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Shape Optimization for Dirichlet Preblems:
Relaxed Solutions and Optimality Conditions

Giuseppe Buttazzo Gianni Dal Maso
Dipartimento di Matematica SIS.S.A.

Via Machiavelli, 35 Strada Costiera, 11

44100 FERRARA (TTALY) 34014 TRIESTE (ITALY)

Abstract: We smdy a problem of shape optimal design for an elliptic equation with Dirich-
let boundary condition. We introduce a relaxed formulation of the problem which always admits
a soludon, and we find necessary conditions for optimality both for the relaxed and the original
problem. '

Let Q be a bounded open subsetof R*(n > 2),let f € LZ(Q).andlexg QxR —R
be a Carathé€odory furction such that

(1 13(z,9)| < ag(z) + bols|* Y(z,3) €EQ xR,

for suitable ag € L’ () and by € R. We consider the following optimal design problem:

(2 min fa 9(z, ua())dz,

where A(Q) is the family of all open subsets of Q, and u, is the solution of the Dirichlet
problem

(3) ~Aus=f inA, us € Hi(A),

extended by 0 in 2\ A.

It is weil-known that, in general, the minimum problem (2) has no solution (see for instance
Example 2}. The reason is that, if we try to apply the direct method of the calculus of variations,
we find that every minimizing sequence (.A4,) has a subsequence such that the corresponding
solutions u,, of (3) converge weakly in H(Q) 1o a function u. But, in general, we can not
find an open subset A of 2 such that u is the solution u 4 of problem (3). On the contrary, it can

be proved (see (4]) that the limit function u is the solution of a relaxed Dirichlet problem of the
form

(4) ~Au+pu=f inQ, v € H(Q)YNLYQ;p),
for a suitable nonnegative measure 4 which vanishes on all sets of (harmonic) capacity 0. but

may take the value +oc on some non polar subsets of . We may also assume that for every
EcQ

B(E) = inf {s(4) : A finely open, EEA},
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where ECA means that E \ A has capacity 0. For the definition and properties of the fine
topology we refer to Doob [51, Part 1, Chapter XI. Following [3], we shall denote by M3(Q2)
the class of all measures with the properties considered above.

The precise meaning of equation (4) is the following:

5 fDuDsod-r+fuwdu=ffcpd-r Yo € HY(Q) N LA(Q: ),
o o a . ,

where the pointwise value of an H' function is defined as usual up to sets of capacity 0.
If S is a finely closed subset of £2, the measure cog defined by

0 ifBNS has capacity 0
©) cos(B) = {m 2B 015 has capacity

belongs w0 Mg (Q). If, in addition, § is closed in Q, then problem (4) reduces to problem (3)
with A = Q \ S and u = oog. The relaxed formulation of the optimization problem (2) is then:

< Ein [ otz u@)as,

where u, is the umique solution of the relaxed Dirichiet problem (4) in the sense given by (51.
The following theorem follows easily from the compactness and density results for relaced
Dirichlet problems proved in [1] (Theorem 2.38) and (4) (Theorem 4.16).

Theorem 1. Problem (7) admits a solution, and

8 0o, [ stz ez = ot [ otz euoras

Similar relaxed formulations for different classes of optimal design problems have been
considered by Murat and Tartar in {81.[111,[12],[14], and by Kohn, Strang, and Vogelius in
[61,[7]. We now give an example where probiem (2} has no solution.

Exampie 2. Assume that f(z) > 0 a.e. m £2, let w be the solution of
(9 ~Aw=finQ, wE H(Q),

and let g(x,5) = {2 — cw(z)]*, with0 < ¢ < 1. Then the relaxed problem (7) attains its
minimum value O ai the measure ;; defined by

Jleefys
WB) = j; dz

w

which corresponds to u, = cw. On the other hand, it is clear from (3) and (9) that there are no
domains 4 for which g(z,u4(z)) = 0 a.e. in Q. By (8) this implies that the original problem
(2) has no solution, :

We now give some optimality conditions for the solutions of problem (7). Let 4 be a mini-
mum point of (7 and let u = u,,. By a general result concerning measures of M3 (2) (see [3]),
4 can be decomposed in the form
(10) | B=00s+ pg
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where A is the set of all £ € Q having a fine neighbourhood V' such that (V) < +o0, ug4 is
the restriction of 4 10 A, and § = & \ A, Itis clear that A is finely open, hence S is finely closed
in ). By §*A and cl* A we denote the fine boundary and the fine closure of A in &.

Proposition 3. There exist a Radon measure v € M} () caried by 3* A, and a continuous
linearmapT : L*(Q) — L*(3*A,v) such that, ifh € L*(Q2) andw € HY{(Q) N LA (Q; p)
Is a solution of s

~Aw+ pw=h infd .

in the sense given by (3), then

waDpdz-Pf T(h)deJ-i-prd#A:f hipdz Yo € Hi(Q).
A A A drA

If A is an open set with a smooth boundary and u4( B) = fz., ¥dz with ¥ € L=(£2), an
integration by parts gives that we can take

(11) v(B) = _f Wi, Tk = =
B

naa On %

where o denotes the surface measure on the (euclidean) boundary A of A, nis the outer unit
normal 10 A, and W is the solution of the Dirichlet problem

(12) —AW =1 inA, W e Hy(A).

In addition o the previous hypotheses, we assume now that g( x, s} is continuously differ-
entable with respect to # and that

|ge(z,8)| £ a1(z) + b; s W(z,9) € 2 xR

for suitable a; € L'(Q) and b; € R.
In order to give our optimality conditions, we introduce the adjoint equation

(13) ~Av+pu=g,, vE Hy(Q)N L3 (Q; )

where g, denotes the function g,(z, u(z)). We denote by v the solution of (13) in the sense
given by (5), with f replaced by g,, and we set

(14) a=T(f), B=T(g.)-
Our main result is the following theorem.
Theorem 4. Let iy = oog + ua be a solution of probiem (7), Jet u = u, be the corresponding

solution of (4), and letv be the solution of the adjoint equation (13). Thenu=v=0 005 (p
to a set of capacity 0), and

(a) uwv <0 ae. onA,

) aff >0 v-ae ond"A,

(c) f(2)9,(z2,0) 20 ac.onQ \cd"A,
() wv=0 us-ae onA,

where o and 8 are given by (14),



Suppose r:ow that there exists an optimal domain A for the original problem (2), and that
A has a smooth boundary. By (8) the measure i = oos defined by () with § = Q \ A isa
minimum point of the relaxed problem (7). Taking (11} into account, the optimality condition of
Theorem 4 become:
@’ ur < 0 ae onA,

@) gggﬁzo o -a.c onf) N3A,

€?) f(2)9.,(2,0) >0 2. on2\ A,

while condition (d) is trivial because s 4 = 0. From (a’)and (b’) we obtain
®7) “33 =0 g-2¢ onf2 NJA.

The las? Condition is already known in shape optimization (see for instance [2], 9], {103,
(13], [15]), while conditions (2°) and (¢’) seem 10 be new.
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