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Some Variational Aspects of Hydrodynamics
R. E. L. Turner

In these lectures we touch on some existence and stability properties of equations
arising in Auid dynamics in which variational methods play a role. First we look at flows
in which vorticity plays & central role, Next we examine the classical problems of solitary
waves in fluids with a free boundary, Finally, we show how solitary waves for some model
equations can be shown to be stable. The references listed are sparse, but mauy, in turn,
have good bibliographies.

We begin with flows governed by the Euler equations (see [4]):

(1 G +({-V)g=-Vp

or, equivalently,

(@) & = & curlg— V(p + 5d1")

together with

(3) V-§=0

where g is the fluid velocity, and p is the pressure. The vorticity o = curlg satisfies
{4) Wy = curl{§ x &) = (& V) - (§- V.

For the most part we restrict attention to two-dimensional flows. In that case the mo-
mentutn equations can also be written

U+ Ul + Uy = — Py
{(3)

v+ uv; vy = —py

where § = (u,v). The fluid under consideration is assumed to be incompressible 5o that
there is a stream function ¥ for which

av a¥

(6) Friukel "l

Suppose there is un ambicent flow correspondiug to s stream function ¢ and that the total
flow is governed by a stream function ¥ = ¥ + ¢, where ¢ generates an irrotational How
and #, vanishing on the boundary of the flow domain D under consideration, represents the

part of the stream function corresponding to the vorticity. H £ is a vector perpendicular
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to the plane of the flow, then & = wk where the magnitude of the vorticity is w = - %:
and thus

(7) —AYy=w
In this case (J - V)q = 0 and so (4} becomes

{8) wi = (q- V.
which can also be written
v Bw  Ow
(9) E + us; + D—B;' =0
Using the Jacobian derivative notation the flow equation can be expreased as
B  Ow,¥)
10 =+ =0
(o) o " B=,y)

It should be noted that the flow equation {10) can be put in a Hamiltonian form (see
[7].[12]). Let G be the Green's function for the Laplacian in the domain D so that (7)
has the solution ¢ = Gw. Suppose w is & solution of the evolution equation (10) with
¥ = Gw + ¢ and let q = (u(t, z,y), v(t, z,y) denote the corresponding flow field. Consider
u level set Th(t) = {(z,¥} : w(z,y) = a} and suppose it is a closed curve. The curve [',(1)
evolves with time, According to equation (#), w does not change in time along an integral
curve of the vector field (u,v). Thus points on L' (¢t} merely move on integral curves and
since by (3) the field has zero divergence, the area enclosed by I',(t) does noi change
in time. It follows that the associated vorticity functions w(t,z,y) at different times are
merely rearrangements of each other. Let

£ = [ [ 39w+ dP - 1v@r

=j./;[wGw+'ﬁw]

denote the excess kinetic energy of the flow due to the vorticity w. Let ¢ be a test
function in D (smooth in D and vanishing on the boundary 80). Consider ¢ as a trial
stream function generating a divergence free vector field

(11)

" I ¢
i= o b=-g
For a given vorticity w(z,y} and for r in a neighborhood of * = 0 solve the evolution
equation
% 9w, ¢) -
—+=—"+=0 in Dx|[~a,a
& " Hzy) -aal
I:legu =
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The distributions @ corresponding to different trial functions ¢ are rearrungements of w,
that is, 'isovortical’ with w. One finds that

_E(w)], “‘j/ a(Ga“z:“’ HCw . 9) y

Thus the requirement that E be stationary with respect to isovortical variations is the

weak form

o= [ 2t

of the equation (10} for steady solutions. This characterization is due to Arnold (a
refereuce can be found in [13] which we use as a reference for the variational treatment of
vortex mation thet follows). For smooth w and ¥ one verifies that

) [ foayietr = [ [ ¢agages

and so the equation (12) expresses the requirement that w and ¥ = Gu 4y be functioually
related. We seck o solution for which the relation takes the form

(14) w = Af,(Gw + ¥ + constant)

where f, is the derivative of a function f € C?0, 00] with f(0)} = £.(0) =0, f,, > 0 for
$ >0, and ms" < fls) < Ms" forsome 1 <r <oo,0 <m < M < oo, Let f* be the
function conjugate to f so that

f*(a) = sup,[sa - f(s)]

For example, if f(s) = s"fr, then f*(a) = " /r' where 1/r + 1/r' = 1.
Consider the functionals

i) = Bw) - | jD Af* (/)

C(w)s/]uw

The functional & represents the energy modified by a generalized enstrophy integral aud
C is the total circulation. These functionals are invariant under the How. For functionals of

(15)

the form | [ g(w) this follows from the fact that the evolving vorticity is u rearrangement
of the initial one. The invarisnce is uot needed for the existence of statiouary solutions,
but is relevant to stability considerations. Consider
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Problem P: maximize $a{w) subject to w > 0in D and C(w) = 1.

The condition that w be a maximizer gives the variational condition Gw + ¢ —
folwfr)= -1 wherew >0 and Gw + ¢ < p- 1 where w = 0. Thus

(16) Guty—pu=fowf)), w>0
Gu+$—p<0, w=0

The functions f and f*, being conjugate, are related through & = f,(a} and s = f2(c).
Thus the last condition can be expressed as
w/h = fo((Gw + ¥ ~ p)*)

where st = max{s,0}. In a typical application the 'vortex core’ 1 = {(2,y): Gw+¢ > p
is & compact subset of D.
We consider an iterative procedure for constructing 8 maximizer for Problem P. Let

K={wel”(D):05w,Cw)s fj wdzdy = 1}.
D
lterative Procedure: Given an arbitrary w® € K, let
w = Ajl((G“"f“l + '; - ”j)+) €K, j=1,2,.

where 4/ € R is chosen so that C(w/) = 1. Note that one can view each stage of
the iterative procedure s involving two steps: first solve the linear Dirichlet problem
—Ap! = wi~! in D with w~! = 0 on OD and then adjust the real parameter 4/ so that
Cwi) =1.

The procedure also has & variational formulation. The function w? is the maximizer
of the problem

Qa7 ?E“EI_L[&(GM_I-‘-;)_'U‘ (“I’)]

with u/ being the Lagrange multiplier corresponding to C(io) = 1.
The next lemma exhibits a crucial monotonicity property of the iterations. We use
the following 'energy’ norm

lla = { f [ weopst = f [ vy
D [
Lemma 1. The sequence w? defined by the iterative procedure satisfies
%"‘-"" —wHG S @awd) - da(T), J=1,2,.
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Procf. From the definition of &)
oir-visr [ fros-s0-n(3)
P le-sror ()
= [ [ 36 - o6 - win)
+[ @ e n-ar (5)]
- [ f et ro-ar (5]

> 3l — i

The last inequality follows since w’ is the solution of problem (17} and thus gives the
largest value of the integrand in (17).

It foliows thas $(w?) is increasing as j — 0o. Moreover, it is bounded. To see this
first note that estimates for elliptic equations combined with Sobulev inequalities show

HGwhi= < Clwlipe-

[ [oeos [ [urgope

< Cllwllyer.

Since | fpw =1,

Using the growth assumptionon f and v — 1 =r'r~} has

[ L Gzef[26)
=c'r"/'iju".

(18) ®aw) < Cllwlpr = A" w|l5,

So

with 1 < 1" < oo,
Let £ denote the sct of extremals for the maximization problein P and let

distg{w, 1) = 52{] e — Sl

5

Theorem 1.  # ¢ and for any o°, distg(w’,0) = 0 asj — +oo. .

Proof. Since ®,(w’) increases with j, it followa from the bound (18) that |juwi|;~ < Ny
for some Ng depending on the initial w°. Hence there is a subsequence ji so that

wh =Wt Wty

as k — 0o, the half arrow denoting weak convergence in L. The map G is compact and
80 we have the atrong LT convergence

Gui — Gw®, G« Gu™.
The weak and strong convergence together give
lw* — w**llg = lim{{w* —wh™1),Glw —w*~1)) =0.
So w* = w**. The function w* is the solution of

w1950 )

To see this note that for any @ € K
J oo ()
i om0
i frerenr ()
<[P ()

using the fuct that w’* is the maximizer when G is applied to w/*~! and the fact that f*
is convex. The limit w* € K so it is & maximizer.

Finally, it is not possible for any subsequence wi of w' to satisfy distg(w?,§1) > 6 >0
for we huve seen that a further subsequence will converge in the G norm to a maximizer.
Hence distg{w?,{t) — 0 a8 j — o0,

Theorem 2. If the set of extremals 3° arising from a single initial point w° contains an
isolated pomnt w®, Then |lw! —w*]joc — 0 a5 j — 0.

Proof. Suppose w* € 1° is isolated and let Ny, N; be disjoint neighborhoods of {w*} and
0"\ {w"}. We have secn that for all large j, w¥ € Ny UNz. Suppose distg(N;, N;) = 6 > 0.
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Fur some jo, flw? —w? ¢ < 8/2 for 7 2 ju and so there can be uo limit point in Ny
Varianls:
1) Te obtain & vorticity function w = Axg, where xq is the characteristic of a sct, vue
can pose the problem
maxinize E{w} subject to 0 € w < A, Clw) = 1.
2)Suppose 1 = y{r,y) with Ay = 0 is fixed and define a generalized iupulse

I(u)=j/unw

maximize ¢, subject tow 2 0in D, Clw) =1, H{w) =m
leads to two Lugrange wullipiers g and ¢ and

Then the problemn

w = Af{(Gw —cn —p)*)

results, so the effective ambicnt flow is giveu by ¢ = —en.

3)Analogous formulations are available for axisymmetric flows in three dilensions,

A clusy of problenis which hus much in common with steady Hows with vorticity
are those involving waves which progress without change of shape in Huids with constant
density and a free upper surface or in fluids with density stratification. Further details
about the physical problen may be found in (2),{3], and {8]. These problems are Ly pically
posed in coordinates based in & moving wave so that the flow becomes steady. The result
is & nonlinear elliptic equation or an integral equation, with an cigeuvalue parameter,
the parameter being related Lo the speed of the wave. Existence theories using methods
of global bifurcation have proven very cffective in treating these waves and allow one to
obtain results on lmiting configurations as a bifureation parameter or a wave amplitude
approaches infinity (see [2],{8]). The existence theory using variational methods is not
as precise and is less sutisfuctory than that for vortex flows. In part this is due to the
presence of unbounded dowains, entailing noncompactuess, but is slso a rebection of Lhe
difficulty of fiuding function spaces in which the attendant functionals are tructable, There
are several different varistionnl schemes ( for example [6],[10]} that formally give solutions
to the steady equations of motion for the clussical surfuce wave, soiie of them having
the desirable feature of involving invariant functionals, but they do not seem to be easily
suited to use in rigorous existence proofs. One can base any existence proof roughly on
maxinizing potential energy .bject to kinetic energy remaining fixed, but as we shall see,
this program uses jnteriediate truncations and results in waves of limited aplitude.

Consider first a fluid of constant density p which occupies a ow duwain

S={{z,y):z€R0<y < ¥(2)}

7

where Y, or equivalently the 'Ruid-air’ interface
F={{(z,Y(z)): z € R},

15 1 unknown to be determined as part of an eventual solution. The flow, still being
assunied incompressible, is governed by a stream function as in {6). Moreover, in the case
of constant density, it is assumed irrotational so that Ay = 0 in the region S. On T one
assunles Y = constant, so that I' ie a streamline and further assumes

1
(19) 51V¥[" + pgy = constant,

where g > 014 the gravitational constant and p is the density. The last condition is merely
the requirement that the pressure at the upper surface be equal to atmospheric pressure,
assumed constant. We assume that the fluid region has a limiting height as |zj — oo and
tuke this to be the unit of length so that ¥ (z) — 1 as |z| — 00. A poesible flow has velocity
§ = (c,0) where ¢ is an arbitrary real number, the velocity corresponding to the stream
function ¥(y) = cp. Such a flow is called trivial. A steady vector field § = (u,v) which
approaches (¢, 0) as |z| — oo will, in 'laboratory’ coordinates yield a traveling wave which
progresses to the left with speed ¢ without changing form. Typically problema involving
free boundaries are analylically difficult and one may seek an alternate formulation. In
this case and for the more general problem of waves in noadiffusive, stratified fluids an
alternate formulation obviates the need to confront an unknown boundary.

We ghall consider only flows for which no reversal occurs; that is, u > 0, or, equiva-
lently, ¥, > 0. For such flows one can solve for y as a function of the spatial variable z
and the material coordinate . The advantage of this semi-Lagrangian formulation is that
the unknown interface function Y is now y(z,v) evaluated at ¥ = constant. The disad-
vantage is that Laplace’s equation Ay = 0 is replaced by a singular, quasi-linear equation
for y(z,¢). Let ¥Y(y) = ¢/c denote the function inverse to ¥ = cy. A final change of
varinbles is performed: let 5 = Y(), and

(20) w(z,n) = y(z,%(n)) —n

80 that w represents the deviation of the streamline height y(z, %) from its value Y(¢)in
& trivial flow. For ease of notation, we subsequently write z for z, and n for z;.
To describe the problem in the new coordinatea we define

We w! - va'3
l+w 14wy 2014wy’
The problem becomes the following: find an eigenvalue A = % and a function w(z,y),
continuous in £ = R x [-1, 0}, satisfying

(21) Hi(Vw) =

snd  f3(Vuw) =

22) 52 (AT + 2 (A(Vw)) =0 ia 9,



(23) filVw)-Aw=0 on =0,

wiz,-1)=0, zeR.

(24)
w(z,n) —0, |r| » o

Note that the linearization of {22)-(24) about w = 0, omitting the the vanishing of w us
|z| -+ oo, bas a solution w{z,n) = p with A = 1 corresponding to & speed ¢ = /7 (Vgh if
the limmiting fluid height at oo is h). This is the classical speed of infinitesimal long waves.
The following result (from [15]) is stated both for waves of finite period k and for period
k = oo, the latter case being understood to be a limiting case providing a solitary wave.
Let ) denote the rectangle -k, k] x (—1,0).

Theorem 3. There is a positive constant R and positive k(R) such that for0 < R < R
and k(R) < k < oo the problem (22)(23) has a salution {A,w) in R x C*(Q) satisfying

1) the speed ¢ = fg/X is supercritical: ¢ > fg(1 - C,RY/3)1/2,

2) w has period 2k in x

3) f° JE )L = 2

Lhw(z,n) > 0 and wi—z,5) = wlz,n) in 11,

Jw(z, ')lks Cezp{-P|z|, and |Vw(z,n)| < Cexp(—p|z| in S for constants C,  indepen-
dent of k.

The proof follows fromn several propositions, given below. Formally, a critical point of

Fw)= [ fvw),

where

1pi+pd

214py’

satisfies the equation (22) in T. To incorporate the Bernoulli pressure condition at the
fluid-air interface we incorporate a term reflecting the drop in density across the interface

from & positive value p to zero in the air. The general equations for a heterogeneous fluid
have a term A(dp/dn)w on the right side of (22). (see [3]). Let

A , 0<np<l
p(n)={3‘ ,,___'1' '

.f(Pth) B

Thus for a constant density of size p in the fluid we are led to a functional

corresponding to a Dirac measure on the upper boundary. Now, furially
3“PFlw)=con|lB(w)
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leads to a Lagrange multiplier A and function w satisfying the equations (22),(23). How-
ever, I is nnbounded on level sets of F. Note that f(p),p;), apart from being singular
at p; = —1, has only linear growth in p; at co. To improve the behavior of the 'kinetic
encrgy’ we use a truncation. Let {(2} be a smooth, decreasing cutoff function, equal to 1
for 0 <t <1 and equal to zero for i > 2. We replace f in the functional F by

) e At
(npm) = C"2(1 - agn(n)in)

pi+5d

+(1'(r) 2

whete ¢ = ¢(p} + p}/r?). For small positive r the function a is globally convex in (py,p3),
quadratic near 0o, and coincides with f for p} + p < r%. Let r(n) be a smooth, non-
increasing, function on (~o0,0) which is zero for n < —1 and satisfies 7(0) = —1. Let

Adn) = p(1 + 7(n/e))
so that g(n) = lim,_0p.(n} Extend the constant function p{n) = pto 0 < < 1 as an even
function and extend j.(n) ss an odd function. Now let £, = (~&, k) x {(—1,1) and define

the functionals
Aw)s [ an,vw)
11

and
Blw) = jn (—d%,ﬁ.)‘”?

Let HE(Q2) denote the space of functions in the Sobolev space H'! which vanish on n =0,

are even in z, and have period 2k in z. Let HE({1) denote similarly defined functions which
are even in 1 as well.

Proposition 1. For each k > 0 and R > 0 the problem
Al(w) = AB'(w)

has & solution (A, w) sstisfying A > 0, w € HE()), A(w) = 2R?, and w > 0 in ). the
function w is characterized by

B(w) = sup weug B(vt)
Alw)=In?
where vt = max{0,v}.

Proof. Reverting to £ = z;,7 = 72 and using the summation convention one sees that a
standard variational procedure leads to a w with A{w) = 2R? satisfying

M($) = jﬁ patn, Vi) 2k 4 (s ut =0

for u suitable A > 0 and all ¢ € H{(Q1) where a; denotes the partial derivative with resepet
Lo p;. One finds 01{12, —p],m) = —a;(zg,pl,pg) and a|(—.‘l.‘3,"~p|,"-p1) = d|(=1,p|, )
wlile ag has the opposite parity. Thus M annihilates all test functions which are odd in
Iy or in 3 or in both and so is zero on all test functions. The weak maximum principle
shows w > 0,

One can use elliptic estimates to bound the gradient of w in L in terma of L? integrals
of the gradient, uniforinly in £ and so pass to a limit as ¢ — 0 to obtain

10



Proposition 2. For eich k > 0 and R > 0 the problein
Al(w) = AB'(w)

Las a solution (A, w) satisfying A > 0, w € HE{Q)NCHQ) N CVed), A(w) = R*, w > 0,
and w(—x,n) = w(x,n) in . The function w is an extremal for by

& v
(25) B(w) = sup .eu; j p-fdu:
~k

A{vjmp?

and for any bounded subset 4y = [a,8) x [~1,0] of §2
(26) iwiga < c/ [Vw|?
115

where 2 = [a - 1,0+ 1] x [—1,0] of §2.

The estimate (26) ensbles one to restrict the ‘energy’ R so that Alw) = Fl{w).
Moreover, oue can, as with a Dirichlet integral, replace w by its symmetric, decreasing
rearrangement w and still have an extremal.

Propaosition 3. There is an Ry > 0 such that for each k > 0 and0 < R < Ry the problem
F'(w) = AB'(w)

has a solution (A, w) satisfying A > 0, w € H{(Q) N CHR) N C1o(), Flw) = B2, w > 0,
snd w(—z,y} = wlz,y} in 2. Moreover, w =15 (it is nonincreasing in x on 0 < ¢ < k and
satisfies (26).

Proof. For a suitable Ry > 0 the inequality (26) guarantees that for R < Ry, w? twh < r?
so that Flw) = A(w) and F{w) = A{w) so that w solves F{w) = AB{w). If w,,
n = 1,2,3,.. is & maximizing sequence for (25) satisfying |w — Wn|wiw < 1/n, then
Flw,) = A{w,) for large n and one can, after a slight renormalisation, use a result on
syminetrizuation (see [14]) to conclude that, without loss of generality, w,, can be replaced by
its symmetrisation t,, and still yield a maximising sequence. Thus the solution of Afw) =
AB'(w) can be assumcd symmetrized and as (26) holds, the solution of Fl{w) = AB'(w),
us well. The strict positivity of w on 2, follows from the strong maximwn pronciple. On
the boundary where 5 = 0 we know w is nonincreasing in x 30 it suffices to establish that
w(0,k) > 0. On the top boundary

SVwys M _1_Vw

1+w, 2(1+w,)7 = Aw.

By evenness aud periodicity w,(0,k) = 0. If w(0,k) = 0, then since f 15 stricuy convex
in its varisbles (for pp > 0), wy = 0 would follow snd this would aguin violate the strong
maximum principle.

To establish the remaining assertions of the main theorem one first uses a trial function
in the variational principle to show that the Lagrange multiplicr A satisfies A < Vol —
CRV¥), With this one can show that [wlLe 2 C'RY? | both of these inequalities being
independent of k. The fact Lthat the parsiucter A is below the lowust puiut of the spectrum

11

of the equation lineazized aboul w = 0 allows one to use the exponential decay inherent in
the corresponding Green’s function to obtain exponential decay for the nonlinear problem.
The decay estimates, as well, are independent of k so that by taking limits as £ — oo one
obtains the results for solitary waves. The regularity up to the boundary where n = 0
follows from results of Lewy {11] (see also [2] where a bootstrap technique is used in a

similar situation).

While there are many existence results for traveling wave solutions of the equations for
imcompressible, inviscid lows, a complementary stability theory is still in its i ancy. Here
we will show how stability properties of traveling waves relate to the variational structure
of equations from hydrodynamics. We shall examine equations generalizing the Korteveg-
deVrie:d type. [Ft]:r variational treatment of stability d'egulnr and related equations we refer
the reader to [1}.

Consider an evolution equation of the form
(27) U+ ug — Mu, + f{u),

where subscripta denote partial differentiation, u(z, ) is & real function of the real variables
z and ¢, M is & constant coefficient pseudodifferential operator oiorder_;_a_"-‘_’ l,and fina
siooth function. More precisely, letting ~ denote the Fourier transofrm, Mu(¢) = JE1*G(€).
Further f(0) = (0} = 0, and, in ca?ed B=1,|f(s)l < O(|s|*) aa |s| — oo for some p < 0.

Such models arise in various areas of m physics. A classical example is that

derived by Korteveg and deVries:

Ug+tie + Uggs + (u?)y = 0.
For the discussion of stability we require an existence result for the equation (27) with
initial dats u(z,0) = ug(z). (cf. [9])

Theorem. Let s > } and f € C*+1, For each ug € H*(R), there is & unique solution
u € C([0,4,); H*) of (1) with u(-,0) = uy. Either t, = 00 or ||uljyess — 0o a8 ¢ — £,.

Here solution is understood in the weak sense though for » > 4 + 3 it is classical. In

the existence theorem one also establishes the time invariance of certain functionals along
solution orbita. The functionals are:

E(g) = j“ {'21'9“9 - %9’ - F(y)} dz

(28) V=3 [ ods

—g

I(s)=/m gdx

where F' = f and F(0) = 0. Formally the invariance of E follows from
a oD
L) = / [Mg - g - f(g)lgs

= [ Ma-5~ FDIE -0+ Mg + 161

_: %%[My -9~ fg)?

it

12



The functionals V and I are treated similarly.
Thie search for a solution of the evolution equation (1) in the form U(x,t} = ¢(x — ct)
leads to the equation

d d d d
(29) —CE¢~EM¢+ E¢+ d-;f(é)=0

in one variable. In the case of KdV it is an ordinary differential equation and one finds
a solution ${x} = 3/2(c — 1)sech®{1/2(c - l)”";g:r + a]} for ¢ > 1 any real . Assuming ¢
and M¢ decay to zero as [z| — oo in the general case the last equation implies

(30) Mé+c— - f(¢)=0.

Let {-,-} denote the L? inner product as well as its extension to a pairing between X =
Hi#(R) and X* = H-4#(R). As a mapping from X to R, V is smooth, V'(x) = x and
V*(v) = identity, primes denoting Frechet derivatives. With the growth conditions on f
one shows E'(u} € X*, E"(u) exists, and

E'u) = Mu—u— f{u), E"u)=M —1- f(u).
Hence the equation (30) satisfied by the solution ¢ may be expreased ay

(a1) E'($) +cV'(9) =0

which characterizes ¢ as a stationary point of E subject to V' being constant. We shall
often write ¢, to denote a solution of (30) corresponding to a particular value of c. Among
our hypotheses is:

H, : There is an inteval (c;,e;) with 1 € ¢; € ¢3 < 0o such that for every ¢ € (), ¢32)
there exists a solution ¢, of (30). The curve ¢ — ¢, is C! into H'*+#(R), $.(z) > 0,
¢ € H3*H(R), and (1 + |2|)!/2 4= € LY(R).

An important object is the linearization £, = £ of E' + cV' around ¢,:
Lo=C=Md4c=1-f(¢)=E"(¢) + cV"(¢)

Regarding £, we assume

H; : The operator £, has a unique negative, simple eigenvalue with eigenfunction x.. The
zero eigenvalue (with eigenfunction %tﬁ) is simple and all the rest of the spectrum of €
is positive and bounded awuy from zero. Further ¢ — . is eontinuous into H'+5(R),

It is shown in [4] that H; holds for KdV; see the references in (9] for the general
equation (272. The main result, under the aforementioned hypotheses, 1s that ¢, is stable

if and only i
’ dic) = E($e) + cV(4)

ig convex in ¢. We concentrate on the stability and begin with a discussion of the notion
of stabilily. One can sece that a definition of stability must be tailored to the particular
situation at hand for, in general if & is close to ¢, and thus ¢.(z) close to @a(x) at ¢ = 0,
the two orbits will not remsain close, for the waves travel at different specds,
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Let (r.fHx} = f(z + 3) denote the translation by s of & function on the real line,
Detine the pseudometric

dist(u,w) = i:}f [lu — raw|lx

and, for € > 0 the ‘tube’
U = {u € X : dist{u,¢;) < ¢}

consisting of funciions ‘near’ some translate of ¢..

Definition: ¢. is stable ¢ Ve > 0, 3§ > 0 such that if ug € Us, then u(-,t} € U, for all
t > 0.

We are thus using a notion of ‘orbital stability’,
Lemma 2. Supposed'(c) > 0. Ify € X is orthogonal to both ¢ and %5 Then (Ly,y} > 0.
Proof. Since B'(¢.) +cV'($}) =0

dé.

d'(e) = (E'(¢c) + V'(9e) -

=vea=; [ #

Y+ Vide)

and so

d
0 < d'{(c) = (¢, E¢c)
d d
= "‘53245:: £¢c>;
the equation C% = —¢. being obtained by differerentiating (30). Write

d¢ d¢
'a:—-aax+bodz+m

where pg is in the positive subspace of £. Then

d d
0 < —{L{aox + 503% + po)raox + bo;% + pa)
= —aj(—A?) — {Cpo, pv)

where —A? is the negative eigenvalue of £. Thus
{Lpo, pa} < a3 A,
Since y is orthogonal to %f, y = ax + p with p in the positive subaspace of L. Further
0= ~(h,9) = (E52,1) = ~a0aN? + (Cpu. )
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unplics that .
(Cy, ) = —a*2? + {Lp,p)
Z —a' X+ {Lp, )"/ (Lpo, pu)
(apaA?)?

232
> AT+ aiA?

=0.
Using the implicit function theorem oue shows

Letuna 3. There exists € > 0 and & unigue C' map a : U, = R such that for every
uel, andre R

(i) (u(- + a(u)), §2) = 0.
(it) eu(- +r)) = a(u) —r.

Lemnma 4. Suppose d'(c) > 0. Then there sre constants C > 0 and ¢ > O such that
E(u) - B(¢) 2 Cllu(- + a(w)) = $ll}urs

for all v € U, which satisfy V(u) = V(¢).

Proof. Write ul: + a{u)}) = (1 + a)p +y when (y,9) = 0 und a is a scalar. Since V is
translation invariant

V($) = V(u) = V(us(- + a(u)))

=V($)+ (v} + %Ilvllia

whore v = u(- + a(u)) — ¢ = a¢ +y. Siuce ($,0) = a||$fj3,, a= O(f{v]|2.). Hereafter let
[l dencte the norm in X. Using £ = E + ¢V as & functional on X = H*(R) another
expansion yiclds

L{u) = L(u(: + alu)))= L¢ + %(Cu, v) +of|v])?)

since the linear term in v is (E' 4+ ¢V, v} = 0. Since V(v) = V(¢)

E(w) - B(9) = 3(£0,) + ol o))

(Lo, v} = (Lly + ad),y + ag)
= (Ly, ) + 2{L(y + ad), ad) — (L{ag), ad)
= (Ly,y) + Olallv|x) + O(a®)
= {Ly,4) + oAJlvlix }
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Since y is orthogonal to ¢ and “—'s. by Lemma 2
E(u) - E(¢) 2 2C[Iu[1® + o{livlf*)
aud siuce ||yl = v — a¢|| = vl — O({|v||*) one obtains
E(u) - E(¢) 2 Cljlf*.

Theorem 8. Suppose d(¢) > 0. Then ¢, is stable.
Proof. Given € > 0, let ul € X be any sequence such that

dist{u;,$) ~0 as n-—co

and let uy, be the solution of the evolution equation with initial data u. If ¢ is not atable
then for each n there is a time i, auch that

(32) dist(ua(:,ta)s #) = 3.

Since E and V are countinuous on X and translation invariant
E(“n(':tn)) = E(":) - E(¢)| V(uu("‘n) = V("?.} d V(¢)

as . ~+ 00. Next chocse w, € U, so that V(w,) = V(4) and [lwn ~ ual:ta)l] — 0 ns
n — ooc. By the previous lemma

O « E(wa) — E($) 2 Cllwa(- + a{wa)) - ¢|*
= Cliwa — 4(- ~ a(wa))|?

and so |lun(-,¢n) ~ ¢(- — a(w,.))P — 0. This contradicts (32), showing that ¢ is stable.
The solution of (30} with f{u) = u” can be written

#e(z) = (¢ — 1) Vu((c - 1)1 /uz)

where v solves

Muv+{c—1ju=v"=0.

In [9] it is shown that
d(c) = %”(c _ 1)2/(?"1)-0-!—1/1'(“”‘ v)

fromn which one obtains
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Theorem 6. For f{u) = u? the solitary wave solution of (27) is stable if 1 <p < 2u+ 1.
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