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Introduction

In the well known werk of Brezis and Nirenberg on positive solutions of semilinear elliptic
equations involving critical exponents there occurs a remarkable pheaomenon relating to
the dimension n = 3 and the possibility of solving the Dirichlet problem in a bounded
domain. The purpose of this paper is to show that the same phenomenon also appears in
the study of higher order elliptic boundary value problems.

More specifically, for the representative problem

{n -8u=Auv+u' inB
u=0 on 98,

where A is a real constant, s = (n + 2)/(n ~ 2) is the critical Sobclev exponent, and B
is the uuit ball in R®, n > 2, it was shown in [1} that the conditions for existence of a
positive radial solution are surprisingly different when n = 3 and wher. 2 > 4. When n > 4,
problem (I} has a positive solution if and only if A € (0,);), where A, denotes the first
eigenvalue of —A in B with homogeneous Dirichlet boundary conditions. On the other
hand, when n == 3 the range (0,1,) is no longer correct, but must instead be replaced by
the smaller interval (A, /4, ),). The lower bound for the set of values ) for which a paositive
sclution can exist is therefore greater than zero precisely in the case n = 3.

Here we treat various polyharmonic problems analogous to (I). For example, for the
model biharmonic problem

(1) A’v=Au+uw inBCR"
v=Du=0 ondb,

where s = (u+4)/(n— 4), n > 4, the conditions for existence of a positive radial solution
in dimensions n = 5,6,7 correspond to the earlier condition for the case n = 3, while
the situation when n > 8 corresponds to the Laplace case for n > 4. The appearance
of more than one critical dimension for the biharmonic operator, rather than a single
critical dimension as in the case of the Laplace operator, indicates a further remarkab'e
and unexpected feature of the phenomenon discovered by Brezis and Nirenberg.

The demonstration of the lower bound A /4 given by Brezis and Nir:nberg relies crucially
on an identity — (1.37) in their paper - having implicit roots in Noetherian theory. We
shall adopt a similar outlook here, exarnining for polyharmonic operarors the consequences
of various analogous identities of variational type. These identities ir. turn are most easily
obtained as special cases of a general result established by the authorx in (5]
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To introduce our results, we first state a refinement of a central conclusion of (6] for the
general polyharmonic problem

(-a) u= f(u) in )

(Ia u=DH'—"“'=DK-l" =0 on 311,

Here 1 is a bounded star-shaped domain in R*, n > 2K, and
J(w) = Au+ glu).

This refinement, given formally ia Theorem 8 of Section 3, asserts that, if ug(n) 2 0 and
if farthermore
{a+1)G(u) < ug(u)

for same real a > &, 3 = (n+ 2K)/(n — 2K), then a lower bound for A for the existence
of nen-trivial solutions of (I)q is
2 a—-s

—m A
) s+la—-1 K
Here G(u) = [ g{t) dt and Ay is the first eigenvalue of the polyharmonic operator (—f:\)"
in {1 with Dirichlet boundary corditions. The existence condition (IV) reduces precisely
to the typical relation ) > 0 when a takes the limiting value s; for greater values of a the
right hand side is positive. o

Should ¢ be a pure power, say g(u) = u|ufr~t, ther mtural!y we take a=p. This gives
the condition p > s for the validity of (IV} and in turn the existence condition

(Iv) Az

The number n+2K

n-2K

is eritical it is exactly at thiz value of the exponent p that (IV}- becomes valid. In
alternate terms, it is exactly at this value of p that the variational mtelrnl. for problem
{Ill)q loses compactness, as follows from the Sobolev-Kondrachov embedding theorem,

comp

that is W03 (n) € LP*'{N) fails exactly when p 2 . ‘ )

Returning to the strictly radial case ~ when 3 = B - we have the following main re:ul.l,
formally stated in Theorem 5. Let u be a radially symmetric solution of problem (I)p in
the case n = 2K + 1, and suppose that ug(u) 2 0 and

(s + 1) G(u) € ug(u).

Then the condition A > 0 given by (IV) can be replaced by the stronger restriction

5> (2K - 3) M-t
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This result corresponds closely with the conclusion obtained by Brezis and Nirenberg for
the Laplace case. Indeed, if we take K = 1, n = 2K +1 = 3, and s = 5, and also
ug(u) = u® = 6 G(u), then our necessary condition for existence becomes A > 3/2, while
they have X > A /4 = /4. That our bound is not best possible is due to the complexity
of treating the problem when K > 2.

We shall say that the dimension n = 2K + 1 is en?ical, in view of the fact that the
natural existence condition A > 0 can in this dimension be replaced by A > Pos, Const.

it is worth observing finally that if g(u} > 0 for u > 0, then a necessary condition for
the emstence of non-negative, non-trivial solutions of problem (1) g iz that

A< Ax.

This foliows, exactly as in the Laplace case, from the positivity of the first eigenfunction
of [—A)X in B, the latter result having been established by P.L. Lions in a recent paper
[4]).

Since the eigenvalues Ax are not generally tabulated, it is worth expressing the main
estimate above in more accessible terms. In this respect the following eigenvalue inequality,
obtained in [8], is useful:

Ar > { Xl(lu‘lg)“ K=2m+1 odd
- (Mpa)™ K=2m even,

where Ay and ug are respectively the first eigenvalue of the Laplace operator in B with
Dirichlet boundary conditions and the first non-zero eigenvalue for the radial Laplace
cperator in B with Neumann boundary conditions. Since A, = (j(,...,)p)’ and pg =
(Fasz)?, it is clear that the eigenvalues Ay increase rapidly with the order of the equation

and with the dimension n. For exampie, when X = 3 and n = 2K + 1 = 7 we already
have Ax > 1622.

For its intrinsic curiosity, one may also consider the case X = 5. Here the critical
dimension is # = 2K + 1 = 11 and the eritical exponent is s = 21. This yields the equation

Adu+ du+ vl =0

and the necessary condition for the existence of a non-trivial radial solution of the Dirichlet
problem in the unit ball in R!!,

A > 95x 2 950o2) (irya)* = 326 10°,

a very large number indeed.

When K == 2 the results are more extensive, as we have noted above. Our most general
conclusion in this direction is Theorem 3’, where we show for the biharmonic operator that
the dimensions n = 5,6, T are critical, or, considering n as a real parameter, the values
4 < n < 8. In particular, il vg(u) > 0 and

(s + 1) G(u) < ug(u),
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then a lower bound for A for the existence of non-trivial radial solutions of problem {III) s
is

A> -}(u’—-w)(a—u), 4<n<8,

It seems almost certain that as the order K increases there should be increasingly large
intervals of critical dimensions. The computational difficulties in verifying this appear
extrerne. Nevertheless, with the results for K = 2 in mind, and taking into account the
variational techniques introduced by Brezis and Nirenberg in [1}, we conjecture that for
any K > 1 the critical dimensiona i are precisely those in the range

. 2K < n < 4K,
while for n > 4K problem (III)p - at least in the case g(x) = uu[*™* - has a positive radiai
solution if and only if X € {0, Ax). Recently we have learned from Edmunds, Fortunato
and Jannelli [2] that our conjecture is valid for X = 2; that is, for n > 8 positive radial
solutions corresponding to the case g(u) = uju|*~* exist for all X € (0,Ax).

The outline of the paper is as follows. In Section 1 we consider the simplest model case
for the polyharmonic problem (I}, namely
- 1 _n+2K

Jw) = ru+ujul*", &= 3K
We begin by reformulating, for the model case of polyharmonic operators, the general
identity given for higher ozder variational integrals on pages 700-T01 of {5]. The particular
results of Section §, as well as those of later sections, then follow by suitably specializing
this polyharmonic identity to radially symmetric functions of various types.

In Section 2 we treat the case of the biharmonic operator, botk in the model case
f(v) = Au+ ufu]*"* and in the more general algebraic case

flw) = Au|u[*" + wlu|*"?, 1<¢<s.

It can be expected that even for ¢ > 1 there is some range of values for which each of the
dimensions n = 5,6, 7 remaina critical, particularly since in [1], wheren = Jand s =5, it
was shown that the dimension 3 stays critical for all g € {1,3}. This expectation is indeed
correct, as shown in Theorem 4, with the following ranges:

rn=5, =9, g €(1,5.17)

n=6, s=35, g€ [1,3)

n=7, a=11/3, q€(1,5/3);
we observe that the upper limiting value for ¢ is exactly s — 2 when n > 6.

Finally in Section 3 we turn to the general situation when

flu) = Au+ g(u)
or when

S(u}=Auluf"! + g(u), 21
The computations in the latter cases are direct extensions of those in the earlier parts
of the paper; they have been deferred 1o the end in order not to obacure the main ideas

presented in Sections 1 and 2, We remark that the case of general functions g{u) does not
seem to have been treated previously, even in the case K = 1 of the Laplace operator.
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