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1. INTRODUCTION

Let 2 be a bounded open subset of rre”, f(x,s) 8 function on Q=R and
hix) a function or distribution on . We consider the quasilinear

Birichlet problem
-Apu=f(x,u)+h(x) inQ,

(1.1
u=0 on aQ.

Here —ép, 1 <p < o=, igs the p-Laplacian
—&pu=—div(|Vu|p'2Vu) .

where |Vu| denoles the Euclidian norm of the gradient of u The

nonlinearity f(x,s) in (1.1) generates a potential

{12) Fis)= |3 fix,bat
which, in this paper, will aiways be assumed to lie psymptotically as

s»t= to the left side of the first eigenvalue Xy of -0, on W,.%(Q), ie.

. 7 p Flx,8)
(1.3) FXx) 1= limsup ———— < Ay .
S—tcwo ]slp

We are interested in the additional conditions to be impesed on ff¥.s),
F(x,8), and possibly hix), in order that (1.1) admite at least one
solution.

These conditions turn out to be of tweo different types and we will
refer 1o thern as nonresonance or resonance condilions on one side and

growth conditions on the other side. The nonrescnance or resonance
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conditions bear on the potential F(x,s) and possibly the forcing term

hix) and involve the spzctrum of -4, They are used in the present

problem to guarantee the coercivity of the associated functional

1
Flu) = - IQ[Vu[ﬂ—IQF(x,u)-th(x)u
p

on w!.P(&2). The terminology ‘resonance-nonresonance” 15 attached 1o
these conditions by analogy with the linear ODE  situation and
according o whether they invelve h{x} or not. They are briefly
described below and discussed in details in section 2. The growth
conditions bear on the nonlinearity f(x,8) itself. They are used to
permil some sort of differentiation of & One feature of this pager is
their relative generality which allows the consideration of strong
nonlinearities. They are briefly described below and discussed in
detanls in seclion 3.

The simplest nonresenance condition consists in requiring that
strict inequaiitg helds in £1.23) on subsets of posilive measure
(cfproposition 2.2). This extends to the quasilinear case conditions

which in the semilinear case p=2 were considered by (Lil[Ha][i-w-w]

(see [Ma] for an historical survey). fore sublite nonresonance
condttions can howewver be considered, which allow F+(x)s?\1 and
F’(x)zh,, as shown in proposition 2.4 where an-assumplion is made on
the ‘speeﬂ with which pF(x,s)/iSip approaches &y Whan this speed
reaches some critical level, resonance <an occur and some restriction
must be imposed an hiy) (cf proposition 2.9). The restriction imposed

here looks like the classical Landesman-lLazer condition. Howewver it is

exprassed in terms of the limits of (F(x,8)-A¢|s|P/p)|s]| instean of, as

4
usual when p=2, the limils of f(x,8)-A5. This turns out lo be more
general (cfremark 2.9 and example 2.11) and in addition it is more
closely related to the nécessary condition of Ahmad-Lazer-Paul [A-L-P]

(cf.remark 2.12).
The growth condition usually imposed on f(x,8) is of the form

(1.4) [txs)] < a]s|P 00,

where p* denotes the Sebolev conjugals guponent: 1/p*=1/p-1/N (for
simplicity we suppose for the moment p ¢ N). Condition {1.4) implies the
¢! character of &. In this paper we only assume either an one-sided

grawth condition from above of the form

(1) sgns 1(x,8) & T(s)+blx)

or an one-sided growth condition from below of the form
(1.6) sgns f(x,s) 2 -T(s)-blx) ,

where the function (s} salisfies §(s)=a(|s|p*) as s=two 0f course
these conditions do not suffice te guarantee the differentiability of g,
which may even lake infinite values. we nevertheless show that any
minimum u of @ solves (1.1) in a suitable weak sense {cf propositions
31 and 3.2). This is obtained by some extension of & lLechnique
introguced by Hempel [Hem] lo contral differential gquotients in the

calcuius of wariations.

we also consider in some details the case p=N. The space Wi F(Q)

is lhen imbedded into an Orlicz space defined by an N-function which
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grows tike exp{s|N/ N0 at infinity (cfITrliMol) We use this
imbedding in orcer to weaken further in thal case the one-sided growth
condition tmposed on (x,5). When p > N, no growth condition on f(x.) is
needed.

Several papers have been concerned with the introduction of strong
nonlinearities in the lower order part of an elliptic equalion. See 8.q.
[Brl. [Hes], [Wel, [Br-Br], [Be-Ga] when the top order par! is nonlinear

and some sign condition is imposed on the zero order term, {Ka-Wal,

[Br-mi], [De—GoI} when the top order part is linear and nonresonance or

resonance is considered. All these works eventuaily rely on monotone
iteration or degree theory. The variational approach used here leads in
& naturel way to & clear distinclion between nonresonance or
resohance condilions on one side and growth conditions on the other
side. The relative lack of interaction belween these conditions providec
some flexibilily in the applications, as iHustrated in the study of
asciltating  slrong nonlinearities {cfexample 46). Morecver the
nonresonance or resonance conditions which are expressad in terms of
F(x.8) and connected with fnequality (1.2) &rg more general that the
analggous ones which are expressed in terms of f(x,s) and connected
with the ineguaity
(.7 limsup (tx.s) <N

sate  |s|P2g
{cfremark 29 and examples 2.10, 2.11). This fﬁct was already noticed
in [M-W-W] for the nonresornance condition of propositign 2.2 {with
p=2). it is also worth observing in the present context of strong
nofilinearities that inequality (1.7} itseif already imposes an ane-sided
growth restriction on f(xs), which is stronger than (15)

Specific references to as well as comparisons with previous works

6
are given in section 4, after the siatement of our existence theorem
for {1.1). As indicated there, a large part of this theorem appears to

be new even when p=2, ie for the semilinear problem

=Ou=f{,u)+h(x) in Q ,
(1.8} {

u=0 on aQ .

A particular case of this theorem has recently been used in [De-Gos]

a5 an intermediale step to deal with a situation where no growth

restriction at all 15 imposed on the nonlinearity f (cfremark 4.4).
Questions similar to those treated in this paper can also be

considered for the more general, possibly higher order, quasilinear

prabiem

5 -nlalo®a ten,vu,. . 9Mu=ixupnt) n o
ta|<m

D%u=0 on 3Q for |a| ¢ m-1

{cfremark 4.2 in the semilinear case). This requires among other

things an adequate definition of the first eigenvalue )y and of the

assoclated eifgenfunctions. These questions will be studled In a

subsequent paper.



2. NONRESOMANCE GR RESOMANCE CONDITIONS AND COERCIVITY.

In this section w2 study some conditions which imply that the
functional & is coercive.
Let 2 be a bounded open subset of RN, with boundary 8% of class

C2P for some fe]0,il. This regularitly is needed only 1o gquaraniee Lhe
simplicity of Ay below, this simplicity itsell is used only when px2 tg

give & simple statement of propositions 24 and 2.8
We recall that the first eigenvalue A, of —ap on v, *(Q) is defined

by
(21) M=int o 7| Peg |v]Puew, . B(2) ana veo),

it 15 known that Ap is > 0, that the infinum above is achisved, and

that it is achieved al wew).*{Q) iT and only 11 u#0 and U salisfies
-ﬂpu=9\.,|u|p"2u in Q.

Moreover the eigenvalue Ay 1s simple (e, any two corresponding

gigenfunctions are muitiple one of the other) and the associated
eigenspace is generaled by an eigenfunction which is > © in R. For

these results as well as for other informaticns aboutl the spectrum of

the p-Laplacian, see [I\nll,[Anz] and the references therein. we will
denate by ¥y the narmalized positive etgenfunction, where the

normalization is taken with respect to the W,.P{(Q) norm

Wl = (o |Ov}P)'/e.

let 1 < o £ p It will be convenienl below 1o say that a function
nx) belongs to X, if neLUQ) for some q > {p*/a)’ when p < N, nel¥Q)
for some g > 1 when p=N, and neL'(Q) wheti p > N. Here (p*/«)’ dencles

the Holder conjugate of p*/a. we will also say that n(x) belengs 1o \f

'
il netP (2) when p < N, neL%(Q) for some q > | when p=N, and nel'(@)
when p > N. The following lernma is an easy consequence of the Sobolev

imbedding theorem.

LEFIMA 2.1 Let u, - u weakly in W, . P (Q). If neX,. ihen

nuy [ “=njuf® m k@), It nev,, then nlugl-nful 1 L'@).

Lel F:@xR-+R be a Caratheodory function such that

(F,) sup  [F(x,8)| e LI(Q)
[s|<R

for any R > 0. We consider the functicnal
|

22 Bu) = - [ | Vu[P-[gF(x,u)-<hw ,
p

where h is given in w hP'(Q) and <> denotes the duality pairing
between W P (Q) and W}.P(Q). The assumptions to bs made on Fix,s)

will imply that & is well-defined on W.P(Q).

It will be convenieni to write F(x.s) as



Flx,s)=hy|s[P/p + Glxs).

Thus 6fx,c} represents {he perturbation of the potential F{x,s) above the

level ay. Defining

(2.3) Bpex) = limsup ,
st |s|P

inequality {1.3) bezomes Gy(x} ¢ 0.

PROPOSITION 2.2. Assume (F ) and

(G’[) there exists n(x,\e.\(p such that for any & > O, there are 3.(x}eY,

and B (el Q) with

G(x,3) ¢ enix}{s|P+8 (x) 5|+ (x}

for ae xeQ and all seR,

(67)) there exist 2'cQ and 27c®, of gositive messure such that

Then & is_well-defined on w;.P(Q), takes values in Jrw,+e] i weakly

lower semicontinugus and coercive.

Assumplions [6%), (G°)) essentially mean that (1.3) holds ae, with

strict inequality on subsets of positive measure.

PROOF OF PROPOSITION 2.2. Assumption (G'y), lemma 2.1 and Fatou’s

ferma imply thal & is well-defined on W, .F{Q), takes values in

J-e,+) and is weakly lower semicontinuous on W,.P(Q). To prove that

& is coercive, suppose by conlradiction the existence of a seguence

Uy € W P(Q) with fu l-+eo and Bu,) < c. write vp=u, /ML Then, for a

subsequence, v, + v weakly in Wg-P(&), strongly in LP(Q) and ae in @

we first prove that v=:%, Since &y} < c, we have, by (G°y),

| . }.] N ‘vn’
= JalPuglP- — Jo v |P-efann |vq [P-JoBetn — 3
p p fup P
| Tetx) a Nyt
e Bl dugle

Using fv =1 and letting first n » <« and then & - 0, we get

1endglelP
Consequently, from the definition of A, and the fact that Wi, we have
(24) MghvIP ¢ folwe|P v andglel?,

so that equalily holds everywhere in (24) In particular fvl=1 and v

achieves the infinum in (2.1}, which yields the conclusion v=¢¥. {Since

by A=lvl, one also derives that v, — v in W,.P(Q)). We will assume
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from now on that w=¥y. Similar arguments can be given 1n he other
case.
We now deduce from $(up)ic, by using the definition of Ay, that

(2.5) IQG(x,un‘J 2 =<hup-c.

This implies, after division by llunﬂp, that

G(X, W)
L

(26) liminf >
Jo hu P

Denoting by X, the charecteristic function of the set {xe€Q; |uy{x)]21}

and using (Fg), we deduce from (26) that

Gix,up)
27) Hininf o ——

Togfp el
1

Since v - ‘P, ae in R, u, -+ += ge In Q and ¥p—! 8e in Q.

Moreover, using (6°)) and lerma 21, one sees thal Fatou's lermma can

e applied to {2.7). This gives
[@Bpxy P 3 0,
which centradicts (573 QED.

Wa ngw tura o Situations where passibliy F'{x)a)a, anig F'(x)eh,, i

Gy (x)=0 and Gp (x)=0. Density conditions of the \ype inlroduced in

12

[09—502] could be considered. However this approach seems o reguire
growth restrictions on 1(x,5) which exclude the consideratien of strong
nenlingarities (cf. [De-602] when p=2, [An,] when p#2). We go hers in
another direction and impose some control on the speed of the
convergence of pF(x,s)/|s|P towards A, This sort of idea was

originally introduced in [De;] and used later in [Go,l, [Go,l.

Conditions <G"y), (G"y) involve the comparison of G(x,s} with the

function |s]IJ s s-te We will use more general comparison

functions.

DEFINITION 2.3 An even continuous function ¥:R-R* is called a

comparison function of order a, I1agp, if

(y ¥s)/|s|P + 0 as sote

(Cy) $(s)/{s] = + a5 s+,

(C3) Y)Wty - 7% whenever s/t - T with 5>+ and
=+,

(€4 for any B > ¢ there exist 1, a,b such that

#1s)/¥(t) ¢ asPeb for all t > t) and atl s 2 0.

Typical examples of comparison functions of order « are ¥s)=|s|®
for t Ca<p, or Ws)=[s|%/log|s| tor 1 < a < p, or ¥s)=|s|%og|s]
for t <@ <p

Given such a comparison function ¥, we define



G{x,5)

G§ix) = limsup
v S+t Y(s)

PROPOSITION 2.4 Assume (Fg) and

(G'z) there exis: & comparison function ¥ of order «, 1 < « < p

- il

nixdedy, s(xle¥, and ¥(x)eL!(Q) such_that
Bis,s) ¢ nlx)e(s) + &(x)|s|+8(x)
for ae xe® and all seR,
(6") JoB3x)P (aN% < 0 and [oB300(e, 0% < 0

Thep the conctusion of proposition 2.2, helds.

Assumption (G'p) essentially means that Gy(x) is bounded from above

by nix) {Recall that Gy(x) was < 0 in proposition 2.2).

PROOF OF PROPOSITION 2.4. We first show that (G6'5) implies (G',)

This Is an immediate consequence of (Fy) and (C,) when a=p or when
P2 N Let us consider the remaining case | < @ < p and p < N Recall

that the function nix) in (675} satisfies nixel%Q) for some g »

(p*/ay. By (Cq. n{x)¥(s) can be estimated in terms of nix) s[B for

some B with @ < 2 < pand q > (p*/p). Using Young's inequality, we get

it s 1P o e etV BY s e v | 5 | BP/B

for 0 < v ¢ 1 Define wyeloal by (- Hp/pi=(p® /By 4 simple
calculation shows that by taking v less than bul sufficiently near to

Vg, ON2 has l]“_U}(D/E)JEL‘(Q) and ¥ D/EEXD. One can thus decive ()
from (G'5) fn this way.

Since (57°)) holds, the proof of proposition 2.2 cen be followed until
(2.3) 15 reached. Dividing by ¥(lu b, we then cbtain by (C,)

Gixug)
2 Yihugh

>

timinf|

and conssquentiy

Gl ) Wluglupb)

(2 Brainff g —
% Vg willugh

¥p 2 0,

where ¥, has the same meaning as before Using (G6'5), (L4} with § > «
and {p™/p)’ < g, and lemrma 2.1, one sees thal Falou's lemma can be
applied to (2G) It then follows from (C3) that

IQG$(%)(‘P](K}J{L >0,

wilich contradicts (5”2)‘ QED.

The following example allows some comparison betwssn propasitions
22 and 2.4 {end proposition 2.5 below). See alsa remark 2.13 ror such

A COmpariscen.



EXAMPLE 25 Take | <o « p and

Fiesimay]s|Pip + nixdfs|®

where nii)e)y. Then proposition 2.4 epplies with $s)=fs{" provided

_[.:h,r]('a:_)‘f‘l('»:}“ ¢ . However proposition 2.2 does not apply Moreover 1f o)
changes sign, ne other comparnsan function wiith a different Qrowth at
wfinily can be used and in addition propesition 2.8 below does not

apply.

REMARK 26. Conditions (G'5)(6"5) with #is)={s|P (which is not a

P

comparison function in the sense of defimtion 2.2) do not iraply the
coercivity of @ (nor ewven the solvability of (Lt} when p=2z and F is of
the form ©1.2) with fix,s) linear). This can be seen Troam an exampie 1n

fFo-Go). Condition §1.3) 15 violaled in thal example.

REMARY. 2.7 It shewld be interesting to remove the condition that ¢

iz even This can be done under sorne furiher restriction on the growih
of T{x,s), by adapting an argurnent from {De-Gop] bused on the mean
value thegrem  See also [602} Tor another result wwolving fongven

comparison functions.

The hmiting case of proposition 2.4 where yis)={s{P 15 provided by

proposition 220 The other  hmiting case, where ()=

B

.18 the
following proposition, where the functions 5;(x) are oehined by Tormula

12.3) with p=1.

FROPGSITION 2.8. Aszzurme (Fp) and

{G'3) there exist nixley, and 50t '(Q) such that

G(x.8) ¢ rix)|s|+6(x)

for ae xeQ and all sek,

(6" foB ey < <t < -[o6T0F k).

Then_the conclusion of propositien 2.2 holds.

In opposition with the previous two propositions, the assumplions of

proposition 2.8 invelve the forcing term hx).

FROOF OF PROFOSITION 28 Since {5'3) clearty tmpiies (G'y), the

argurents of the proof of proposition 2.2 can be followed until {2.5) is

reactied. Dividing by lu k. we then obtain

Gix,up)

(29) Timint fg, leglXg 2 - <hfy>

nl
where ”}{n has the same meaning as before. Using (6'3) and lermma 2.1,
one sees that Fatou's lemma can be applied to £2.9). This gives
[ BT6IE00 2 - <t ,

which contradicts (G"g). QED.



REMARK 29 Let

Gx,h=[7 alx Ut

It is then easily verified that if §.B - F is continuous with fi{sis > O

for [s| large and 11 the primitive L of £ tends lo +e at teo, then

7 G(x,5) gix,s)
Nrrsup £ limsup

ot L{g) sstex  B{s)

in particwlar, for q=1 or p,

q(x.3)

a6e(z) ¢ 9glxdi= Vimsup

s=te  |5]072g

These inequalities show that conditions (6°y) and (G"3) follow from

anaiogous conditions involving g’;(x) and gy(x) respectively The laller

are in general more restrictive. Actually (BB or (G"3),(6"5) mmay

hold with go(x} or gy fairly arbitrary, as showa in the following

twe examples. Similar ohservations can be made for {550,550,
EXAMPLE 210, Take

gixs)~als|PZs + b|s|P 2 sins

b s b T :
with a,belR Then l_mpf.’vcisn.."ﬁ arnd g;(x}saﬂbl. Proposition 2.2 applies as

soon as & < O (with b arbitrary).

EXAMPLE 211 Take p=2 and

gix,s)=8 2, &rcigs + b sins

with abeR. Then Gy(x)=a and g)Go=s+|b]. Fropozition 2.9 applies as
seon 85 a < O (with b arbitrary). However the inequslities obtained
fram (G;) by replacing Gy by gy (which are then the classical

Landestnan-Lazer conditions) can never be satisfied if |b| 2 -8,

REMARK 212 By restricting & to the line RYy, one sees thal a

necessary condition for the coercivity of & is that

{210 JQG{er*fl)+<h_r‘Pl> - - A4S Ir]—'}-rcn.

Condition (210) however is not sufficient in general to guarantee the
coercivity af & {or even the solvability of (1.1) when p=Z and F is af
the form (12) with f(x,s) linear}) This can b2 se=n from an example in
{Fo-Gnl Condition €210} corresponds in the present setting (o the

Adhmad-Lazer-Psul condition {A-L-P] [ 15 easily seen here, by means of

Fatou's lemma, thatl (5'7),(G"z) imply (210).

REMARK 213 Consider the autonomous case G(x,s)=6(s). I (6] (6",)

hold, then
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for zome £ > O and some C € F, and consedquently iB'Q),(,G“Q‘; hold for
any ¥ (werth Gy=-e) Sumiarly, 11 (670,067 ;] hold, then (5'7),i673) hold

for any h {with G} =-wi Proposition 2.9 thus provides the best result in
he aulonormous case Example 2.6 shows that this 1s not $o anyinore ifi

the nonaulenomous case

REMARK 214 The somraebility reguirernent on s} can be shghtly
weakened it lhe thrae propositions above when p=N by using Lhe

Trudinger vnbedding treorem (Tr]

3 GROWTH CONDITIONS AND EULER LAGRANGE EQUATION.

In thic section we investigale the guestion whether a minimu U of
# solves (L1) in a suitable sense.

Let ¢ be any bounded open subset of g we recall the limting
case of the Sobolev imbedding theorem (cf[Tr][Mol): wl Q) c Ep(8)

continuously, where E,(&) is the small Orlicz space associated 1o the

N-function A(t)=expi“f(N‘”wl. Seg e.g [Kr-Ru) for the basic definitions

from Orlicz spaces theory a N-function B{t), the lerge Oriicz space
Lgi@), the small Orlicz space E5(R), the conjugate N-function B....

Let {:QxF - K be a Caratheodory function such that, for any R > 0,

(fg) syp  |1x,9)] € LB (R)resplat@)Li(@)
<l

when p ¢ H (respp=R, p > N). This implies that the primitive Fix,s) is a

Caratheodory function which satisties (Fg). The associated function &

will be well-defined on Wl P(Q), with values in ]-= =], if there exist

abeR, c(xell(Q) such that

(F,) F(x,s) < { a|s|p*+c(x) when p < N,

a alb|s|)+c(x) when p=N,

for ae we® and all seR; no further condition is needed when p > N
Opserve that (6°)) (and consequently (G"p) or {G'3)) implies (F,).
(n order to exprese the growth condition to be impoged on (x.8)

when p < N, we need an auxillary function 8.R - R with the following

properties: & is Lipschitzian, nondecreasing, wilh 8(tw)=tcw, Blsks > 0
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s
for 520 and [s|P /6{s) nondecreasing for |<| large We will refer to
these properties as (F) Observe thal ewix)) € w).F(Q) if

ulx) € Wi Q)

Typica! examples of functions © with properly (P) are 6{sj=< for

seB, or, 0 <astand OB <t

’ '

5 for s large > O,

8ls) = 5
%_ -1s|Pragle] for g terge ¢ 0,
with @ suitably extended on all R in the second example.

PROPOSITION 3t Assure {f), {F,) and

*
when p < B ele)flug) < alstP +dix)|6is)] |

{fy)

when p=N : sgns 1{x,5) ¢ aAlb|s|elx)

far some_ functign & with property (F), some abeR, rj(x;‘-ELF'=r ‘(Q.‘,

elnslydQ) and s e xeh and ol SR Then any minimum o of $ gver

Wo. P(Q) (if it exists) salisfies

{3.1) Fle) ¢ LI(Q)
(32} fwu) e LG ,
(3.3) ,(Ql7'11[’-E‘TJU?%fﬂ!'('a-:,uh‘w:h,%‘z for_all Peyr ) *aint =y,

fmorecder when p < N, T w8u) € e ongd (Z3Z) halgs with ¥=8u);

[
N

when p=N, f(xuuel @) and (33) holds with ¥=u

PROPOSITION 3.2 Assume (fo)(F.) and

*
when p ¢ N ; 6(sii(x,s) > -als|P -axd|6(s)] |
(1)

when p=M : egnef(x.s) » -aA(b]s])-e(x) ,

'
for _some funclion € with property (P), some abeR, dlxelP (),

elxlelglQ) and a.e #eQ gnd all seR. Then the conclusion of proposition

2.1 holds.

Conditions (f|) and (f2) are the precised farms of the cne-sided
growth conditicns (15) and (1.6) from the introduction Actually it

easily follows from & lemma in [Gool that in the autonomous case with
po< M, (T and (T,) are equivalent to (1.5) and (16} respectively. When
oy N, (f,]) alone implies that @ is ¢! and consequently the above

propositions become trivial
The proot of proposition 3.1 ig based on the following lemma, which

proviges some exlensian of a lechnique introduced in [Hem]

LEMMA 33 Let p < N gnd_assume (f,)(fy). Take uew P,

Few! FCQ) o L™(Q) and 0 < @ ¢ 1/2K, where K is the Lipschilz

\

constant_of &, and denote $-a6(w) by v Then there exists A(x)eL'(@)

such that

(%.4) (Pl sty )-Flud) it » B
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for ae wxe@ and oll t<]O Seme canclusion when p=H if one taoles

Y=oy wih 0 <@ o1 12

FROOF We first deduce same consequence frofm H]) tel ug Consider

the case p < W By 4, (1) and (P), one has, for some LP function 4,

Ha Irje” .
T{n,e) € 3 d(z) < a — +d{x)
8(s} e(r)
far O <8 < r, and consequently
L
(Z5) 60,50 < alr [P +d(x)|eir}

for s < (O] The samz argument yields (35 for s < {r.0] when ¢ < @
A similar relation can also be deduced from (fl) when p=N. indeed one

then has

30,23 < ablb]s| e[|

for sore bef and Efx)elz(@), consequently, by tne argument ancve, one

ubtains, for some elx)elz(w),
(3 6) riGes) o aalb|rf)véc)|r|
for eefor] er wcir,0) depending on the gign of 1.

We now consider the diferentral quotient (3.4 suppose p o< K By

the mean value thearem, one has

(2.7 (F{x ustv)~Fxu)d/t=f(x us Tvlv

for some T=t(x,u,t.9,a,8)c]0tl Let
Gy=(rew; |ae(u(x))lil‘f(x)|}.
Since |6(s)f-re a5 |5] 0w, uel®(Q ). It then fellows fram (3.7) and

(fy) that there exists Mx)el'(Q,) such that
[{F{x urt)-Fxun/t] < pix)

on gy, Lel us now consider xe QA2 Thus

{2.8) | (=) ] <| aotuix) .

We claim that

(29) O < ufadrrvlx) < ulx) if ux) » 0,

(2.10) utx) £ ulxlrovix) < 0 if ulx) < 0.

Indeed. omitling to write ¥ for simplicity, we have, by (3.8) and the

relation |8(s)|¢ ks,

(341 [~at{u)|< 2[ad(u)]<]ul ,

which yields the first inequality in (3.9} and the second in (3.10). BY
tengidering each possibthty 20 or ¥<0, «&(u)0 or wBluy<0, one eastly

deduces {rom (3.5} that

(3.12) san(Y - élu)i=-sgnu |
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which yields the remaining inequalities of {3.95(3.10). How, using (312}

and (3.11), one gels
fla,urTyiv > -I0custuiv]” 2 - uvTad(-2astu))]”,

Moreover i follows from (3.9)(3.10) that {3.5) can be apphied to the
right-land side of the above inequelity (with r=ulx) and s=ulx}+Tvlx))

One abtains in this way
140+ TeGv(x) > -20a [u() | P 24i(x) [ &tulx))].

Thig shaws thet (37) 1s on Q\Q, grealer than some L' function

independant of 1 Similar argument when p=N. one replaces S¥u) by u

and uses (3.60). QFD.

PROGF OF PROPUSITION 2.1, Let us consider the case p<H Let u be a

minimum of & over Wy P(Q) This implies that E(u) is finite and

consequently that FixwieL (2 Take ¥ « Wi PG 0 LTS, 0ol 2K

and write v=9-gofu). ane has, Tor 1=J0,1[ ,

Flu+tv)- Eu)
{ _—
) 1
| V{ustur]| -] ou P Fx uety)-Fixu)

J'Ja ) 'Ig‘ X - <hwy

= |-

vy

right-hand side when 10 Onz deduces in this way f(?;:,u:l\!EL]lE..’) and

RS o | 7u| ¥ Eumy J-C_,f(><,u}w<h,'..'> _

]

(e

Taking =0, one gels flxu8lu} e LY Q). This implies, sing {f), that

fte) ¢ Lhg) Letting now -0 in (3.12) and replacing ¥ by -¢, one
gets (3.3) Since f(zu) € tha) and (x,ueu) € Ll(m, 1 follows from a
lemma by Brézis-Browder [Br-Br] that (2.3} alse holds for $=6{u),
which concludes the proof when p<H. The argument is similar when p=N.

Ore siroply replaces o(u) by u. OED.

The proof of proposition 3.2 15 based on the following variant of

lemma 33

LEMMMA 3.4 Same stelemerd as lernma 3.3 excepl 1hat (f1) s

reptaced by (F5) and that « is taken with -1/2K < a < 0.

FROOF 1t is similar to thal of lemma 33 and we simply indicate
here the successive steps in the case p<N. One first deduces from lif2)

that
o(rfix,s) > -20"alr P -300 6t |

for s € {r2r]if ¢ > O and for s & [2rr] if £ < & The study of {37)
an @) iz jdentical o that in the proof of Jemma 3.3. Now, on Q\QI,

(3.9) ang (3.10) become

(k) < ulierel) € 2ula) 3 u{x) » o,

2ulx) Culxdetvin) < ulk) of wix) < 0.

The inequalities {2.11) are maintanied but {3.12} becomes



sgn{¥-aeduji=sgnu
The rest of the proot 15 easily adapted. WED.

PROUF OF PROFPOSITION 320 1dentical to that of propositien 210

excepl lhat one takes ~1/2K ¢ ¢ ¢ O and uses lemma 24 GED

FEMARE 35 It clearly suffices i the two propesitions above that o

be a tocel mimimum of $, o more generally that $(u} be finite and

that for each w & W), P(Q), Bustw) > @(ud+ol|t]|) when [t]|=0

T

Conditicn (fl,‘l can al:g be vreplaced in proposition 31 bty ihe

reguiremsnt that, when p<i,
- -
{3.14) Bl MGs) 2 afr|P sai)|sir) |+ [Fier) ]

for s € [Or) ¢ v > O and for s £ [r,0] if r<d {compare with {T5))
Sttarlar ebservation when p=H and in propasition 3.2 & condition like
304 with 8lsi=2, an exponent p in the right-hand side and fixz) of

the form qlxif{s) was ceonsidered in [Hem).

X
REMARK 3.6, Suppose pilN. Condition iv.4) with bix) € LP (2) implies
that & 15 C! (et eqilesD) Any mimmum u of & thus solves {13) tn the

usual wariational sense. More generglly if (F ) holds ang f

(715} [10s,50) < 2 5[D§+b(xi

16r some g:R, b(x)el.'(u‘a, then & can be differentiated in the direction

28
of any testing function at sny u where Fu} is finite. Consequently any
mimmuen o of & solves {11) in the distribution sense. (By using
Gronwall’s inequality, one can show that the same is true it {3.49) is

replaced by
(2.16) [ttx,s] € a]s|P e0taec [Fxb)]

s was ponted oul to us by Mwiliem; cf.IWi] Tor an argument of this
typel. 1t is not clear whether the one-sided growth conditions {f)) and
(fQ) can be weakened further so as to reach, as in the two-sided

growlh condition {3.t5), the limiting exponent p*. (bserve that when

p=N, the limiting growth is reached in {f,} and (f,).

REMARK 3.7. Here is another situation where any minimum of &
solves (1.1). Suppose f autonomous and F(s)/|s|--= as [s|-+=, in &
monotonic way for |s| large. Let hx)eL™(¢). Then any minimum u of
& (which exists, eg. by proposilion 2.2) is essentially bounded &nd

consequently solves (1.1} in the usual variational sense. Indeed assume

by contradiction u unbounded. Let <, be such that F(s)+h(x)s <
Flsgithin)g, Tor ae. x and all [s]>s, and denate by ug the truncated
function defined by usotx)=u(x) if =g < ulx) < s, uso(x)=scl

it ouls) > s, uso{r.‘ﬁ--sﬁ i w{x) ¢ -sy. It easily follows from the

unboundedness of u that -i(uso'} < ®(u), a contradiction.
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4. EXISTENCE THEOREM FOR {1.1).

The following theorem is a direct consequence of the results of the

previous two seclions.

THEOREM 41 Let & be_as in_section 2. Suppose (fu)- Suppose_alsn

either (G'}),(G”‘) a¥ (5’2),‘26”2) or (5'3),55”3). Einally_ suppose (f') ar (fg)

Then there exists u e W), PI&) which salves (1.1) (in_the sense thed the

properties stated (n the conclusion of prepesition 3.1 hold) and which

minimizes & gver Ww..P(%).

REMARK 42 ‘when p=2, theerem 4.0 remains true in an arbilrary
bounded open set @ and for an uniformly eliptic linear operator of the

farm

(3j;(x) —Jaylx
— (3j;lx) Yea (s
booow " 8z °

i

with .1”(:::I=a”(z]l e L™{Q) and a,{x) < My see eq[De,] for the
corresponding  properlies  of ApFy Extension 1o & fogher  order

symmetric uniformly eliptic linear operalor in divergence form can
also easzily be given The ronrezonance or resonsnee conditions however
riust be slighlly medified in order 1o lake into account among other
things the Tact that the eigenfunctions corresponding to Ay may change

sign in &

Thearerm 4.4 provides 1mprovements of several known results Letl us

first make smme comparisens in the semilinear cace p=2 16 Tor

30
problem (18). in the case (67),(G"), with @,=Q_, and when (f,),{f,) ere

replaced by a strenghthened form of the two-sided growih condilion

{i4), theorem 41 reduces (o a result of [M-w-%1 In the case of

nonresonance  or  resonance  cordifions  anatogous  to (B’l),(ﬁ”l_} or
-!G'Z}_.t_ﬁ"3) but bearing on f and when (f;} holds with &{s)=s and with
ls[2 with right-hand side, theorem 41 reduces to results of [DE-GU1]
{see also [Br-N1]). Under the same strenghthened form of (f) and a

nonresorance condition analogous to (G'5),(G",} but bearing on 1, with a
comparison function ¢ of the power type, thearem 41 reduces to a
result in [Goy]

There hawve been rather few works dealing with problem (11) near
resghance in the quasilinesr case p=2. Jumping nonlinearities are
congidered in [Dr) in the O.DE case N=1 For arbitrary N's, the

nontinear Fredholrm alternative for homogenous operators (cf [F-N-5-5))

implies that if f(x,2)=x[s|P 25 with A < Ay for more generalty with A
different af an eigenvatue of -&D on W(‘,JF‘(Q)), then {1.1) is salvable for

any ho& w, . * () The only resull which ques beyand this gereral one
seems to be that of [B-D-G-K} It is shown there that if (1.4} hslds

with [s|F7!in the right-hand side and sf, for some B < X,

imsup —— < B,
sore |5|P 2

then (11} is solvable for any h < Lp‘(ﬁ), Theorem 4.1 clearly improves

this result  iram  =everal yespects. The cas2  whereg  f(xs) lies



1
symtotically between 1wo conseculive eigenvalues of ~.-ﬁp on Wl Pig
ig alzo considered o [B-U-G-K] We cbserve in thie respect that for
p*2 and N:2, the sxistence of two such consecutive eigenvalues has

bean eclabliched anly fur oy and &g (o [AnyLian,])

REMARK 432 In a prehminary version of theorem 4.1 we uoed a
differest method af proof which was based on a special truncation of
the nonlinearity rixs) (as i [Ans]) and a theorem of e La Vallee
Fouszin {as in [De—Gn]]I. One ioterest of this truncation {which bears
an f) 13 lhat it preserves the nonresonance conditions fwhich Lear an

Fi

REMARE. 4.4 A perticular csse of theoremn 41 has recently been
used in {DE-1303] as an intermediate step o show thal under the sole

assumption

8]

linsup ZFEs}/s< < Ay
EEES

the autanomous pro@lem

{ ~ausfludshiz) in @

u=0 on ol

where hix) & L™(2) slways has a solution. The solulian constructed I

he-Bos] howewsr may ol corrasnond to s rogimen of 1he funibianal,

wWe conclude thi: <ection with Some enamples

12
EXAMPLE 4.5 Thenrem 4.1 appites in all the siluations considered in

gxamples 25, 210 and 211, No strong nonlinearity 15 involved there.

EXAMPLE 46 Let | < p ¢ N and consider & continuous function

LR SR with J(0)=0, M) < (’sp*/lugs)ﬂ for s large and

. P s
liimsup — Jo IQOT:\ I NI
P

Sapt oo

The latter condilion is verified for instance if 1 is oscillating as in

the following picture
-

ILA) - - ’(;P'/,oog A) +1

-
-

N

and f the area of each negative bump is greater in ahsolute value
than the ares of the following positive bump. Mote that the growth of
L 1% wunrestricted from below. Let k be another function on &

gatisfying the sarme conditions Define

s =fhs)isxe @ and s o,
“k(-s) if w e @ and s <O,

MIsiP2s otherwise |
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where @Y and R are subsets of © of positive masure. Then theorerm
41 applies This 15 till the case iT the growth restriction on I and K
is from below instead of from above : A(si 2 —(spt’mgs)—l and simtlariy
for k. whan p=K, the function (sf‘t'logshﬂ which controls the one-sided

grawth of the nenlinearity is replaced by (exps””m'”hl

24
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