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Periodic Solutions of Some Problems of 3-Body Type

by Abbas Bahri and Paul H. Rabinowitz

§1. Introduction
The study of time periodic solutions of the n-body problem is a classical one. See e.g
[1]. The purpose of this paper is to sketch some of our recent research on the existence of
time periodic solutions of Hamiltonian systems of 3-body type [2]. This work presents a

new direct variational approach to the problem.

To describe it more fully, consider the Hamiltonian system of ordinary differential

equations
(HS) m,-é‘.-+Vq,.(t,q)=0, 1<:<3
In (HS),qi € R% 1<:i<3, £>3, m; >0, where F3(RY) is the configuration space

(1.1) B(RY ={(q1,q2,05) € RY® | qi £ g5 if i #j).

Furthermore V is T-periodic in ¢.

We are interested in T-periodic solutions of (HS). It is assumed that V is an interaction

potential: _ .
L=,

3 —

(1.2) V=) Vilei —q;)

\',j=.1
L]

Each function Vj;, 1 <i# j < 3, satisfies

(V1) Vij € C}(R x (R*\{0}),R) and is T-periodic in £,
(V2) Vij(t,q) <Oforallt€[0,T)], g€ R\{0},
(Va) Vij(t,q), el (t,q) — 0 as |¢| — co uniformly int, 1<k < 3,
(Vi) Vi;(t,¢q) — —oo as ¢ — 0, uniformly in ¢,
(Vs) for all M > 0, there is an R > 0 such that
Vi
9q

6V="|
Jq

> M|

whenever |¢| > R,



(V) thereis a neighborhood, W, of 0 in Rf and U;; € C1(W\{0}, R) such that U;;(g) — oo
as ¢ — 0 and —V;;(q) 2 |U;(q)f? for ¢ € W\{0}.

Condition (V1) — (V5) are satisfiec in particular by potentials of the form

(1.3) Z

€, 5=1
i)

lgi — qgiﬂ”

where a;; and §;; are positive constants. Hypothesis {Vg) is also satisfied by V in (1.3)
if Bi; > 2 for each ¢,j. The classical 3-body problem corresponds to the case in which
Bi; = 1, for all 1# j and aij = aji. The significance of {V5) will be discussed below.

To formulate (HS) as a variaticnal problem, let E = Wi?(R,(R¢)3), the Hilbert

space of T-periodic functions from R into (Rf)® with norm:

T 1/2
(1.4) uw=(£|W&{mﬂ

where

T
(1) =7 e

The functional associated with (HS) is

T13
(1) o= [ GZ}MNLJWMOﬁ

Set
(1.7) A={qe E|q(t)e F3(RY forall te[0,T]}).

It is not difficult to prove that

Lemma 1.8: If V satisfies (V1), (V2),(Vs), and (V5 ), then for each ¢ > 0, thereis a é(c) > 0
such that if I{g) < c, then

nf e - 4,0 2 6)

See e.g. [2] or [3]. An immediate consequence of Lemma 1.8 is the variational problem can
be posed on A rather than E. Moreover it is easy to verify that if ¢ € A and I'(g) = 0,
then ¢ is a classical T-periodic solution of (HS). |

Our main result is:



Theorem 1.9. If V satisfies (V}) — (Vg), then I possesses an unbounded sequence of
critical values.

If condition (V) is dropped, it is possible that g € E with I(g) < oo but ¢;(t) = g;(¢)
for some ¢ # j and ¢ € [0,T), i.e. a collision occurs at time ¢. Thus without (V) it is
possible that collisions can occur for periodic solutions of (HS). Since a collision orbit
cannot be a classical solution of (HS) , following [4], we say ¢ € E is a generalized T-

periodic solution of

((i) D={te0,T]|q(t) € Fx(R®)} has measure 0.
(i) g€ C? and satisfies (HS) in [0, T]\D.
(1.10) J (i) — [ V(t,q(t))dt < oo.
(iv) IfV is independent oft,1 320, |G:(t)* + V(g(2)) =

constant fort € [0,T|\D, i.e. energy is conserved
3 on the set on which it 1s defined.

Remark 1.11. Conditions (1.10) (i)-(iv) are not mutually exclusive but we prefer to define
generalized T-periodic solution in this way since it is these conditions that one verifies in

applications.

Given Theorem 1.9, using an approzimation argument from [{], it is not difficult to

show:

Theorem 1.12. IfV satisfies (V1) — (Vs), then (HS) possesses a generalized T-periodic

solution.

Corollary 1.13. If in addition, V is independent of t and V'(q) # 0 for all ¢ € (RY),
(HS) has infinitely many distinct T-periodic solutions.

In the next two sections, we will discuss some of the preliminaries that go into the
proof of Theorem 1.9. Then in §4, the proof of Theorem 1.9 itself will be skeiched. Finally
in 839, a few remarks will be made about the proofs of Theorem 1.12 and Corollary 1.18.

§2. The breakdown of (PS) and a Morse Lemma for neighborhoods of infinity.

A standard condition used in the study of variational problems 1s the Palais-Smale

condition or (PS) for short. It says any sequence (¢*) satisfying

(2.1) I(¢*) is bounded and I'(¢¥) — 0
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s precompact. Unfortunately (PS) does not hold for (1.6). However the behavior of

(PS) sequences can be characterized precisely.

Proposition 2.2. Suppose V satisfies (V1) — (Vi) and (V5). Let (g*) satisfy (2.1). Then
the follounng alternative holds: Either

(1) there ezists a subsequence, still denoted by (g*), and a sequence (vi) C R such that
(gF — vi) converges in Wi (R, RY) for i =1,2,3, or

(i) there exists a subsequence, still denoted by (¢*), a sequence (vi) C RY, and i € {1,2,3}
such that
a. {[gF —vi]] — oo and ||¢F||z: — 0 as k — o0, and
b if 5 #re{1,2,3)\{z}, (¢F —vi,qFf —vi) converges in WA (R, RE)?) to a classical
solution of the two-body problem associated with the potential Vi + Vi;.

Moreover if
T/
(2.3) Iir(gj,qr) = / (‘z'(mjl%'lz + mr|qr|2) —Vir(t, g5 — gqr)
0
- VT'J'(t, 4r — ‘ﬁ)) dt,

then Ijr(qf, %) — e
Proposition 2.2 tells us that if ¢ (PS) sequence is not precompact in the usual sense,
it has o subsequence which converges to a “two-body solution at infinity”. We further note

that one can take v = slak + ¢f).

One major new idea in our work is to use a “Morse Lemma” in a neighborhood of a

sequence of type (it) in Proposition 2.2.

Proposition 2.4. Let V satisfy (Vi) — (Vs). Then
(1) for all C > 0, there ezists an o(C) > 0 such that if g = (q1,92,93) € A satisfies

4
@) Dl —v(@)llee < C,

1=1
and
1

T+ g —o@F = ©

A | )
(22) 5”’«%”%”%2 + (C)

for some v = v(q) € RY, then there is a unigue M(q) > 0, continuousl y differentiable in g,
and satisfying

1
1+1[Qs — (g1 + g)]?

1 /T
I(Q)=Ilz(f11,€:'2)+§f ms|Qs[*dt +
0

5



where

@ = 5l + ) + 57500 = [) + M@las — (a1 + )]

(2) Conversely for all C > 0, there exists a(C) > 0 such that if (¢1,42,Q3) € A

satisfies

2
(@) Yl —v(@)llz= < C,
=1

and
1

14 (@5 — (a1 + @2)]J?

for some v = v(q) € RE, then there is a unique u(q1,¢2, Q1) > 0, continuously differentiable

() 5mslQslll + <& ()

in its argument, and satisfying

1 /T
Hgs g 00) =Tualan,a2) + 5 | malQslat
0

1

TG — N T )P

where

s = 3la1 + @] + (a1, 42, @5)(@s ~ [Qs))

1 1
+ —bp(Q1,Q2,Q3)[Q3 - 5(91 + ¢2)]-

(8) If o(C) = a&(C) is sufficiently small, then A(q1,q92,93)p(q1,42,Q3) = 1 and the
transformations defined in I and 2 are inverse diffeomorphisms.

In Proposition 2.4, we could replace 3[q1 + qz] by any convez combination of [gi]
and [g2). In particular we could have taken the center of mass Tﬂfﬂ% If we do
s0, the representation provided by Proposition 2.4 has the physical interpretation that the
interaction of the motion of the body g3 with the two other bodies can be replaced by the
motion of a new body Q3 which interacts (at the level of mean values) only with the center
of mass of the other bodies. Proposition 2.4 allows us to represent I in a simple fashion
in a neighborhood of a sequence violating the (PS) condition, i.e. near a “critica I point
at infinity”. In this sense we have ¢ Morse Lemma for neighborhoods of critical points at
infinity. ‘

One final technical result will be given in this section. Let
(2.5) I'={¢eAfI{g) < c}.

6



Proposition 2.8. Let V satisfy (V1) — (Vs). Then there is an g > 0 such that for all
¢ € (0,e0), retract), X C RE In particular the singular homology of I¢ (with rational

coefficients) vanishes in all dimensions > £.

§3. An abstract theorem in Morse Theory.

The proof of Theorem 1.9 involves tn part the construction of ¢ certain deformation
retraction. In this section, o finite dimensional version of this result will be stated. In the
next section, the extensions needed for the proof of Theorem 1.9 will be discussed. More
details can be found in [2] and [5].

Let M be a compact n-dimensional Riemannian manifold and let f € C*(M,R).
Assume all of the critical points of f are nondegenerate. Let Z denote a pseudogradient

vector field for f, i.e. Z 1s a locally Lipschitz continuous vector field on M and

(3.1) (f'(2), 2(2)) = |f'(2)?
and
(3.2) 1Z(2)| < 7|f'(z)]

for all x € M where v > 0 13 a constant. Further assume the critical poinis of f are

nondegenerate zeroes of Z. Consider the ordinary differential equation

(3.3) L I

Let p(s,y) denote the solution of (3.5). Suppose Z(zg) = 0. Set
(3.4) Wylzo)={z e M | p(s,2) = x¢g as s— —o0},

i.e. Wy(zo) i3 the unstable manifold for the flow (3.3) which emanates from xy. Leta < b

be noncritical values of f and

fe={ze M| f(z) < c}.

Let
Co={zeM|fl(z)=0 and a< f(z)<b).

Then we have



Theorem 3.5. Let Z; be a peudogradient vector field for f. Then in any C? neighborhood
of Zy, there exists a pseudogradient vector field Z for f such that f° retracts by deformation
onto
ful U W)
TEC!

IfCt 1s a single point, then Theorem 8.5 is a classical deformation result. See e.g. [6,
p.156-160]. There are many eztensions of Theorem 3.5, especially in an infinite dimen-
sional space. The theorem can also be formulated in different ways. We refer to Bahri [5]
for such extensions, alternate formuletions, and applications. We note that Theorem 8.5
can not be generalized as such to situations where (PS) fails. In the nezt section we will

discuss how to extend Theorem 3.5 s0 as to apply to the functional (1.6).

§4. The construction of a pseudogradient vector field for I and a sketch of the
proof of Theorem 1.9.

Let Cy be a constant and 8 € C(RY,R*). Let Vi denote the set of (q1.92,93) € A
satisfying

and

o 1 . 1
(1) smalldsll}e + (C1)-

<B
2 1+ lgs = 3{(aq1 + @)]|?
The sets V1,V, are defined in a stmilar way vie a permutation of indices. If 8 i3 sufficiently
small, Proposition 2.4 is valid on V3 (resp. Vi,V,) and one can therefore use, as in
the classical situation in Morse Theory [6], the new coordinates (g1,q2,Q3) to define a
pseudogradient vector field Z for I on Vs. Then Z, similarly defined on Vi, V, can be
extended to A by taking convez linear combinations of I' and Z.

We will give an idea for the construction of Z on Vi. A detailed proof can be found
in [2]. Suppose we have a pseudogradient vector field Z,5 for I1z. To simplify our presen-
tation, assume that the critical points of I,2 and I are nondegenerate. (This, of course, 1s
not the case due to the translational symmetry possessed by I;; and I.) Let (q;,q,) be @
eritical point of Iy and therefore a zero of Z15. Let Wy,(gy,q;) be the unstable manifold
assoctated with (q,,q,) for the differential equation

d
(4.2) 35(91,92) = —Z12(q1,92).

Now we define Z in the coordinates (q1,q2, Qs — [Qs), [Qs — a1 + q2]) via

(43) 2= 5(g)

8



if and only if
£(q1,9) = —Z12(q91, %)
(4.4) £(Q3 —[Q3]) = —(Qs - [@5))

%[Qs — %(91 +¢2)} =0.

Using Proposition 2.4, it is easy to verify that Z is o pseudogradient vector field for I on
Vi. The solution ¢(s,q) of (4.3) compactifies the “critical points at infinity” in the sense
of [7], i.e. the decreasing (with respect to I as s — +o00) orbits of theyflow (F=) that are
not compact. In doing so, we introduce new equilibrium points for Z which are distinct
from the critical points. This prevents Theorem 3.5 from being exiended directly to (4.3).
It is necessary to take into account the “unsiable manifolds of critical points at infinity”.

By doing so, one can prove a version of Theorem 8.5 for the current situation. Let

C2={qgeA|I'(¢)=0 and a<I(g)<b}, cr
Ch1,7) ={(3@:,9;) | Ii;(@:,T;) =0 and  a < L;(5;, ;) < b},

b= |J Wule), and Di(eo)=]) | W@y
geCt 73 (4.4, )ECH(LT)

Here W°(g;,T;) denotes the unstable manifolds of critical poinis at infinity.

Theorem 4.5. Let a < b be noncritical values of I. Then I® retracts by deformation on
I UDt UDk (o)

and W*(g;,§;) is a trivializable fiber over Wy(q;,q;), the fiber having the homotopy type
of a sphere S¢71.

With the aid of Theorem 4.5, the proof of Theorem 1.9 can now be sketched. To
simplify matters, assume that I has no critical points. Then, for any b > a = ¢ > 0,
C? = ¢ s0 by Theorem 4.5,

(4.6) I’ ~ I U DYoo)

where o denotes retraction by deformation. The proof continues vie three steps.

Step 1. Since A= U I* and (4.6) holds for all b > ¢, it can be shown that
beR+ '

(4.7) A ~ I UD>(c0)

9



where ~ denotes homotopy equivalence.

Step 2. Let
Bi; = U W (4:,3;);
(9:.9; YECE(4,5)
BY = U W (@, 7;)
(E,,‘ﬁ,)ec’p(:,;)
and
B> = Bg.
1#]

An improved version of Theorem 4.5 [2] says that B fibers over Bij, the fiber being
trivializable and having the homotopy type of a sphere St—1. Set

(4.8) Aij = {(gi qj) € WF(R,(RO?) | qi(t) # ¢;(t) for all te[0,T)}.

It is not difficult to check that I;; satisfies (PS) on Ay; up to translations, i.e. if Ij;
18 bounded and I;; — 0 along the sequence (¢, q[), then there is a sequence (v,,) C RY
such that (¢7 — Um,q]" — Um) possesses a convergent subsequence. Therefore an infinite

dimensional version of Theorem 3.5 [4], and an argument related to (4.7), yields

(4.9) A,‘j r~ Ifj UB,'J'.

Step 3. By Proposition 2.6, the rational homology of I¢ vanishes in dimension > /.
Applying the Mayer- Vietoris sequence to the excisive triad (A, I, B>) shows that

(4.10) Hi(A) = Hy(B®) for k> ¢
Simalarly
(4.11) Hy(Ai;) = H(Bi;) for k2> L.

Moreover, from the fibration of BSY over Bjj, one deduces that
(4.12) Hk(B?;) = Hi(Bi;) ® Hywt4:1(Bij) for k> L
Combining (4.10)-(4.12) yields:

(4.13) Hi(A) = @D Hi(Aij) ® Hy—enr(Aij) for k> ¢
1#£]

10



Let oy be the dimension of Hi(A) and Bi the dimension of Hi(Ai;). Then by (4.13)
(414) G = 3(ﬁk - ﬂk-.f.H) fOT‘ k 2 L.

However A;; has the homotopy type of the free loop space on St — see [2] — and therefore
Bk is bounded independently of k [8]. On the other hand, by a Theoerem of Sullivan and
Vigué-Poirrier [8], the sequence (ax) i3 unbounded. This contradiction shows that I has

ot least one positive critical value.

A more complicated variant of this argument given in [2] which takes D into account
proves that I, in fact, has an unbounded sequence of critical values.

§5. The proof of Theorem 1.12 and Corollary 1.13.

We will give a brief sketch of the ideas tnvolved in getting Theorem 1.12 from Theorem
1.9. First for all & > 0, the potentials Vi; are approzimated by V“j which satisfy (V1)—(Vs),
Vit z) = Vij(t,z) if |2] 2 6, end —V(t,z) > —Vi;(t,z) if |z| < 6. Then Theorem 1.9
applies to the functional

T 3
(5.1) Isto) = [ (%me - Vﬁ(t,q)) dt.

i=1

Next it 13 shown that there are constants M and ¢; which are independent of § such that
Is has a critical value cs5 in I,;M\Igl. Thus

(5.2) &g <cs <M

independently of 6. Let q° be o critical point of I; corresponding to cs. The bounds (5.2)
and the properties of Vi lead to upper bounds depending only on ¢) and M for

3
1
(5.3) Z g — "2'[916 + g3 |lw.2
i=1
and for

T
(5.4) —/(; V.s(q.s)dt.

These bounds enable us to let 6 — 0 and find ¢ subsequence of (¢°) converging to a gener-

alized T-periodic solution of
To prove Corollary 1.18, we use e standard argument. By Theorem 1.12, we have a
generalized T-periodic solution ¢'. By the assumption that V'(q) # 0 for ¢ € (R)3, ¢' £

11




const.. Let T [k, denote its minimal period. Applying Theorem 1.12 again with T replaced

by T/(1+k1), there exists a T/(14k1) periodic solution ¢> having @ minimal period < -1%

Clearly g% is geometrically distinet from q'. Repeating this argument generates a sequence

of geometrically distinet generalized T-periodic solutions of
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