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Existence of Steady Vortex Rings in an Ideal Fluid

ANTONIO AMBROSETTH!
Scuola Normale Superiore, Pisa

MICHAEL STRUWEZ
E.T.H., Ztirich

Abstract. We prove the existence of global steady vortex rings in an ideal fluid with given
propagation speed W>0, flux constant k>0 and any bounded, positive, nondecreasing vorticity
function.

1. INTRODUCTION AND THE MAIN RESULT.

Let(r = 4 ’xzj + .+ x24 » 2 = x5 ) denote cylindrical coordinates in R3. h is the Heaviside

function A(s) = 0 (s £0), h(s) = 1 (s > 0j. Following [11], [14], steady vortex rings in an
ideal (that is, inviscid and incompressible) fluid can be obtained from solutions u = u(r.z) of
the problem

-Au = Ag(ri(u %) k). ufr,z) = 0((r, z) — oo}, ®)

with W > 0, k 2 0 denoting propagation speed and flux of the vortex, coupling strength
A > 0, and with g = f, for a given vorticity function f.

In theory, any non-negative f £0 can appear; in practice, the vorticity function is determined
by how the vortex is created. Positive, non-decreasing functions seem to be of particular
physical interest. Note that in this case, g is singular at 0.

THEOREM 1: Supposef20,f is notidentically zero, non-decreasing and bounded. Then for
any &> 0, W > 0, k20 problem (P} admits a positive solution u = u(r,z} € Hlj’cp (RS}, Vp <

oo, with Vu L2(R5). which is symmetric about z = 0 and non-increasing in lz |, giving rise
fo a vortex ring with non-empty, bounded core A = supp(Auj).

REMARKS: i) Fork = 0, A = 1,f = I an explicit solution was obtained by Hill [10] ("Hill's
spherical vortex”). Moreover, there are bifurcation results for small & 2 0 ([5], [12]) and
global existence results for superlinear vorticity functions with f0) = 0, ([1], [11}) or f{0) <<
1 ([7]). By a constrained minimization technigue, Fraenkel-Berger [9] solved (P) for a broad
class of monotone functions f ; however, in their work the coupling constant 4 arises as a
Lagrange parameter which is left undetermined.

if) Our approach extends to unbounded functions f satisfying suitable growth conditions at
infinity. The case of bounded f appears to be the most difficult and we adhere to this case for
ease of exposition.

iiiy By the uniqueness result of [4], for k= 0, A = 1, f # ] we re-obtain Hill's solution.

1 Supported by Ministero Pubblica Istruzione
2 Supported by Scuola Normale Superiore
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2. APPROXIMATE SOLUTIONS.

We may normalize A = 1, W = 2. For R > 0 let Bg = Bg(0) and define
H(R) = {u € H ' *(Brj;u=(r.1z1)} < DI2(RS)

where DI2(R5) denotes the completion of C::(R5 1(f= '[R 5)

Hae 12 = iV 12dx.

By Rellich's theoremn H(R) — L%(Bp) compactly. We seek to approximate a solution & of (P)
by solutions kg € H(R) of

-Au = g(r’(u- 1) - k)in Bp , u=0on dBR. (PR)
Consider the related functional £ on H(R) given by

u
E(u)=-21-I| Vu Rdx - L’g(rzrv -1)-kdvdx =: ;— lu 12 - Ju).

Since g is bounded and monotone, J is uniformly Lipschitz continuous on L%(B) and convex
with (set-valued) sub-differential

Au)y={vel2Bp);vegriu-1)-k)ae]},

g denoting the maximal monotone extension of g.
Hence E possesses a super-differential oF and there holds:

LEMMA 2: If u € H(R) satisfies 0 € 9E(u), then u € H2P(Bg) for all p < = and solves (PR)
almost everywhere.

Since J is Lipschitz in LZ-norm and since H(R) -» L2(Bp) is compact, E is weakly lower
semi-continuous and coercive on H(R). Hence

LEMMA 3. VR >0 3Jvp € H(R); E(vg) = minyR)E.
However, choose ¢ € C:(RS ) with J(@) > 0 and for R 2 1 let @p(x) = ¢%) Then ligg 12 =
R3Il@i? while by monotonicity of g

Pp(x) @(x/R)
J(¢R)=J( Olgrrzrv-n - k)dv) dx 2 rd[s (GER(v- 1) - k)dv)dx = RSI(g).

and };nﬁ' | E — - 0o (R — o). Hence vg cannot converge.
(
For suitable R, fix u; € H(Ry ); with E(u;) <O and forR 2R, let

NR) = {p € C([0.1]; H(R)); p(0) = 0, p(1) = uj]
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HR)= inf sup Efu).
peITR) uep

Note that ¢/ is uniformly bounded in L?, hence compact in H-(Bg) for any R. Thus E
satisfies the Palais-Smale condition for Lipschitz maps (see [10]). Morecover since by
Sobolev's embedding theorem

Jw) < fisup flul s ¢ 03 dx < cliunl0i3,
{u2l}

Chang's {10] version of the mountain pass lemma [2] may be applied to yield saddle-point-
type solutions ug of (PR) for any R 2 R,. Employing a device from [6) the solutions ug can
be obtained Steiner-symmetric, that is & = u(r, Iz ) and non-increasing in Iz [. Finally,
adapting an idea from [13], one can obain a uniform a-priori estimate liu lel £c<oo fora

sequence R, — e from the observation that R — %R} is monotone, whence v is a.c.
_ differenttable and R,,,d%-){Rm) = 0 (m — o) for a suitable sequence R, — . See [3] for
details. Hence

LEMMA 4: There exisis a sequence Ry — e and constants C, R*> 0 such that for any m
there is a solution U, of (PRm) with E(up) = WRpy), lum 1| € C, U = up(r, 12 1) is non-

increasing in |z 1, and @ # supp(Auy,) < Bpe« for all m.

Observe that since E(u,,) = wR,,,)> 0 we have um# 0 whence u,, > 0 by the maximum
principle.

PASSING TO THE LIMIT.

Since f and hence g is u.. - .:y bounded, from (PR) we see that (upy) is equicontinuous.
Hence we may assume that 4y, — u weakly in D12(RS) and locally uniformly. Passing to

the limit in (PR), u solves (P) with supp(Au) < _BR" »# = u(r, 1z1) and is non-increasing in
lz1. Moreover u cannot vanish identically; otherwise u,, < 1 on Bg * for large m, whence

Aum = 0 by (PR) and then also iy, =0, which is impossible. Thus & is not identically zero,
and hence u > 0 by the maximum principle.
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