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L. Introduction

Given a functional ¢ : X — R on a Banach space X, y is said to be coercive if
@(u) —+ 400 as ||u]| — oco. This is equivalent to saying that, for every d € R. the set

o= (n € X |p(u) < d)

18 bousgded. On the other hand, a {Fréchet) differentiable functional » : X —— R is said to

satisfy the Palais-Smale condition at the level d € R, (PS)q4, if any sequence {u,} € X such

that
{ plug) — d

Il &'(un) |l xe— 0
possesses a convergent subsequence; and ¢ is said to satisfy (PS) if it satisfies (PS), for

everyde R

Recently, among other results in critical point theory, Shujie [11] showed that if a C*
functional y : X — R is bounded from below and satisfies the condition (PS) then ¢ is
coercive. Shujie's proof uses a “gradient flow” approach, through the so-called “deformation
theorem” (cf. [3.10]) and, for that, he needs the notion of a pseudo-gradient vector field v

associated with the functional ¢ (whose existence is guaranteed for C! functionals by Palais

(81).

In this note we present some new results which relate the Palais- Smale condition and the

notion of coercivity, and are all based on the well-known Variational Principle due to Ekeland

(*) Research partially supported by CNPq/Brasil
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(8,6} In particular, a new proof of the above mentioned result of Shujie is given. It should
be puinted out that, throughout the paper, the given functional y could be assumed to be
ouly Gateaux differentiable, rather than €*. And, in addition to being conceptually simpler,
this approach could be used in more general situations where the functional is not even
differentiable (cf. [4]). The strong form of Ekeland's Variational Priuciple, to be repeatedly

used in the sequel, is the following

Theorem 0. Let Af be a complete metric space and §: M — RU {+00), 8 # +o0, a lower
senucontinuous function which is bounded from below, say @ = infyb. Let € > D be given

and i € M be such thad
Ha)<a+e

Then. for any A > 0, there exists uy, € M such that

(1) Hur) < Hu)
{a1) Hur) < Hu)+ %d(u.u;) Yu # uy
(11 d{uy,a) < A

BRemark. Note that the special choice A = VE gives d{uy, &) < /£ and 8(uy) < u) +
VEd(u,uy) Vu # uy. Also note that, when Af = X is a Banach space and 6 : X — Ris
Gateaux differentiable, by taking u = uy + th, h € X, in (i) and letting t — 0, one obtains
I &us) lix-<e/A

Acknowledgement. Part of this research was done while the first author was visiting the
Universidade Federal de Pernambuco(UFPE/Brasil) whose hospitality he gratefully acknowl-
edges.

2. Main Results

We start with a preliniinary result which, although not directly needed for the main the-

2

orew, it typically illustrates our approach and shows how Ekeland’s Principle comes naturall

mto scene.

Proposition 1, Let ¢ € C'(X,R) be bounded from below, say a = infyp. If ¢ satisfie

(PS). then the set p**2 is bounded, for some o > 0.

Proof. Suppose, by contradiction, that *** is unbounded for all a > 0. Then, there exist
{tn} C X such that .
< in) < -
{a_p(u.)_“n
il #a [f2
and Theorem 0 (with £ = 1/a, A = 1/\/n) implies the existence of {u,} C X satisfying
(i) a<p(un)Sylia)Sa+l
(1) (i) ¢(un) Spu)+ Jx fu=us | VueX
(i) | un = din < I -
We reach a contradiction with (PS),, since (1)(i)-(jii) give, respectively,
'P(un) —4a
1
Il 9 (xa) lx-< 7=

i ua fl2n - .

2
A similar result, which is slightly inore general is the following.

Eroposition 2, Let ¢ € C'{X,R) and ¢ € R be such that »? is unbounded for d > ¢ and *

is bounded for d < ¢. Then, there exists {u,} C X such that

(1) w(ua) — ¢
(2) (ii) § ¢'(un) lx-—0

{ili) || tin |— o0 .
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Proof, In view of the hypotheses, for any given n € I, there exists R, > n such that

(3) @< % C Bp, (0).

Define M, = X\Bp,,0, = | M, : M,, — R, and note that
i 1
(4) en =infa 0 2 c~ -
in view of (3). Now, froin the unboundedness of (p”'&, we can pick i, € X satisfying

(5) : plin) e+,

2
7

50 that, in fact, we have i, € M, and, from (4), (5},

(6) liall 2 Ra+1 4

. 1 2
(7 plitn) Sc -~ Scnt =

Now, applying Theorem 0 {with £ = 2/n, A = 1/,/n)we obtain u, € M, satisfying

(i) e—r<en<plun)<wlin)Sctl<cat?
®) () 9(un) S 9(u) + Frllu~ unllVu € Ma
(i) flun = ienll < 3

In particular, (6) and (8) (iii) imply
(9) || un |2 Ra + 1,

so that u, belongs to the interior of M, and (8) (ii) gives

(10} Il o' (un) flx- <

e

n

Therefore, (8)(i}, (10) and (9) provide (2}(i), {ii) and (iii} respectively. The proof is

complete. [

Corollary 3. Let ¢ € C'(X,R) satisfy (£5),. I ¢? is bounded for every d < ¢ then p<t?
is also bounded, for some v > 0.

Remarks 1) In particular, it follows from Corollary 3 that ¢° is bounded.
2) The conclusion of Corollary 3 holds whenever ¢ is bounded.

3) Notice that the above Corollary generatizes Proposition 1. Also. it is clear
from Proposition 2 that this Corollary holds for ¢ satisfying a condition weaker than (P5),,
namely (FTS)C: whenever {u,} C X is a sequence verifying {2)(i), (ii}, then {u,} must have

a bounded subsequence
As another consequence of Proposition 2 we have the foliowing.

Theorem 4, Let p € C'(X,R) be bounded from below. If  is not coercive then @ does not
satisfy (PS).,, where
cg = sup{d € R| p* is bounded}).

Proof: Let C = {d € R| »* is bounded}. Since » is bounded from below, we have C D

(—oo,a) where a = infy ¢, hence C is nonempty. If we define

co = supC

then ¢y < +00 since y is not coercive. And, by definition, it follows that ¢ is unbounded

for d > ¢g. So, Proposition 2 implies the result. =

Corollary 3. [11) If » € C*(X,R) is bounded from below and satisfies { PS) (that is. (PS).

for every ¢ € R) then o is coercive.



Remarks 4) Notice that we could also characterize ¢ = supC defined above as

co = inf{d € R| p* is unbounded}.

5) Iu general, for any functional p : X — R, theset C = {d ¢ R} »? is bounded)
is & (left) half-Loe, either open or closed, and we may have C = ¢ or C = R the latter case
occurring if and only if ¢ is coercive. And the assumption of ¢ being bounded from below
in Theorein 4 was used only o show that C # ¢. Therefore, in that theorem (cf. also next
section), one coukd assuine more generally that @* is bounded, for some d € R Of course,
for typical situations in differential equations, where  takes bounded sets into bounded sets,

the assumption C # ¢ is equivalent to ¢ being bounded from below.

6) Suppaose that the set D = {d € R| p satisfies (PS)y} is nonempty. Unlike the
set C. it is easy to sce that D is not neeessarily a half-line, even in the case that ¥ is bounded
from below, for which D > {—o0,infx ). However, if X is a reflexive Banach space, X* is
stricily convex and v € C'{X,R) is such that o' = J — &, with J : X — X* the duality
wapping aud A : X -— X* a compact mapping, then it is not hard to show that cg = supl
coincides with the number

Co = sup{d ER{yp satishies (PS), for every c< d)
=mf{d€R|y does not satisfy (PS).}
The following exampie of a p € C*(R,R) is illustrative, where C = {(-,0) = {deR|
p sausties (PS), Ve < d}, {d € R| p does not satisfy (PS)i}) =1{0,}) andcy=¢, =0:

. L g x
.smt,—E <t < -

2
e ={ 2 e et-97],

—e Ty

> T
-2

IA

DT B

7) Finally, it should be remarked that, in fact, Proposition 2 suggests the weaker
Palajs-Smmale type condition (1‘:’_.5;')c defined in Remark 3) as the natural one to relate to
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coercivity, in the sense that a converse to Corollary 3 also holds (trivially) true. More
precisely, let p € CY{X,R) be such that »* is bounded for every d < ¢. Then, o satisfies
(PS), if and only if %7 is bounded, for some v > 0.

In particular, cousidering the set ) = {d € By satisfies (FS'J.;], it is easy to see that:

MC=R=D=R{ii)C = (—o0,60) or C = (—om,¢,] = D= (—oo.co)ub, where
{—0c.¢,) is & component of D (that is, » does not satisfy (FS'}C,)

3. Somy Extensions and a Resonant Problem

Given a vector ¢ € 0B,(0) and a decomposition X =< ¢ > &, we shall hereafter write
u€ X asu=te+w, where w € W. And a set § C X will be said to be e-bounded if

SClu=tetuwjt<RweW}=Hy
for some &1 € R Also, a functional ¢» : X — R will be called ¢-coercive if
wle+ w)} —+ 400 B85 t— 4o,

uniformly for w € W. And  will be called e-bounded from below if there exists a € R such

that ;? is e-bounded.

ln this section we shall extend our previous results to include situations where @ is
not necessasily bounded from below. In fact, it is not hard to check that resuits which are
sinular to Proposition 1 through Corrolary 5 hold true in this more general setting, with the
woards “bounded”, “bounded from below” and “coercive” being replaced by “e-bounded”,
“¢-bounded from below” and “e-coercive”, respectively. As illustrations, we shall state the

analoguecs of Proposition 2 and Corollary 5 and prove the former.

Proposition 2e. Let ¢ € CH(X,R) and ¢ € R be such that ¢4 is not e-bounded for d > ¢
and ;4 is e-bounded for d < c. Then, there exists {un} = {tae + w,} C X such that
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(i} plup)—¢
(11) (i) |l¢"(un)||x- — 0

(ifi) ty ~— +00 .

Corollary Se. If ¢ € C'({X,01) is e~bounded from below and satisties (PS) then ¢ is e~
coercive.

Proof of Proposition 2e. By the hypotheses, given n € I, there exists R, > n such that
(12) =% C Hy, = {u=te+w|t< Ry, we W} .

Define M, = X\Hpg, 0, = ¢|M, and note that (12} implies

(13) cnzinfM,a,,zc-%.

Since v""f is not e-bounded, there exists @i, = fp¢ + W, such that

(14) Plin) St

(15) t'..zn..+1+wl—;,

7

hence i, € A, and, from (13), (14), we obtain
2

. 1
16 in) < —-<ent—.
(16) plin) et = Seat
Now, Theorem 0 {with ¢ = 2/n, A = 1/\/n) gives uq = tpe + w, € M, satisfring

(i) e—t<cn<p(un)Splin)Sc+i<cat
(17) (i} plun) S plu) + Fellu—uall  Vue s,
("") ““n - "-‘n” S &; -

From the continuity of the projection P : X — < e > along W (say ||P|| = 1 without loss of
generality), we obtain jt, = £,| < 1//n and then, in view of (15),
(18) th 2 Ry 41,
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This shows that u, = {,e + w, belongs to the interior of A, hence

(19) lle' (un)llxe < %

in view of {17)(ii). The proof is complete since {17)i), (19), (18) imply (1L1)i), (i), {iii),

respectively. -

We now present an example of a resonant problem whose corresponding functional @
is e-bounded from below but is not bounded. Moreover, » will be shown to satisfy the
bypotheses of Proposition 2¢ with ¢ = | so that, in particular, it will not satisfy (PS); in

view of (11). Consider the Dirichlet problem
-Au=Mu+g{u) in Q
(+)
u=0 on 90,

where © ¢ RY is a bounded smooth domain, A; is the first eigenvalue of ~A with zero
Dirichlet boundary condition, and ¢ : B — R is 2 continuos function satisfying the following

conditions:
{91) g is bounded on I, say |g(s)] < M for every s € R (and some M > 0);
(92) lim  G(s) = ~ i (where G(s) = Jo 9(o)de);

{g3) im G(s) = +00.

Fromn {g,) the corresponding functional

p(u) = '[] %(Ivul2 - Au’)dz ~ LG(u)d.r = q{u) - w(u)

is well-defined and of class C* on the Sobolev space X = H;j(f), which we decompose as
X =< e> @W, with e = ¢, > 0 being the first {normalized) eigenfunction of —:A on H} ()
and W =< ¢, >L.

Lermmna 6. (i) There exists Ry > 0 such that e(te, +w) 2 —¢(tey) for all i || 2 Rp and
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(i1} For any R > 0, we huvu‘l_:"n:m witer + w) = g{w) + 1 uniformly for {jw|] £ R;
Proof. (i) By (¢;) and the mean value theorem applied to G{t¢, + w) ~ G(t¢, ), we have
(20) [(tor +w) = p(ter)| = | [) 5(téy + zwhw dz| < My]ju]
for some My > 0. Therefore, we obtain
wter +w) = g(w) = Y(td +w) 2 glw) — Myjjwl| - ¥ltey) ,
and it 15 enough to take Ay > 0 such that g(w) — My ||w|| 2 0 for all ||| > Ry.
In order to prove (ii), we ouly need to show that
(21) 'l_f_"gm V(g +w) = -1,

uniformly for jlw|l < R Indeed, if we suppose that {21) does not Lold. then we can find
th — +oo and w,, € W |jw,]| € R, such that

(22) 'p(tn‘Pl'i'wn)f“'-l' &S 1 — 00,

Without loss of generality, we may assume that there exist & € H}(Q) and h € L({}) such
that

(i) wa—1th weaklyin H}
{23) (i) wy — b stronglyin LP1<p< -‘,f‘_!; UN23It<p<oif N=1,2

(i) wplz) —= w(z) ae in 0

(1v) lwa(z)| < B{z) a. e in .
For each n € IN, consider the set

An = [z €Qtagi{z) + wa(z) < 0}

i0

and the function

fu - G(tn¢l + wu}xll

in {1, where x o = y a4, 18 the characteristic function of A,. From (23)(1ii) we obtain that

fals) —= 0 a. e in Q. And, from (g, ), the mean value theorem and (23){iv), we get that
[Falz )] € Mtad1 (2} + wa(2)|xalz) € M|wa{2)xn(z) S M h(z) ae. in Q.

Therefore, by Lebesgue's Dominated Convergence Theorem,

{24) L G(lp¢, +wy)dzr — 0, asn — 0o .

Ou the other hand, from (g3 ), (23} and the fact that G{(s) is bounded on * = {s € (s 2 0},

we cvbitain that
(25) / G(taor +wp)dr —+ —1, asn — oo .
/A

Hence, (24) and (25) give ¢(taghy + wa) —+ —1, which contradicts (22) and thus concludes

the proof of Lemma 6. []

Now, it follows from Lemma 6 that
.’.‘.'L‘w plter) =1,

. . >
‘.f_t‘.m.+ m;g&, plter +w) 21,
from which we obtaiu, respectively, that ¥ is not ¢,-bounded for d > 1 and is ¢,-bounded
for d < 1. In particular, the functional ¢ is ¢,-bounded from below. However, ¢ is not

bounded from below since (g3} implies

{26) lim  ptd )= -lim ¢{tgy) = —x.
Liaadiad .-} f——an
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Applying Proposition 2 e to the functional » with ¢ = 1, we conclude that there exists

a sequence {un} = {{n¢1 +wp} C HI () such that

plun} — 1
I (4n) lg-1+— 0

ty — o0,

In particular, ¢ does not satisfy {PS5}),.

Note that there may exist d # 1 such that ¢ does not satisfy (PS§)4. However, this is

not the case if we assume
(g94) him g(s) =0,
—t o

as the following lemma shows.
Lemma 7, If (g2} — (g4) hold, then

D={d=sR|y satisfies (PS)y} =HR\{1}.
Proof, Suppose that ¢ does not satisfy (PS5)4. Then, there exists up = t,) +.n € H] such
that

(27) p(tn) — d,

(28) | @'(en) -1~ 0,
but {un} does not possess a convergent subsequence. From {28} we obtain

(29) Ip'(u,.)u,. |=”| ~'n "7 =A1 | wn ﬁ.i "'/ng(tn’-ﬁl + waundr [ ey “ wa .

12

where e, ={| ¢'(ua) [[j4-1— 0, s0 that

llwn I? =2y [wn [{2< (Mo +€a) [ wn |l

in view of (g;) and, hence, || wa ||< R for some R > 0. Since up = ta@) +wn and Vo(ua) =
up — K(u,) with K : H} — H/} a compact operator, it must be the case that | ¢, |~ o0.
In fact, t, — +00 necessarily in view of (20), (26) and (27). Now, arguing as in Lemma 6

and using (gq), we obtain that
..ITL A gltnd + we)wadr =0,
and, hence, that || w, ||[— 0 in view of (20). But then Lemma 6 (ii) yields
lim p(tady +wa)=lim [glwa) +1] =1,

so that d = 1 necessarily. [ ]

Fiaally, we should observe that, if we assumed

. . a
(@) lim_Glay= -0,
instead of (g3} then by the same argument used above with e = —¢,, we would conclude that

¢ does not satisfy (PS),. On the other hand, for results concerning existence of solutions
for problem (*) under hypotheses on G of the type (g;) ~ (g1} we refer the reader to e.g. [i],
{2], [7], I9], [12], [13] and references there in.

4. Final Remarks and Comments

A close look at the proof of Proposition 2e shows that, in fact, a more general result is

true. Io order to state it, we need the following definition: given a functional F: X — R, a

set X will be said to be F-bounded f § C F* for somer € %

13



Proposition 2F. Let ¢ 1 X — R be of class C', F: X — R be uniformly continuous and
¢ € R be such that »* is not F-bounded for d > ¢ and ¢ is F-bounded for d < ¢. Then,

there exists {ug} C X such that

plun) — e

Il #"{ua) il x+— 0

Flua) — +o00.

Of course, if we give the other suitable (aud natural) definitions, all the corresponding results
of section 2 will also hold true in this new framework. Also note that Proposition 2 and
Praposition 2¢ correspond to the choices F{u) =]} u || and F{te + ) = t, respectively, in
Proposition 2F above. Aunother interesting choice, which may prove to be useful in situations
where p 1s an wndetinite functional, is F(v+w) =} v || = || w || for a sujtable decomposition
X=VH¥

Finally, we wention a further related result which extends Corollary 3 in another direc-

tion, namwely that of the underlying space X.

Caorgllary 3. Let » € CYX,R) satisfy { PS) and be such that X\p? is not bounded for some
a €t If cither

(+) v (@) ={u€ X|p(u) =a} or

{ii) p Ha, b ={ue Xla<p{u) <b) forsome b>a
is & bounded set, then p is coercive on X\p®, that is, p{u) — +oo as | u fjl— o0,
ue X\p*

Corollary 5 follows from a currespouding Proposition 2, whose statement we presently

omit. Details and proofs of these and other results will appear elsewhere.
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