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§1. Introduction.

The purpose of this paper is to study continuation, boundednesa, and asymptotic behav-
jor properties for solutions of nonlinear ordinary differential equations of second otder, in
which the nonlinearity occurs both in the solution variable and its derivative. The typical
equation we consider has the form

(1.1) (At Y'Y’ + 8(r) A )’ + f{r,u) =0,

where the solution u = u(r) is defined on some interval I of the real line, the function
A = A(p) determines the nonlinearity of the equation in the derivative u’, and f = f(r,u)
is & continuous function containing the nonlinearity in u. Equation (1.1) can be also written
in the equivalent form

.1y (9(r) Alu' W)’ + g(r) f(r,u) =0,

where g(r) = exp [, §(s)ds.
An immediate and elementary example of (1.1) is the Bessel equation
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(1.2) u"+;u'+(1—%)u=0,

in which A(p) = 1 and f(r,u) is linear in u. More generally, (1.1) includes the Lane-Emden
equation of astrophysics

u”+%u'+u""=0. u>0, ¢>2

and various generalizations of this equation for composite stellar densities; the Emden-
Fowler equation, either in the form given by Fowler

u +rfulul?=0, vER, ¢22

or its forerunner

wulut~?=0, n#2 ¢23

ufl+n

and the Haraux-Weissler equation {6]

u"+(n:l+-;-)u'+§u+u|u|"’=0. n>1, >0, 4q22



Another interesting example occurs when A(p) = [p|™ ™, m > 1, for which (1.1) has the
form

(1.3) ('P™2) + 6r) |72+ f(ru) = 0.

In this case the defining function A(p) is usually called the degenerate Laplace operator, or
the "m-Laplacian”. This equation of course has a strongly singular behavior when u' = (.

Equation (1.1}, when A(p) depends only on |p| and §(r) = (r — 1}/r, can also be
considered as the radial version of the partial differential equation in R"

div {A(|Du|) Du} + f(r,u) =0,
an equation whose study has been initiated in [5] and in [8]. An importent case occurs
here when A is the mean curvature operatar, that is A(p) = 1//1 + |p{2.

From a more abstract point of view, perhaps the most fruitful way to visualize (1.1} is
as the Euler-Lagrange equation for extremals of the variational problem

(1.4) JLg(r)[G{u')—-F(r,u)]dr:O.

Here J is an open interval of the real line, g = g(r) is a poaitive, differentiable funclion on
J with

r g'(r)
= &(s)d . € J, §(r) = »
str) = exp [ s(o)ds, o =25
the function G = G(p) is related to A by

Gip) = j‘: tA(t)de, and  F(r,u)= j:. f(r, t)dt.

That (1.1) or {1.4) be regular is expressed by the condition that p A(p) be a strictly
increasing continuous function on R which vanishes at p = 0, or equivalently that G
be & strictly convex, continuously differentiable function on R with dG/dp =0 at p = (.
The strict convexity of G is itself equivalent to the strong Weierstrass condition for the
integrand in (1.4).

In the main part of the paper we shall frequently frame our hypotheses in terms of the
variational problem (1.4); the reader may easily interpret them directly for the differential
equation (1.1). We shall suppose always that (1.1) and (1.4) are regular.

The principal conclusions of the paper are that under quite weak conditions
on the functions F and G any extremal of (1.4) can be extended over the full interval J,
and that under slightly stronger hypotheses on ¢ and F, including the condition §r) > 0,
both u and u' are bounded as r — oo when J = R*. Finally, again in the case J = R,
if F(r,u} satisfies the further principal condition v f{r,u) > 0 for u # 0, then, for any
solution u which is bounded as r — oo, both u and ' tend to zero as r — co, (For results
in case the principal condition fails, cf. for example [5].)
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The conclusions can be illustrated most simply for the special case A(p) = |pj™~?,
m > 1, with the function F independent of r, that is, F' = F(u). Then equation (1.3)
becomes

(1.5) (W™ 2u) 4 8(r) w'f™ %0’ + f(u) = 0
and G(p) = |p|™/m. By Theorem 3, if F{u) > —M then all solutions of (1.5) can be

extended to the full interval J in which g(r) > 0. By Theorem 4, if J = R* and §(r) > 0
for r suitably large, and if furthermore

F(u)=j; fit)dt = oo

when u — +20, then all solutions of (1.5) are bounded as r — co. From Theorem 5, if
there are positive constants g, ' such that

(1.6) BLrélryspgr™ asr — 0o,

and if
uf(u)>0 for u # 0,

then all solutions u which are bounded as r — oo satisfy
(L.7) u(r), w'(r} = 0 asr — o0,

Simple examples show that this conclusion may fail if the upper bound A'r™ in (1.6} is
replaced by #'r™*¢ with ¢ > 0. As a case in point, the function

m-—1
u(r) =exp (W)

is a bounded solution on [1,20) of equatioa {1.5), with

_ m-—1+¢ m=1 -
§(r) = pmoite (1 = T rm+¢m[(m-—l]) ' flu)=ulu|™?,

yet u(r) — 1 as r -+ co (see also Artstein and Infante [1]). Similarly, the lower bound
in {(1.6) is also essentially best possible; it cannot for example be weakened even to
4 €L![1,00), as is shown by an example of Levin and Nohel ([7), Remark 2.1).

Thearem 5 is closely related to Theorem 1 of Levin and Nohel and to the results of
Artstein and Infante, and indeed provides a considerable generalization of this work, see
the remarks and Coroliary following Theorem § in Section 5.



§2. Preliminary results.
Thoughout the paper we consider extremals of the variational problem

2.1 6[Jg(r)lG(u‘) - F(r,u)]dr =0,

where J is an open interval of R, say J = (ay,4;) with ag = —co and a; = +oo allowed.
We suppose always, and without further comment, that

(8) g €C'(J), ¢(r) >0 foralir € J;
(b) G eCY(R), G(p) > 0 for all p # 0, G(0) = 0, and G strictly convez in R;

{c) FEC'(J xR), F(r,0)=0forallrelJ.

The first parts of assumptions (a), (b), (c) are just the condition that the integrand
Flr,u,p)in(2.1) beofclass C' in J x R x R.

The fact that & is strictly convex shows that the associated variational pmblem is weakly
elliptic. Clearly the derivative G, of G is strictly increasing in R, so that s = Gy(p) is
invertible; we dencte its inverse function by p = G (s}, Of course Gp(0) = 0.

Now let H = H{p) be the Legendre transform of G = G(p), namely the continuous
function defined by

(2.2) H{p) = pG,(p) - G(p) forevery p& R.
LEMMA 1. We have

Gylp)
(2.3) H{p) = j G,'(s)ds forallpeR.
1]

In turn, H(p) > 0 for p # 0 and (sign p)H(p) is a strictly increasing function in R. More-
over H{p)/p — 0 asp— 0.

PROOF: By Riemann-Stieltjes integration

» » Gy(r)
H(p)=PG,(p)—fo G,(t)d::/o tda"(t)=/u G (s)ds.

Remark. If H, the energy function of the problem, is considered to be the fundamental
element of the theory, rather than &, then we must assume that H is continuous, that
(sign p)H (p) is strictly increasing in R, that H(p)/p — 0 as p — 0, and that the integral

P H(L)
/o —det

8

P
is convergent. Iu this case G(p) = p j @dt, as ¥illoss directly from (2.2).
A :

LEMMA 2. For every (u,p) € R? we have

(24) G(p) SpGy(p),  H(P)SPGy(p)y  WG(p)| S Glou)+ H(p),
where o = sign(pu).

PRrOOF: The first two inequalities follow at once from assumption (b) and Lemma 1. To
prove the third one we first assume that u,p > 0. Then by Young’s inequality and Lemma
1 we find that

- Gp(p)
uGylp) < jo G (1)t + [o G (t)dt = G(u) + H(p),

taking (2.3) into account. The allernative case u,p < 0 can be treated similarly; the
remaining cases are easily derived from the two already obtained.

We now turn to the variational equation associated with problem (2.1). Define
flr,u) = Fulr,u} for every (r,u) € J x R,
and

Alp) = %G,(p) for all p #0.

Clearly p A(p) can be extended by continuity to be zero at p = 0. Also of course A(p) >0
for all p # 0.

An eztremal for (2.1) is by definition a C! function u defined on some subinterval J of
J, such that

(2.5) Gy(w'(r)) = A{w'(r)i'(r) € ci(n
and for which the corresponding {weak) Euler-Lagrange equation is satisfied on J, namely
(2.6) (g4(u' W) + 9 f(riu) =

or equivalently
oA + [ " o®)(t, u(t))dt = Constant,

where ry is any fixed point of I. In the special case when g(r) = " ln> 1, and
G(p) = 1p?, we have A(p) = 1 and (2.6) reduces to the radial Laplace equation

uu+n_

L+ fryu) =0,
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in which n can be thought of as a real paramecter.
As noted in the introduction, if the function A = A(p) in (2.6) is considered to be the
fundamental element of the theory, rather than G, then we have to define

»
Gip) = j t A(t)de for every p€ R.
[}

In this case (b) is equivalent to the assumption that p A(p) be continuous and strictly
increasing in R.

Rather surprisingly, in spite of the fact that neither w'(r) nor H(p) need be separately
differentiable, the composite function H{u'(r}) is differentiable in I slong an extremal of
(2.1). Indeed by {2.3}, (2.5) and (2.6) we have for every r €

(HWED) = ()26, = ) [- L, - st
= —ZU) ) (r) - wir) e, )

ga(r)

Therefore, along an extremal u of (2.1) in I we have the identity
(H )+ Firutr))’ = - S A ) + Bl )

For simplicity in what follows we shall frequently use the common notation of ordinary

differential equations, where u = u(r) and v’ = u’(r) denote the solution and its derivative.
Thus the above formula can be written simply as

(2.7) (H(v') + F(r,u))' = —{';—'.4(u')u"‘ + Fo(r,u).

Since along an extremal u of (2.1) the function H(u') is differentiable with respect to r,

the main identity of Proposition 1 of [10] holds even for C! extremals of {2.1), yielding
the following useful result.

Let u be an extremal of problem (2.1) and let a, h be scalar functions of class C'([).
Then the following identity holds in I,

{gh [H(u') +F(r,u)+ %A(u‘)uu’] }'
(2.8) =g {(k' + h%) F(rou}+ hF(r,u) —au f(r,u)
- (h' + hg;') G(u') + (s + A u"? + o' A(u'Jua'| .
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In the particular case in which a(r) = av*~/g(r) and h(r) = r*/g(r), where a and k sre
constants, the identity (2.8} reduces to

{rk [H(u') +F(r,u)+ %A(u')uu‘] }'
(2.9) =rt? [k F(r,u) +r Fe(r,u} ~ au f(r,u)

g n,2 g Nt
-kG(v') + (a+k—-r;)A(u')u +:(k—1 —r-g- A(u'yuu'l.
The identity {2.7) is the special case of (2.9) where k = a ={.

The question of cxistence of extremais of (2.1) has been avoided in the above discussion,
since it is not in itself relevant to the conclusions of the paper. It is nevertheless worth
noting that this question is settled by the results of [8], where it is (in essence) shown that
the initial value problem

wWr)=w, u(n)=u
for (2.6) always has a solution in some neighborhood of ry. An outline of the proof is
indicated in Section 3 below, as part of the demonstration of Theorem 1.

§3. Continuation properties for extremals. N
In this section we shall treat nonlinearities F which satisfy growth conditions of the
following type:
(i) there is a scquence (rj) with r; / ay such that F(rj,-) is bounded bekw‘ Jor every
i

(i) there is a nonnegative function ¥ €L}, (J) such that Fo(r,u) < {1+ |F(r.u)l)w(r)
ae inJand forallue R,

(i) there s a sequence (p;) with p; N\, @y such that F(p;,-) s bounded below for adl 5;

(i) there is a nonnegative function ¥ €LY (J) such that Fy(r,u) 2 -1+ [F(r,x)l}¥(r)
ae inJand forall uc R,

In the important special case when f(r,u} = p{r)¢(u) condition (c) of Se.ctitm 2 is
satisfied when p €C(J) and ¢ €C(R), and the hypotheses (i){ii)’ when p(r! is positive
and ®{u) = f; (t)dt is bounded below in R. Indeed since F{r,u) = p(r)¥(u) it is enough
to take ¥(r) = p'(r)/p(r). _

The following preliminary result will be useful throughout the section.

LEMMA. Suppose (i) and (ii) hold. Then the function F is bounded below in I x R, for
any interval I whose clasure is in J.

PROOF: Let [ = [by, b;] be a compact subinterval of J. Consider any fixed value u = ug
and any fixed  in J. We shall show that there exists a real pumber M, depending oaly ca
I, such that F(F,ue) > M, which will complete the proof.
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If F{F,up}) = 0 then M = 0 satisfies the claim. Hence suppose F(7,ug) < 0. Let

b= ini.' rj. We consider two cases:
Ti>h

(3.1) F{r,ug) <0 for all r € [F, ),

(3.2) there is a point b € [7,b) such that F{r,us) <Oforr & 17, 5), F(b,ue)=0.

Obviously one of these must occur.
Consider case (3.1). Then for r € [7, b] we have by (i)

Fe(r,uo) € (1~ Fr,uo))¥(r).

Integrating from 7 to b, we get
F(F,ug) 2 1 = (1 = F(b,u0)) exp[.u‘;(s)ds
r

’
21— {1 - Fibu)) expj. Y(s)ds.

Clearly b depends only on the interval I, the value F(b,ue) is bounded below by a number
independent of ug by virtue of (i), and the exponential is bounded since €L, (J). Hence
P(¥,ua) is bounded below by a number depending only on I. _

Next consider case (3.2). By the same procedure, integrating from ¥ to b we obtain

:
F{f,up} 21 —exp/‘&b(-’)d-' 21 -exP/h ¥(s)ds,
r

a lower bound depending only on §. This completes the proof.

The conclusion of the Lemma continues to hold when (i), (i) are replaced by (i)', (i)',
the argument requiring only obvious changes.

Our first result gives a simple continuation property of solutions to the right endpoint
a; of J. We recall that the functions g, G, F always satisfy conditions (), (b), (c) of
Section 2.

THEOREM 1. Assume that g is an increasing function in J, that is §(r} > 0. Suppose also
that conditions (i) and (i) hold and that the Legendre transform of G satisfies

(3.3) H(p) » o0 asip| oo

Then any extremal of problem (2.1) can be continued to the right endpoint of J.
PRrOOF: Let u be an extremal of problem {2.1) in some domain [ and denote by re any

fixed point of I. By (2.7), for any r € I we have
&
(3.4) (H(W) + Fru) = -’;A(u‘)«" + Fo(r,u).
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Thanks to assumptions (a), (i) and the fact that g is increasing, from (3.4) we see that
(3.5) (H(') + F(r,u))’ € Fe(r,u) € (1 + [F(r,u)l)¥(r)  ae inl
Now, assume for contradiction that the extremal u cannot be continued beyond some point

rmnJ rp<r <a;.
Integrating (3.5) on [ro, r].with re < r < r1, we have

(36) H)+ Fr0) S [ (4P uo)$lo)is +co

where ¢q = H(w'(ro)) + F(ro,u(re))-
We now assert that there is a positive number k such that

3.1} |Fir,u(r))] <k for each r € [rg,"1)-

Indeed, from (3.6) and the condition ¢ €L}, .(J), it follows that for every r € fro.m)
[F(ryu)]l £ j 1F(s,u(2))|¥(s)ds + <1y
e

where ¢; = ca+ J;, ¥{a)ds ~2 min{0, M} and M is a lower bound for F in {re, 1] xR. It
is now immediate from Gronwall's inequality that (3.7) holds with k = ¢, expf:: Y(a)ds.
From (3.6) and {3.7) also H(u') is bounded in [ro,)). Hence by Lemma 1 and (3.3) there
is a constant P > 0 such that

() <P  forallré€lre,m)

Consequently u is Lipschitz continuous in {ro,71} and so u(r) — uy asr .
Now, from (3.5) and (3.7) we also have

(H@') + F(ryw))' S(L+k)(r)  ae. in (ro,na)-
Therefore, by assumption (i),

H)+ Fir) =1+ 8) [ plods
by ]

is decreasing in [rg, 1) with
r "
F(r,u(r)} = F{r;,u) and j Wila)ds — j (s)ds asr /ry

Thus the function H(u'(r)) also tends to a finite limit as r /' 1, and by Lemma 1 and
(3.3) this means that
uwir) »uy asr/r,
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for some finite number u.
We now use the existence theorem given in [9], Proposition 1, to show that the Cauchy
problem

{ (9G,(u") +g firu) =0
ul(ry} =uy, w'(ry) = u}

admits a C' solution i in some interval [ry, R}, 1y < R < a,. To do this requires only that
we consider the operator

(3.8) Tlul(r) = u; + / " G;! (— j %f{s, u(s))ds + %%)G,(u’.)) di

defined on the set
C={ueClr, R : fu()-ullo <1}
where C[r,, R] denotes the space of continuous functions on [r1,R] endowed with the
uniform norm || - lo. As in {9], the operator T' is compact and continuous on C, with
T(C) C C, provided that R — v, is sufficiently small, and the existence of i is proved.
It now foliows that u on [rg,r; ) can be continued as an extremal to [ro, ] by putting

u(r), TeSra<n
u(r)=1q _
afr), n<rskRk
This contradiction completes the proof.

In the next theorem we establish continuation of extremals without the assumption that
¢ is increasing,

THEOREM 2. Suppose that the conditions (i) and {ii) hold. Assume also that there is a
positive number 9 such that

(3.9) G(p) <9 H(p) forallpeR.
Then any extremal of problem (2.1) can be continued to the right endpoint of J.

PROOF: Let u be an extremal of problem (2.1) and let rp be a point of its domain I.
Assume for contradiction that u cannot be continued beyond some point vy, rg < 1) < ay.
Integrating (3.4) on [ro, 7], with ry < r < ry, und setting cp = H(u'(rq)} + F(ro,u(ro)) as
before, we obtain

r T
H{u")+ F(r,u) = - / %A(u’}u’zds + / Fr(s,u)ds + eg.
La] T

By (2.2) and (3.9) we have p?4(p) < (1 + 9)H(p) for every p € R. Let ¢ be such that
|g'(r[)jg(r)i < ¢ for r € [ry,ry]. Then, using assumptions (i) and (i), we see that for every
r€[ro,n)

H(u') + |{F(r,u)| <c{1 + ﬂ)/rﬂ(u')d.; + /r |F(s,u){p(s)ds + a1
< ] (H(') + |F(s, u))io(a)ds + 3,
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where ¢ = co + [ ¥(s)ds +2 min{0, M}, M is a lower bound for F'in fre.r3] x R, and
w(r) = c(1+9)+(r), so that p €L}, (J). It is now a consequence of Gronwall’s inequality
that H(u') + |F(r,u)| is bounded in [re,r), say by ¢, exp f:" w(s)ds. Thus, since (3.9)
implies (3.3}, there is a positive npumber P such that [u'(r)] € P for every r € [ro,rq).

The rest of the proof is now essentially the same as in Theorem 1, that is the extremal
u can here be continued to some interval [ro, R, with ry < R < a). This contradiction
completes the proof.

Continuation of extremals to the left endpoint ag of J can be obtained as in Theorems
1 and 2, using (i)', (i) instead of (i), (ii). Regarding continuation of extremals over the
entire interval J where g > 0, we state the following

THEOREM 3. Suppose that (i), (i, (ii) and (ii)! hoid and also that (3.9) is satisfied. Then
any extremal u of (2.1) can be continued to all of J.

PROOF: Continuation to a; follows from Theorem 2. To prove continuation Lo dg one can
apply the proof of Theorem 2 with obvious modifications, and in particular the use of (i),
(ii) rather than (i), (ii).

Examples. 1. The degenerate Laplace operator G(p) = |p|™/m, m > 1, has

G =plp™, A=l aad  HG)= TR

Hence (3.9) holds with 3 = m — 1. :
2. The mean curvature operator G(p) = /1 +p* — 1 has

G,(p)=ﬁ. A@):ﬁ and H(p)=l-——l-\/_-lﬁ.

‘Thus both (3.3) and (3.9) fail.
3. The function G(p) = p tan™ p— 1 log(1 + p*) has G,(p} = tan™" p, Gyy(p) =
(1 +p%) >0,

Alp) = taalp  and H(p) = 3 log(1 +5*).

Here (3.3) holds while obviously (3.9) fails for any 9 > 0. Therefore Theorem 1 can be
applied, but both Theorems 2 and 3 are inapplicable.

§4. Boundedness of extremals.

Here we discuss the boundedness of extremals on J. The results vary slightly depending
on whether we consider boundedness as r — a;, the right endpoint of J, or 88 r — aq,
the left endpoint. For simplicity, we shall present two results for the case r — ay, leaving
other examples to the reader.
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THEOREM 4. Let u be an extremal of problem (2.1) whose domain I contains I) = [rg,a1).
Assume that there exists a sequence (rj) withr; / ay, such that F(r;,-) is bounded below
uniformly in j and

(4.1} F(rj,u) — co  as |u| — oo uniformly in j.

Suppose also that (i) holds with ¢ €L'(];) and that g is increasing. Then u is bounded
in I|.

PROOF: The proof is the same as for Theorem 1, with r) taken to be a,. We find as there,
by using the Gronwail inequality, that
[F(ru)] £ ¢ exp[ Y(s)ds foreveryre€ I,
5

where ¢, = cg + Il. ¥(s)ds — 2 min{0, M}, end M is a lower bound for F in I, x R.
Existence of this bound follows exactly as in the proof of the lemma in Section 3. In the
same way (4.1) and (i) imply that

F(r,u) — oo as |u} — oo uniformly in r € ).

It now follows at once that u is bounded as r tends to a;, completing the proof.

Remarks. Theorem 4 can be applied even when G(p) = /1 +p* — 1, in which case
equation (2.6) becomes the mean curvature equation

u' !
(9(") m) +9(r) f(r,u) =0.
Here the associated function H does not satisfy either (3.3) or {3.9).
If hypothesis (4.1) fails then the conclusion need not hold, as shown by the simple
i
example u'’ + -‘;‘- = 0 with a; = 400 and u(r) =logr.
We next give an aliernative version of Theorem 4 for F depending only on u and for

the special case when the extremal u is oscillatory as » — a;, that is, possesses an infinite
number of zeros which accumulate at a; (the usual case is a; = +o0).

THEOREM 4'. Let u be an extremal of probilem (2.1) whose domain contains I} = [ry,a;)
and which is oscillatory as r — a,. Assume &lso that g is increasing and that the function
F given in (c} depends oaly on u and satisfies the assumption

F(u) < Il_i-l‘l;lof'(t) foru20

(¢2) F(u) < lim F(t) foru<0.
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Then u is bounded in [;.
PROOF: Since F.(r,u} =0 and ¢'(r) 2 0, from (3.4) we have

(H(u')+ F(u)) <0 forallrel,.

Therefore the function H{u'} + F(u) is decreasing in I) and so is bounded above. We
denote by ucy: the values of u at local maxima and local minima in f;. Thus F(uc) is
decreasing and by the growth condition (4.2) this showa that |ucyii| is bounded. Hence u
is bounded in f;.

Remarks. If H satisfies (3.3), then, under the assumptions of either Theorem 4 or
Theorem 4', the extremal u and its derivative u’ are bounded in I,.

If moreover the interval J is bounded on the night, that is a; < oo, then clearly u is
Lipschitz continuous in ;, and so has a finite limit as r — a;. Thus the extremal u can be
extended to a function of class C{T;). The derivative v’ need not approach a limit unless
further assumptions are made concerning the continuity of F at r = a,. If, however, we
assume also that F' €C{J x R) then by the arguments in the proof of Theorem 1 we see
that u' also approaches a finite limit as r — a;. The condition F €C(J x R) holds in
particular when f(r,u) = p(r)#(u) and p(r) — limit as r — a,.

In both Theorems 4 and 4' it is evident that g is bounded from zero near the endpoint
a;. Some condition of this sort is in fact essential for the boundednesa of extremals, as is
clear even from the case of Bessel's equation, where g(r} = r* — 0 and the corresponding
solutions may become unbounded as r — 0.

§5. Global asymptotic stability of extremals.

In the preceding section we noted, for intervals J bounded on the right, that extremals
can be continuously extended, under certain conditions, to FAEY R

When J is unbounded on the right the situation is more delicate, The purpese of
this section is to present several results in this direction, under mild assumptions on the
functions g = g(r) and F = F(r,u). The following properties of F will be crucial in the
discussion. Without loss of generality we assume from here on that J = R*.

(P) There ezists a number R > 0 such that for cach pair of values uo, U, with 0 < uo <
U, there is a constant x > 0 for which u f(r,u) > x whenr 2 R and [4| € [ug, U]

(P) For every U > 0 there is a nonnegative function ¥ €L'{R, 00} such thet Fe(r,u) <
w(r) for elmost all r € (R, 00) and oll [u[ S U.

In the important case when f(r,u) = p(r)é(u), it is easy to see that property (P) is
equivalent to the simple condition

pr)>Const. >0 forr> R, ug(u)>0 foruz0.

Moreover, condition (P)' holds when o' €EL'[R,00). Of course when f does not depend on
r property (P)' is irrelevant.
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Condition {P) implies u f(r,u) > 0 for r > R and u # 0, and so in turn F(r,u) > 0 for
those values of r and u. The following lenuna makes this statement more precise.

LEMMA. Suppose that F = F(r,u) has property (P). Then for every U > 0 there is a
positive increasing function w = w(t), 0 < t £ U, such that

F(r,u) 2 w(lul) forr>Rand0< |u| S U.

PROOF: Let s{ug, U’} be the value of x in (P} corresponding to the interval [ug, U]. If this
function is not already increasing in the variable ug, we replace it by the new function

Rlug,U) = Ks::? &(t, V),
Ly

which is pesitive and increasing and for which (P) is also satisfied.
Now for any r > R and € (0, U] we have

“ LI 1
F(r,u):L f(r,t)dizjﬁ Mdt:%k{%u,U).

Similarly F(r,u) > 1&(|ul,U) when u € [~U,0). The proof is thus completed by taking
wo(t) = dx(46,U),0 <t < U.

We recall the relation 8(r) = ¢'(r}/g(r). Our main theorem is now

THEOREM 5. Let u be an extremnal of problem (2.1), bounded in [rg, 00) for some rg > 0.
Suppose that there are positive numbers # and # such that

(5.1) Bré(r) < f'r  forevery r € [rg,00).

Assume also that conditions (P} and (P)’ hold.
Then both u and u' tead to zero as r — vo.

Condition (5.1) can be significantly weakened if the operator A satisfies a mild algebraic
growth condition as p — 0, see the remarks at the end of the proof.

PROOF OF THEGREM 5: Let u be an extremal of problem (2.1), with |u(r)} < L for every
r € |ro,00). Without loss of generslity we shall assume that the number R given in (P)
15 less than rg, and that L > 0. Let ¢ denote the function given in (PY corresponding
to U = L. From (2.7), (5.1) and (P)' we have (H{(u') + F(r,u))’ < ¥(r) ae. in [R,00).
Therefore

HOW) + i)+ [ ~ ba)ds
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is decrcasing in [R,c0). Hence, since H and F are nonnegative, there is a number ¢ > 0
such that

(5.2) Hw)+ F(r,u) = £ asr—x,
If # = 0, then by Lemma 1 of Section 2 and the lemma above we immediately derive that

u'(r) — 0 and u(r) — 0 as r — 00, completing the proof.
Let us therefore assume for contradiction that £ > 0 in (5.2). We choose ry 2 rg so that

o0
(3)  WSHW)+Fr9<2 ferzn wd [ vodigie
La ]
Consider the two disjoint subsets I; and I of [r;, 00) such that

{5.4) F(r,u{r)) <1t  wheneverr€ fy,

(5.5) Fr,u(r)) > 1¢  whenever r € I.

By (5.3) and Lemma 1 there is a positive number py such that

(5.6) H(r)2 it snd  ju'(r)|2p>0 forsllrel.
We claim moreover that there is a positive pumber ug such that

(5.7) [u(r)] Zug >0 foreveryre k.

Indeed, by (5.5), (P)' and (5.3) we have for r € [

¢ <F(u(r) = Flrnu(r) + [ " R ur))ds < Flrnu(r) + [ ~ blo)ds
! L4 ]
<F(ry,u(r)) + 1,

in other words F(r;,u(r})) > {/B for every r € I3. The claim now follows since F is
continuous in the variable u and F(r;,0) = 0 by (c).

We shall show that for a suitable choice of the constants a and & the right-hand side
of the main identity (2.9) is less than r®F,(r,u) for all r sufficiently large. We take in
particular

(58)

(5.9} 0<asis, 0<kgis

It is convenient in what follows to express the right-hand side R = R(r) of (2.9) in the
form

R=r*"T{r)+ +EFp(r, u),

so that what we must show is that [(r) < 0 for r sufficiently large. Moreover, we shall
write £ = £{r) = r ¢*(r)/g(r) = r 5(r). For later use, note by (5.9} and (5.1) that

E-k+1 1+ 48
t—i-a<g
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We now divide the discussion according to whether r € I or r € I3,
Case r € I;. By (b) and the fact that uf(r,u) > 0 we have

T <k F(ru) - (€ - a — K)A(w')u? - g(g -k + 1)A{x" Jun'
, 4 2a 14
<k F(r) = (€ - a - A W (] - 22 252 )
by (5.10). We now take ry > ry so that r; > (1 + #)L/pe. Hence for r 2> r7 in I) we have

by (5.6)z and (5.9)

n 2o 14p 1,
e UL L > -
W= 2 el 2 g

and

[ <k Flr,u) - -}ﬁA(u')uﬂ < %ﬂ(F(r,u) - H(u'))

by (5.9) and (2.4);. Hence I'{r) < 0 for any r € [; N(ry,00) by (5.4) and (5.6);. In other
words, taking (2.9) and (P}’ into account, we have shown that

(511) {r* (B + Fru) + %A(u')uu')}' < r*y(r) for almost all r € I; 1 (r7,00).
Case r € Iy. By (5.3), (P) and (5.9), when r € I; there holds
(5.12) T <2k€—ar— (€ —a— k)AQu)w? ~ %(c -k + 1)A(u) uu',

where k = x(uy, L) is the number of property (P) corresponding to ug given in (5.7) and
to U = L. As in the previous case, if

qs 2o 148
'l = - 3 L

we gel

[ <2ké~ax
On the other hand, if

0 20 148
(5.13) Wi< 2 2R
then from (5.12)
(5.14) T <2k€ - an + 2(1 + B'r)L A(u) ',

Thus if r is suitably large, say r > rj, we get from (5.13), (5.14) and (2.5)
<2kl - %mc.
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Hence for r > r3 in I; end for k < ax/4£ we have I'(r) < 0.
In conclusion, recalling (5.11), we have shown that

{r" (H(u’) + F(r,u) + %A(u’)uu') }' <rtp{r)  for almost all r > r,

where ry = max{r,, ry, ra}. Consequently the function

¥(r)=+t (H(u') + F{r,u) + %A(u')uu’ - ;_-l-i /rr .s*\b(a)da)

is decreasing in {ry,c0). Moreover ]r (;'_"-)t Y(s)ds < / Y(a)ds < %l by (5.3), while
also by (5.9) and (2.4); we have b "

i:-|A(u')uu'1 = '-:-|u G,(w)| < %(G(a )+ H(u')) < %(G(L) +G(-L)+ 2:).

thanks to (5.3). Hence for all sufficiently large r

which contradicts the fact that ¥ is decreasing in [ry,00) and completes the proof of the
theorem.

Remarks. If for some m > ] we have
(5.15) A(p) < Const. p|™%,  p#£0,
then condition {5.1) can be improved to
(5.1 B<rb(r) < pir™.
For example, in equation {1.5) we can aliow §(r) = r™™! and still retain the conclusion
w(r),u’(r) — O as r — oo. The proof is essentially the same as before, except that (5.14)
now becomes
[ < 2k¢ — ax + Const. %(1 +Ar™) L'~

- (1;5)""‘ 1+’f‘:r"’

by (5.13). Thus if a is suitably small we agrin obtain

< 2kl — ax + Const.

< 2k - jax,
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and the rest of the proof is unchanged.

A further refinement of the proof (details omitted) shows, even more, that (5.1) can be
weakened to the form

ré{r) > B, r—"j 3¥=14(s)ds < Constant
*a

for some number k with 0 < k < # and all » > . Similarly, if (5.13) holds then it is
enough if

ré(r) 2 8, rt j s*~™§{s)ds < Constant

for some number k with 0 < k < § and all r 2 rg. If equality holds in (5.15), then
0<k<mpfim=1). lff>m,orif A(p)=|pj™~% p#0, and § > m — 1, then one can
specifically choose £ = m to obtain the condition

.
r""] &(s)ds < Constant
fo

discovered by Artstein and Infante (1] in the case when m = 2, §(r) 2Pos. Constant and
F is independent of r.

COROLLARY TO THEOREM 5. Let u be s bounded solution of the equation
(5.16) (A(u'lu')' + h{ru, u' YAW ) u + f(ru) = e(r) ort {rg, ca).

Suppose that conditions (P) and (PY are satisfied by the function f = f(r,u) and F(r,u) =
I f(r,t)dt, and that for some positive constants 8, §'

(5.17) B <rhir,u,p)<f'r foreveryr>ryandallueR,peR.

Finally, assume that either

{(5.18) e(r) = 0 asr — oo, ¢’ € L'[rg,00),
or
(5.19) e € Li[rp, 00), H(p} > Pos. Const. |p| when |p| 2 p

for some number py > 0. Then
u(r) =0, W(r)—=0 asr—oo.
1a case (5.19) the condition that u is bounded can be replaced by
(5.20) F{r,u) = oo as |u| -+ oo, uniformly in r.
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ProOF: Corresponding to the given solution u = u(r), we define
§(r) = h(r,u(r),u'(r)) r2ro.
Then by (5.17) the condition (5.1) is satisfied. Now set
f(r,u) = fr,u) = ¢(r) forr>rpandu€R,
so that in turn |
w f(r,u) = u f(r,u) —e(r)u and F(r,u) = F(r,u) - ¢(r)u.

Suppose now that (5.18) is satisfied. Then, as in the first part of the proof of Theorem 5,
we see that

AW+ R + | " (#(s) + ¢'()| L)ds

. _— N de=0.
is decreasing in [R,c0). Hence (5.2} holds in view of {5.18), Thus we are done if

Therefore, as before, assume for contradiction that £ > 0. We foliow the pr?d of
Theorem § with F' replaced by £ and with the right hand side R = R(r) of {2.9) in the
form

R(r) = Pt f‘(r)+ vt ﬁ'.-(r,u).

where X
[(r} =T(r) + {a = k)e(r)u.

Then as before there is rq > 0 such that [(r) < 0 for all r 2 ry, since |e(r)u(r)] <
le(r)] L — 0 as r — co. Consequently the function

W(r)=rt {H(u') + F(r,u) + %A(u')u u —efr)u
L [ oo seeine)

is decreasing in [r4, 00), which yields the same contradiction ns'hcfore. )
Next suppose that (5.19) is satisfied. We show first that u' is bounded in [rg, ). By

(2.7) with F replaced by £ we have
(H') + B(r,v)) € Folr,u),
which can be rewritten in the form
£ = (H@w'}+ F(r,u)) < Firu}+e(r)u’ S 9(r) + fe(r){ ]
a.e. in [R,00) by (PY. In turn by (5.19)
€' < ¥(r)+ py le(r)j + Const. fe(r)] L.

23



The Gronwall inequality implies that there exists M > 0 such that
(5.21) L(r)< M on|R, )

Hence H(v') is bounded and u’ must be bounded by (5.19)z, say ju'(r)| < L'.
As in the first part of the proof of Theorem 5 we then see that

H(u') + F(r,u) + jm('ﬁ(a) + le(s)] L')ds

in decreasing in [R,o00). Hence (5.2) holds in view of (5.19); and the proof is complete
when ¢ = 0. If £ > 0 we continue as in the proof of Theorem 5. From {2.9) with F replaced

by F we derive after some calculations

{r* (H(u') +F(ru)+ 2 A u u') }
=r*='D(r) + r*{p,(r, u) + c(r)(u' + 3;‘1)}
The rest of the proof in case (5.19) is the same as for Theorem 5 since
e (u‘ + %) € L'[ro, o0)

by (5.19), and the boundedness of u and u'.

To obtain the final part of the corollary note that (5.21) implies also that F(r,u) is
bounded along the extremal. Therefore condition (5.20) gives the required boundedness
of 4, and the proof proceeds unchanged.

The case (5.19-20) of the preceding corollary generalizes Theorem 1 of [7]. In particular
the latter result applies when A = 1 (so H(p) = 1p?) and when h = h(r,u, p) is bounded
above and below by positive constants. In [7] the upper bound is stated only for bounded
ranges of ¥ and p, but the s priori boundedness of u = u(r) and u’ = y/(r) has be=n
established here in the last part of the proof of the corollary using (5.21) together wizh
(5.19); and (5.20). (Note also that (5.20) corresponds to (1.7) in [7].) Finally, in [7] tae
function f is assumed independent of r and Lipschitz continuous in u, and ¢ is supposed to
be bounded and of class L![rg, co), while we have assumed only that ¢ is of class L} [ro,00).

It almost goes without saying that condition (5.17) in the Corollary can be weakened in
the directions indicated in the remarks following the proof of Theorem 5. In particular, in
case A = 1 the upper bound for r h in (5.17) can be weakened to 5’ r2.

Remark. The continuation property of Theorem 1 can be obtained under weakey eondi-
tions on F' if (3.3) is replaced by

3.3) H(p} 2 Pos. Const. [p|  for all p sufficiently large.
In particular. in this case it is enough if F has the form
(3.10) F(r,u) = Fi(r,u) + Fafr,u),

where F satisties conditions (i)~(ii) and F} is such that there exists a nonnegative fanction
Y2 €L (J) for which

OF;

ljﬁ(r.u) <ua{r) ae. inJandforall u € R.

The proof is essentially the same a5 before, except that (3.5) is replaced by
(H(u'}+ Fi(r.u))' € Fi(rou) + Fau(r,u) o',

which leads in turn to
|H " + Fi(r,u}| £ Constant

instead of {3.7). Thus |u'(r)| is bounded in [ry,r,) and the conclusion is then obtained
exactly as bejore. The same remark holds for Theorems 2 and 3, since (3.9) implies (3.3)'.

Condition 13.10} is satisfied in particular when F(r,u) = Fy(r,u)—¢(r) u and e €L}, (J).
In this case equation (1.1) takes the form

(A(u)u'Y +8(r) AW ) 6" + fi(ruy = e(r);

cf. also the coroilary to Theorem 5 in Section 3.
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