ~V})C E
2 c c

{3) Let us define twe conical neighbourhoods:

) [
e, = toeol lo,| < E 1o |y,
~ _ l+Y‘
<, = loeuvf {o| 5-7/i:§'|0-l} .

The ineguality (3.3) implies that

C CE nUGcC
Y c Y

Lemma 3.1. There exists a strong deformation retract n3 r Which deforms
E U(E NnU) into E uc .,
c-g c - Y

Proof. Noticing that Vo ¢ EC EucY r but ¢ € U , we have

1+
lo_| <456 .
Let K = Jié;-- 1 (> O0) , and define a flow on U as follows:
nict,c) = (l—t)c+ + (1+tK)o_ .
We have
{a) n(0,0) =0 .
3/ 2
{(by n(l,o) = II? G_ €U if o g CY
{(c) Letr ¢(t) = E(n(t,*)) , we have
2
in, |
$'(t) = - o Kin_|"+ <dR(n(t,:)),-0 + Kg >
2
I, | .
1- - - —_— !
< ¢ T)[ 0 " KT+ 1-1'1-t K)ln+‘Ln-|]
2l e 3 )]
= (1-1)]- 1ot (|n+|- I:;ln_[)-—K\n_|(\n_l- E:?Ln+|)
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where n = (n,n) . If n €& (E_NU)NC c C ~C_ , then we have
| 1-y g T i
s —i In
|ﬁ+| ___1+YEW_1 3_1_11”_\ ¢
and —_—
0 >R 1> e
LI R S P S
It follows
(3.4) ¢'(t) <0 ¥n € C ~C_ .
Y oy

Combining f{a), (b) with {(c), we obtain

n(ct,+) € (E nu) ,
c

provided by the fact that CY'cEclﬁU .

From (a) and (b}, we see that if ¢ g E UCY , but o € Ec N U, then there
-1
is a unigue t* € (0,t) such that n{t*,0) € E (C-E)UGCY . The unigueness and
the continuous dependence of t* to ¢ are verified by the transversality: n%

-1
E (c-g£) UBCY , which follows from the inequality (3.4).

Let us define
n{t*c,q) if g € E N UNC
. c Y
ﬂ3 (t,0) =
o} g EE UC
C—E Y

This is the deformation we need. @

4 .
{4) Noticing that wo € EC_e ncY ’
-€ > E{u)-c 3-£§1|0+|2 - i%lwg_|2
We have
2 €
| ~=
{3.5) lo_| Vi
so E nC_cs := {ogec |jo | > ié-}
c~-£ Y y - 1+y

On the other hand VYoe S ,

- (o] + o
where
1l +
K =_/1_1,and P 1/2¢
o 2V1l-y o 2V 14y
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Let us define

In the following, we turn out to prove

Lemma 3.2. There is a strong deformation retract n4 which deforms E v C
into E U T u{e } x g< : where k = ind(u )
c-¢& kO,GD + 60 ©

Procf. We define

ro OEE,__UT, 5
[ lO_|'50 1
n,{t,0) = ¢ o_+ l—t(l-— o i)JU+ cecY,soilc_[f_kolc+]+ §_
o) +
g +(l-t)o cec niis | <3 a
- + ¥ - =0

{5) Choose € > 0 so small, that

2
(3-6) E < 6_{._1....—_7& .
2
Define
5 .
1- (57
{3.7) O <yuc< 1 '“———-EE—
{ l+(Y+Ezﬁ

we consider the energy function on the conical section of the sphere

3B, s, = {o EaB&' |c+| <ulo [} . Let o e S, « we have

)
1+y 2 1l-y 2
Bl e < e, I o |
l+y 2 l-y 2
2
1 1- 2 2
= - 3¢ u2 - o [T+ .
1+yu
Since
2 2 2 2 2
8 = o [+ Jo_|” < xS0 |7,
and then 5
Elw-c « - (2 _ 162 .,
_ 2 2 r
I+u
[w]
l.e. s C E -
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Lemma 3.3. The exit set of the flow

nit,d3) = e g + e o]

k
2 2
on the ball B, , is the set S , where —=u , k., k_>0
g H kl 1 2

Procf., The flew 1n remains on the plane generated by the two vectors o, and 0@

-k.t k2t
lo o
Suppose that 70 meets 335 at time to r and let n=e . °_,n_=e o_
Choosing suitable coordinates (n+,n } = 6{cos B ,5in &) we assume that the
flow n 1leaves the hall B, . By comparing the tangents ¢f the ball with the

8

tangents of the flow, we see

k2
-— tg 8> -ctg 8,
k
1
l.e.
In | < wufn_ .

In cother werds (n+,n } € Su . 2

Lemma 3.4. There is a strong deformation retract 0 which deforms the set

3
E UT v } xBS } into E vi{g } xBk) .
c-g  k_,§ + 3 c-€ + $
o' o o
Proof. We use the flow n defined in the lemma 3.3. Because SU C%C . if
- -5
-1
G gE : then there must be a t* € (0,=) such that n{(t*,0) € E (c-g) . On

-1
the other hand n{t,:} 1is transversal to the level set E ~{c-g} , provided by

the fact:
d
3o E(nie.0)) = -<n .k, n >-<n_,k,n_>+<dR(m,-k n .+ k,n_>
< =x 2ok tn_[2+ widn, |+ In_h ok, I f 4, D)
- 1+ 2 - + - 1"+ 2 -
- 1. 2 2 T |
= (- 0k I, [ kydn_ %= 7= vk In fn 1)

2__1'_ 2‘; 1
- =@ i, 1D

2 2
= -{l-T)kl[|n+| + w5 n_ 1

< 0 ,

if we chocose
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T 2
{3.8) I-_—_'r-< 1:|2 .
1+
Therefore Vo € 'I‘k 6\ Ec e ! =* = £*(0) is uniquely determined, and is
. -

continuous. We define our deformation retract as follows:

o4 if ¢ € E
C=£
—_ * .
nS(t,c) =J n{t*{o)t,0) if oe Tk s :—:C_E
oo
k.t*(8_ o /|o [)
e ? © o if o€ {e+} xsgo . o

For any two strong deformation retract

X ¢l‘x - Y
1 Y -

we define their composition as follcws

1
f¢l(2t,x) t € E0,5]

$(r,x) = 1
¢2(2t-l,¢l(l.x)) t e [Evl]

This is again a strong deformation retract ¢ : xl + Y , which is denoted by
= 9,00, .

Now we come to our main conclusion in this section.

2,
Theorem 2. Assume that wz(N) = 0, and let F be a component of Cw Y(MZ,N) .

-1
Suppose that on the level E “(c¢) nF , ¢ <mF-+b « there are only nondegenerate

harmonic maps ul,...,u‘Q ¢ with Morse indices wm_,...,m

1 respectively. Then the

L

level set Ec_ErWF attached with ¢ handles, which dimensions cerrespond to

these indices, is a strong deformation retract of Ec+€rﬂf  for suitable € > ©
1 1 1
Procf. We choose v = T T = 3 and H = 3 - And then we have ¢ > 0 small
enough such that (3.1) and (3.2) hold. Choose € > O small encugh such that
52
E < 10 and that the conclusion (6) holds. The inequalities (3.6), (3.7} and (3.8)

are satisfied automatically. The strong deformation retract now is defined to be

P = 05° D4° D3° 02°Dl -
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Combining lemmas 3.1, 3.2 with 3.4, we coktain our conclusien.

-1
Theorem 2', Let ¢ < m+b . Suppose that on the level E (¢} there are only

nendegenerate harmonic maps with Morse indices. Then the same conclusions as in

Theorem 2 heolds.

Corollary. Suppose that uo is a nondegenerate harmonic map, with E(uo) =C
2 r s .
and u_ € C, Y(M,N) y Y > 0 . Assume that ¢ < m+kh {or <¢ <mr + b, if uefF
= y _ o
and ﬂzﬂﬂ =0). Then we have

Cq(uo;G) = quG

where k = ind (uo) .

d
Thus the Morse type number Mg is the number of harmonic maps with index

g in Ed,q =0,1,2,..., if there are only nondegenerate harmonic maps in the

1 1 t E. .
evel se a
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