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-1 Introduction
Al

Flow of water in soils can be described either using
the Navier-Stokes' equations for an averaged system of
pores or empirically as was done by Darcy (1856). The
second approach which resulted in the formulation of the
Darcy's law and which was confirmed by the theoretical
approaches will be used preferentially here since it
has the advantage in simple derivation and simple
formulation for the solution of the engineering problems.
However, at some ‘késafances, the results of the
theoretical studies il be recalled when the parameters
of models and equations are to be explained physically.
As the working method, the theory of the potential flow
is applied in further chapters.

The basic flow equations are formulated first for the
simplest case of flow in the saturated inert rigid soil.
Further on the flow in the 80il not fully saturated with
water will be dealt with, This type of flow will be
briefly denoted as the unsaturated flow while the first
case will be called saturated flow and, to be more
precise we should distinguish between the flow at only
positive pressure and the flow at mainly negative
pressure in soil water. If the flow of both, air ang
water in soil porous system is to be considered, we speak
about the two phase flow. In the formulation of equations
the solute concentration change is assumed to be
negligibly affecting the described water flow.

Further on, the discuqsion is extended to the non-rigid,
or no-inert soils, 462&&; to soils which swell when
wetted and shrink when drained. Pp—tor—pid eyl
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are supposed to be the working tool not only of the
analytical and approximate mathematical solutions of the
components of the soil hydrological system but of all

the deterministic models of the soil hydrology.

2 Saturated Flow
“
2.1 Explanation "

We assume that at the positive pressure of soil water
{or hydraulic head), water ig flowing in all pores of
the soil in spite of the fact that in the field situations
the soil reaches"saturation", i.e. water content at the
moisture potential equal zero when = n p where m = 0.9
to 0.95, the remaining part being occupied by the entra-
ped air. At this stage of discussion, the entrappement
of the air is not considered and will be discussed
later on.

In the Figure . 1, a simple example of the saturated
flow experiment is demonstrated. The soil is placed in
a cylinder and its bottom part is inserted in a vessel
containing water with constant elevation of its level,
e.g9. the vessel is provided by an overflow. Above the
soil top surface, water level is kept at the constant
elevation, too. The resulting discharge @ = V/t is sim-
ply determined when the volume of water V either flowing
in or flowing via overflow out of the system is measured
in time t. The macroscopic flow rate v is
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with A the crossectional area of the soil column per—
pPendicular to the direction of flow. The term v is some-

times called the Darcian flow rate, the Py
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flux concentration or flux density in order to emphasize
the fact that the flux is not realized throughout all
A, but only in the portion AP, i.e. in pores. The mean
flow rate in pores vp is then
2
4//‘\'/ = /v-/P ( )
Darcy demonstrated in 1856 experimentally for columns
of sand the linear relationship between the flow rate

v and the hydraulic gradient Iy. In our experiment demon=-
strated in Fig. 1 is

AaH aH ,
vk T= Ko =K, C
where A H/L or AH'/L' is the hydraulic gradient Ip,AH
is the difference of water levels on both ends of the
soil column of the length L, AH' is the difference of
water levels in the piezometers placed at the distance
L' in the direction of flow, both being the hydraulic
head drop along the scil. Kg is the hydraulic conductivi-
ty and as AH/L is dimensionless, it has the dimension
of v [LT‘]-]. When the potentials éare read by the pie-
zometers at the elevations z) and zs we get

==K M (" .4)
S &, -2,
with ¢-= H + 2z, the potential head, i.e. the potential
related to the unit weight, eee—the—@iwprer—{tT2». Eq.

{ .4) is transcribed in a more general way

’?f":‘/(\g-g’/'»d"‘ig ( s)

Eg. { 5) states that the driving force of the flow, the
gradient of the potential is proportional to the flow
rate. As Kg = constant for the giveh soil, we write for

Fud
%:—W }0* ( 6)

The negative sign in Eq. {  .4) and further on means that

water flows against the positive direction of z in the
Fig. . 1. The value of Kg depends upcn the nature of the
s0il. It can be demonstrated as the flow rate when the
hydraulic gradient is equal to unity and its very low
values are aboutQl cm.day~}! (~10"8 m.s"l) while its
great values reach meore than 102 cm.day‘l(rvlo’s m.s~1),
further extremes are not excluded, however.

Three examples of the proper formulation of the
hydraulic gradient A H/L are in Fig. 2. In the examples
{a) (e¢) we show that the soil column need not necessarily
be oriented vertically and the value of L 'is measured
in the direction of flow. In the example (b}, water drops
free from the column and the bottom of the column is
identified with the water level after water has passed

the soil as a very good approximation.

When we are dealing with the flow in layered soils
and in soils with a distinct evolution of horizons diffe-
red by various saturated hydraulic conductivity, the in-
troduction of the hydraulic resistance R is very useful.
With R = L/Kg we get for the flow in the series of hori-

Zons

aH
P =
(Ry#Ry# Rt )

where AAH is the total hydraulic head drop along the sy-

( 7)

stem consisting of layers 1, 2, 3,... with R, Ry, Rz,
.. denoting their resistances, e.g. Ry = L1/Kg) etc.

2.2 Saturated Hydraulic Conductivity

As the soil water potential 95 can be expressed in
three modes, the dimension of the hydraulic conductivit-
ty is not necessarily in [}T'll . From the Eq. { 5) we
get for three various dimensiovns of égthree various Adime-
nsions of Kg. Even if the expression of Kg in units of
velocity (or flow rate) is the most convenient one, the
units for all three modes of the potential should be men-

tioned as follows:



Units and Dimensions of

@ grad gg Kg

3.9 1[L2772]  1.kg l.m-l[ur-2] s[r]
Pa[uL-l7-2]  pa.n-l{mp-21-2) m.s1/pyg [u-lrdr |
mEL] dimensionless m.s'l[pT'l

In spite of the empirical, intuitive way of derivat-
ionpf BEq. { 5), the validity of the Darcy's law has be-
en demonstrated theoretically from Navier-Stokes' equati-
ons transcribed for the porous media when scaling by the
characteristic length and averaging over REV was used.
In order to obtain the identity with Eq. ( 5), the ter-
ms expressing inertial effects were neglected and the
density and viscosity of water were taken as constant
(Bear, 1972, Whitaker, 1986). It has been also shown by
Scheidegger (1957) that in wvectorial transcription of
Eq. (. 5), Kg is either a scalar, what is satisfactory
for isotropic soils, or Kg is the tensor of the rank 2
and it should be considered so for anisotropic soils with
the conductivity dependent upon the direction of flow.
Since the tensor Kg is assumed to be symmetric, its pri-
ncipal axis are identical with the axis of the ellipsoid
of conductivity and it is defined by six values. If the
gradient of the potential is not parallel to the princi-
pal axis, the realized flow has the direction different
from that one of the gradient.

From the theoretical treatment we obtain the physical
interpretation of the hydraulic conductivity. The deve-
lopment discussed here will be a modified and simplified
procedure of Kozeny (q.v. Scheidegger, 1957), where the
model consisting of the bundle of parallel capillary tu-
bes is used. In the soil and in the model, the equality
of the porosity P, of the specific surface Am[h‘ll, and
of the macroscopic flow rate w [LT‘ll is assumed. The
mean flow rate v in one capillary of the radius r is
according to the Hagen-Poiseuille's equation

O g ( 8)
T T b 7y

with g the acceleration of gravity [LT‘Z],g)w the densi-
ty of water [L‘3M1,c4the dynamic viscosity [L-lmr-1],
In the hydraulic gradient, dimensionless. The number of
capillaries in the model is n, their length x = 1. The
porosity of the medel using a unit volume Vy is

P = m,.:'t'/p",u/lr/u

and its specific surface
A =.2me//40
“m ( .10}

Since the values of r and of n are not known, we elimi-
nate them from (5.9) and (5.10) and we get r = ZFJ/Am.
With Eg. (5.2) and (5.8) we get ’

3

=_.f__ Pw & /A I ( 11)
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Since the pores in the soil are mutually interconnected

and their shape is irregular, % in Eq. ( 11) is repla=-

ced by a shape factor c and for

3
c F
K = ( 12)

v

= K Sw#. 14 ( 13)

which is identical with Eq. { 3). The term Kp describes
how the soil porous bhody enables the flow of any fluid
and it is called therefore permeability [LZJ. The unusu-
al dimension of Kp can be demonstrated as the crossecti-
onal area of the egquivalent pore. Among other its units,
1l Darcy = kﬂmz is sometimes used. For conversion of Kp
toc Kg we get for water at 209C an approximate
relationship l<41n2£= 1 x 1073 em.s"l, Since the flow
channels in the soil are curved compared toc the model
of capillaries, the tortuosity factor T has been
introduced by Kozeny in ( 12} thus forming the final
relation known as the Kozeny's equation:
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cP‘s

= ( 14)
K T A%,

The tortuosity 7 is the ratio between the real flow-
path length L, and straight distance L between the two
points of the scil in consideration, T° = Lg/L. Therefore
we have " > 1, and in the monodispersed sand 7°m22 as the
flowpath forms approximately a sinusocidal curve (Corey,
1977). Equations identical or of similar type to ( 14}
have been derived by many authors. If instead of capilla-
ry tubes the model of parallel oriented plates is used
and when the slits are oriented in the direction of flow
we obtain if the distance between the plates is 2d for

the laminar flow

4//:,= "é jd’:_%_ I{, ( 15)

When B is the width of plates, we get P 2ndBx/V, and
Ap = 2nx(2d + B)/Vy. Taking again x = 1, and B = 1, we
obtain @ = P (Ap - 2/P) and finally
£ c »3
= 16)
2 {
» o v(4,-2r)
A certain type of compromise between Egq. ( 14) and Eq.
{. 16) is the Kozeny ~ Carman equation (cf. Scheidegger,
1957}
3
K P
= 7T 2
WoSA, (1-P)

derived in a more complicated way than demonstrated here.

( 17)

The relationship between Kg and Ky follows from the

comparison of Eq.( .3) and { .13):

_ Yw F
Kig - ,v —:Ezjmmn ( 181}

5.2.3 Darcian and Non-Darcian Flow

It has been already mentioned that the linear form
cf the Darcy's law is valid only at the low values of
the flow rate when the inertial terms of the Navier-Sto-
kes' equations are negligible. The upper limit of the
validity of the Darcy's law, Eq. ( .3} to {: 6) is in
the engineering practice indicated by the critical value
of the Reynolds' number for porous media

f?eg =::%%E£f1 ;. 19)

where d denotes the length, in sands it is the effecti-
ve diameter of the particle, or, with some corrections,
the diameter of the effective pore. Sometimes the value
of 4 is related to the permeability, e.g. d = ka. Howe-'
ver, in all other soils than sands, d is not definable
at all and Egq. ( 19) is not applicable. The difficulty
in defining 4 is reflected by the controversial critical
values of Re in the literature {Slepi®ka, 1961). Most
frequently, the critical Re number is about 109, In this
postlinear region, the flow is often described by the
equation of Forchheimer (cf. Bear, 1972)

2z
;géfé—— = a 1 + /611f' (20}

where a is the material constant, analogical to Kg, b
is functionally dependent upon the flow rate. This type
of deviation from the linearity is due first to the ac-
tion of inertia and only at very high values of the flow
rate, the turbulence could start. More about the theore-
tical background see e.g. in Cvetkovi® (1986)

The deviations from the Darcy's law have been found
in laboratory experiments at very low rates, too and we
can define therefore the prelinear region of flow, where

v increases more than propertionally with 1p, see the



Fig. . 3. This deviation from the Darcy's law has been
observed mainly within pure clays with a very high speci-
fic surface of 102 ng‘l and it has been explained by
the action of ‘esefactors: {a) Shift of clay particles,
mainly plates and consolidation of the clay paste owing
to the imposed hydraulic gradient and the flow of water.
; clegae +o A Tancer
(b) Different viscosity of water =% )%iayfvzue to the
great value of the specific surface, the volume of water
influenced by the s0lid surface fields starts to be
comparable to the wvolume of bulk water. The first
molecular layers of thickness of two to four molecules
of water have probably the viscosity differing from the
bulk water, see the Eyring's molecular model where the
viscosity depends upon the Gibbs free enthalpy (cf. Bird
et all., 1956}.

The flow in the prelinear region is described by the
empirical equations on the v{Ih) relation, e.g. by Swar-
tzendruber (1962)

4r=M[I£I-J{1“”/°(‘CIx,)]} ¢ 20

who supposed the existence of the threshold gradient J.
Without the threshold gradient, the relation is {Kutflek,
1964)

’I)'=M{£'—/grv A+ L"f’(ar{,)]—b}f .22)

N el M A=t/m) -1

In both equations, M is the conductivity when the linear
region v(Ih) is reached, C,D are fitting parameters, M’
is the initial conductivity at v-»0 in Eq. ( 22). Big
organic cations as well as the soil organic matter either
reduce substantially the prelinear region, or, they do
not allow its existence at all (Kut{lek, Salingerov4,
1966). A detailed discussion on the flow in the prelinear
region has been given by Kutilek (1969).
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2.5 Practical Conclusions

Saturated hydraulic conductivity depends upon the po-
rous system of the soil and as this system depends high-
ly upon the so0il structure and compaction of the soil,
the value of Kg is sensitive to these effects, too.
Aggregation increases the wvalue of Kg by orders, and,
vice versa, desaggragation decreases it. For .example,
saturated hydraulic conductivity of the sealed surface
after the heavy rain decreases by 3 to 4 orde;s compared
to the original value of Kg in loessical soil owing to
the action of two effects, mainly the desaggregation and
the blockade of pores by the released clay particles
(McIntyre, 1958). The compaction of the soil in A-horizon
and in the bottom of the ploughed subhorizon results in
the decrease in Kg in much greater extent than predicted
Erom the simple Kozeny's equation because the compaction
reduces mainly the content of big soil pores related to
the values of the Préssure! head H = 0 up to H = =100
cm. This domain of pores influences mainly the value of
Kg as it will be demonstrated in the next Chapter .3
in detail. When the textural classes of s8oils are
considered, Kg values occur in wide ranges in each of
the classes and any search for correlation between Kg
and the textural composition of the soil is facing a
failure. The lowest wvalues of Kg in each of the maiu
classes can be roughly indicated, only: In sandy soils,
the minimum Kg is about 100 cm.day~l, in silty loams it
is 10 em.day"l ang in clays 0.1 cm.day‘l. In peats, Kg
decreases with the increasing degree of the decomposition
of the original organic substances and at the degree of
decomposition of 40% to 50%, the Kg of the peat reaches
the values of Kg in unconsolidated clays. In peats, the
extreme drainage and drying causes the increase in bulk
density and this compaction is accompanied by the
decrease of Kg. The increased hydrophobism is referred
in this connection, too and a greater extent of the en-
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trappement of the air after wetting is assumed thus con-
tributing to the decrease of Kg.

In loams and c¢lays, the nature of the prevqlent
exchangeable <c¢ation plays an important role;q'ﬁg'
Vertisols, the increase of the percentage of the
exchangeable sodium (ESP) is accompanied by the decrease
in Kg and when ESP reaches 15% to 20%, the value of Kg
sinks by two to three orders, provided that the content
of soluble salts is kept at low value, i.e. with the
electrical conductivity of the soil paste EC about 1
mS.cm~1l and less. If the concentration of salts is
substantially increased up to EC about 8 mS.om™l and
more, the Kg value is not significantly reduced even at
high values of ESP (Kutflek, 1983). Great importance in
the dynamics of the changes of Kg plays the value of the
sodium adsorption ratio (SAR) in addition to EC, as Russo
and Bresler (1977} have shown in their model study. The
changes are c¢losely related to the alteration in the
degree of flocculation or peptization of the soil
colloidical particles and to the dynamics of the value
of the g-potential on the moving boundary of the double
layer. Applying this theory, the decrease in Kg owing
to the action of the rain water of wery low salt content
is simply predictable in soils of a high SAR value. If
these results obtained on fine textured soils of arid
zones are applied to soils pedologically different .,
precaution is recommended. For example, in Oxisols, the
percolation by the solution of a high SAR value does not
induce s after the reduction of the solute concentration
fhe decrease in Kg) since the abundant free Fe-oxides
prevent the s0il particles from peptization and
desaggregation. In clays, the value of Kg depends upon
the composition of the clay fraction, too, and it decrea-
ses in the order kaolinite > illite > montmorillonite.
The soil organic matter induces great increase in Kg,
mainly by its cementing action upon the aggregate sta-
bility. Generally, there are many factors influencing

the value of Kg that are usually not considered in the

eimnlifiad madals
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The s0ils may be classified according to the values
of Kg as follows:

Very low permeable soils with Kg below 1077 m.s"1

low permeable, Kg = 10-7 to 1076 m.s"1

medium permeable, Kg = 1076 to 1073 m.s1

high permeable, Kg = 1073 to 1074 m.s~!

excessively permeable, Kg above 1074 m.s™1
Anyway, all the classification schemes are very schema-
tical and for the ¢lassification of soils in a certain
region, the analysis of the frequency distribution of
Kg seems to be the most appropriate bases.

When the values of Kg in the soil profile are conside-
red, the soils are groupped in & classes:

1. Kg of the A-horizon is substantially higher than Kg
of the remaihing part of the soil profile ‘and there
is no horizon of relatively extremely low Kg.

2. Kg gradually decreases with the depth without distinct
minima or peaks.

3. Kg reaches a distinct minimum value in the illuvial
horizon or in the compacted sub-horizon below the
ploughed subhorizon.

4. Soil of a high permeability - with the development
belonging to one of the first 3 classes - covers the
undfelying soil of a very low permeability (layering
of the soil substratel.

5. Soil of a very low permeability - with the develop-
ment belonging to one of the first 3 classes - covers
the underlying soil of very high permeability (laye-
ring of the soil substrate).

6. Kg changes erratically in the profile due to the ex-
treme heterogeneity in the soil substrate.

Since various units are used for the saturated condu-
ctivity even if the dimension is LT"l and as sometimes
confusion exists with the use of the term permeability
Kpr the conversion graph in Fig. &% can be convenient.



The influence of the temperature T upon the value of
Kg is derived from the Eg. ( .18). As?w 15 negligibly
influenced by the temperature, the change of Kgi(T)
depends totally upon the viscosity change, (u(T). Some

deviations smesh could occur. ifila—renmber e e e
i-booe et ertririe SioerTed—in—Ghipio mbdein
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3 Unsaturated Flow in éﬂ%r,t Soils

3.1 Explanation
il

By the term imert soil we understand soils which are
not changing their volume with the change of the water
content. The unsaturated flow in soils is governed by
the same laws as the saturated flow. When the laws are
further applied we have to consider the Ffact that a
portion of pores is filled by the air and that the flow
could result in the resaturation or in the drainage of
the porous seystem. In some demonstrations of the
phenomena, the capillarity is quoted here and the term
capillary rise is quite frequently wused in the
literature. The general mathematical formulations of the
physical phenomena should be, however, independent from
the simplifying ideas on capillaries and when capillarity
is mentioned, it 1is Jjust for the sake of the
approximative modeling of some effects occuring in the
real soils.

A  simple example of. the unsaturated flow is
demonstrated in Fig. © which is an analogy of the
examples of experiments with the saturated flow in Fig.
2 . The cylinder containing the soil is provided by ope-
nings on the walls. The semipermeable membranes separate
the soil from free water on both sides of the cylinder.
The term semipermeable means apmim that the membrane is
permeable to water but impermeable to air. The pools with
water are connected by flexible tubes. First, the pools

sh}hé
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are lifted to the position when the water level is at
the same elevation in both pools as is the highest point
of the soil and the openings on the side of the cylinder
are closed. The full saturation of the soil is now
assumed and at this instant, there is no flow in the
system. Then the pool on the left side of the cylinder
is lowered to the position H) and the pool on right side
to the position Hy. In the mean time, the openings will
be opened in order to enable the entry of the air since
the soil starts to drain in a similar way like the soil
placed in the tension plate apgaratus. On the left side
of the cylinder, the 5011 is drained to a lesser extent
than on the right side, however, the decrease of the aoil
water content from the left to the right side is -not
linear. Simultanecusly, the water flows from the left
pool to the right pool similarly as in the syphon if its
arms were submerged in our pools. Only the rate of flow

is %ﬂ. 80il significantly w
compared to the syphon.d-b—hﬂ-ﬂhe—pnaw
Pwswe=ipo®Py When the water level is kept at the constant
elevation, the steady flow will be reached after some
time has elapsed from the installation of water levels
at the given positions. Then, the soil water content will
reach a certain constant value at each point of the soil,
too. The flow rate v will depend again upon the hydrauljc
gradient and will be governed by the similar equation
to BEq. { 3):

L AH
fw—-KL (23 )

where K is the unsaturated conductivity [LT1] and it
characterizes how the soil enables the flow. Since the
soil is not fully saturated, the flow is realized only
in pores filled by water and the value of K will be lower
than was Kg for the same so0il, in our figure K(éhl or
K(H), &ee. Similarly, as when dealing with the saturated

T T

o
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flow, we operate with the potential related to the
weight, i.e. in the units of the pressure head. When we
are solving the majority of practical problems, all
components except of the gravitational and moisture
potential will be neglected and the total soil water
potential é = H + 2z with z being the vertical coordi-
nate again and Eq. (2% ') will be rewritten into the form

v:—K(H)—g—-g— ( 2t)

or

m—:—K(H)g/wagY (95 )
. g eguwivalent 4o
Since Egq. (25.) M‘m the Darcy's

equation and Buckingham (1907} was the first who
described the unsaturated flow as dependent upen the
potential gradient, Eg. (2% ) and (45 ) are called
Darcy-Buckingham's equations. The unsaturated
conductivity K is physically dependent upon the soil
onl
water content sinceakese in water saturating a&ﬂf
partly the pores ideel water flow is realize_tﬂ. w:fgm)
relationship exists, we can write K(H})., too, but this

relationship is not direct, it has been derived and
keeping in mind that 4 (H) is influenced by hysteresis,
the K{H) will be dependent upon the hysteresis, too.

The examples of the K(H) and K($*) relationships are
schematically demonstrated in Fig. € .+ It can be seen
that at the saturation the soil more permlethan the
other one does not necessarily keep its higher
unsaturated permeability in the whole region of the
unsaturation. When the hysteretic behavior of K(H) is
studied, we can see that for the given H the value of
K is higher for the drainage than for the wetting pro-

cess.
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The sole Darcy-Buckingham's equation is adequate for
the description of the unsaturated flow if the scil water
content is not changing in time at a certain point, only.
However, this is a seldom case. When % and v alter in
time, we have to combine Egq. (25 ) with the equation
of continuity which describes the rate of change of 4 in
time t related to the change of v in the considered small

’element of the soil. The final product is a non-linear

differential equation (Chapter . 3.3) and its sclution
even for the simple conditions is a very difficult task.
Generally, Eq. (25 ) is in itself not satisfactory for
the solution of such hydrolegically important processes
as the evaporation, rain infiltration, drainage and
subsurface flow etc. Only very exceptional situations

could be w solved by the single use of Eq.
(2.5).

3.2 Unsaturated Hydraulic Conductivity

For the explanation of the physical meaning of K let
us first apply the Kozeny's Eq. { 14). Since only a
portion of pores is filled with water we replace the
porosity P by the seil water content ¥°. We have to
increase the value of the tortuosity and according to
Corey's (1954, also 1977) expression valid for sands we
get the estimate of 1"{‘9)as follows:

2
‘s 'g’ﬂ&""’) (26 )

t‘(&) - WJ - ‘Q'M
where 'c:gis the tortucsity in the saturated soil,’t‘F&) is
the tortuosity at the soil water content & , B is again
the minimum or residual soil water content, as—iatseduced
ettt prwgederdeds. When the alteration of the tortuo-
sity due to the change of the soil water content is not
inserted in Eqg. ( 14), the exponent should change and
Leibenzon (1947) derived in this way



. 1¢
K _[2 -t )W (5-53)
Ko (P =9, '

where n should be in ranges from 3.3 up to 4, while

Averianov (194%9) has proposed n = 3.5 as an average value,

this being still a good rough estimate for the first
approach to the problems. Childs and Collis-George (1950)
obtained similarly an equation which can be transcribed

to the form
'93
28

K=« “‘TA (5+34)
m
This eguation 1is comparable to the Deryaguin's et
al. (1956} equation derived for the flow of water films
in the soil:
- D(Ambd 29
= (5+35)

Identity of both equations is reached when the average
thickness of the water film d is taken as functinally
dependent upon ¥ for a given specific surface Ap+ In both
equations, «® is the empirical coefficient.

Since {~(H}), the dependence of K upon H is deducible,
too. Gardner (1958) has modified the Wind's (1955) empi-
rical proposal

—m

to the relationship applicable to H = 0:

a 31
K = e (5+3%)

[H '+ 4
where a, b, and m are empirical coefficients. In Eq.
(51%?) for H = 0 is a/b = Kg. Or, in a modified form,
Eq. téi&?) is transcribed in
a. 32

K’"KS m (5-38)
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In  the analytical solutions, the Gardner's (1958)
exponential relationships are frequently used: '

K=Ksﬂ'¢v(c”) (a)
K=KS,6F¢/ZEL(H“HA)J e 79

with the empirical coefficient ¢ which can "reach  a
; /
physical meaning when the Green and Ampt's 'approach a%e

used, see—ehe—Chapter—¢. When once Kg is known, the
constant ¢ is closer related to the texture of the soil
than the saturated hydraulic conductivity and the region
of the most freguent occurence of ¢ as related to the
percentage of the silt and clay particles in soils of
the mild zone of middle Europe is in Fig. 7 . Close to
H=0or to H= Hp, respectively, the relationship K(H)
is better described by ¢ = (H - Hp)D and

K=K e (~1H-A)") 2%,
or, if Hy = 0 T it < i

St S
" 36
K=K3£&ft/(*‘["’] ) (St2)
32 33

The Eqg. (5+3%), and (548} are valid not far from the

saturation, i.e. in the wet range. In the dry range,

we , ) [
these equations are noklappllcable and either Eq. (5<3%)
or Eq. (5+42) should be preferred.

From the studies on capillarity in sands, Brocks and
Corey (1964) have obtained a fregently used relationship
M
K ;ﬂq 3t
- = 543
Kg H

where m depends upon the pore distribution. When Eq.

(.‘3‘}.) was used imn—the empiricallwu«l:y for fine textured
soils, m was mainly in ranges demonstrated in Figq. 7

T

T BT el b -
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In gome of the cerlicr models of soil wvoler regime simue
lation, XK(#) was defined in speciiied ranges for

Hy<H<Hyj, by Eq. (34), ior H<H by kg. (30) or (31).

lim
The deri\j_vation of K(4 )} from the retention curve which
reflects the distribution function of pores f(r), &Sea
EGemide b —stpsBepe—tdrtdr is the most atractive and
most chalenging procedure and it has offered the best
background for the modeling of the unsaturated flow.
ofa its part,ﬁial results was the already mentioned Eqg.

}. In the general way of the derivation of the model
we start with the mean flow rate wvp in pores of the

One

radius r according to the Hagen-Poiseuille's eguation

2 Lt)
1Gk,ﬂ&z) = d A —Z;a . £+ )
where a =@W /,F(a see Eg. ( 8). The crossectional area

of the soil taken perpendiculary to the direction of flow
Ag + Ay + Ap, where the
and A air. We

is the sum of three areas, A =
indexes denote S the solid phase, W water,

AW (/b) - (A "As) fp") (-53-1-5)

Considering it together with Egq. {. 2} we get for the

Darcian (macroscopioc) flow rate v

B
A-A aL#Pb) fo
’U‘.:—_A—_SO’(,UP( )—-——- oln (5+46)

and with Eg. (5.44) s:.nce v = K for I, =1

-A 4
K(#) o A DEe) ) ot
l”ﬂ-—l" j'IGI }‘It rdq_tgo‘- ‘ﬁOP
For r = c;]HBand c = ac12 we obtain

A

~—

with

A -As "')atﬁ(»u) 42
Approximating that f{r)x 19, (H) (RS

and. ]Qr' 19‘ =A Ag h//xe-h with 'G'M,He-
regictual (or minimum ) d the effe.c'f'!ve ,9. Iy ued :

Lo

L,
/@--‘%) Eq. (548 is

This equation is wvalid for the model and it should be
matched to the real soil. The simplest way to do it, even
if not fully satisfactory as it will be shown later, is

by comparing it to the measured
conductivity.

o,

K(H)=c 6% (hhy

{(5—42)

saturated hydraulic
This is why the relative conductivity K.
is introduced as

K (H) sy
K/L - 'k‘s— +o 58

Burdine (1953) obtained after further developments which

are not going toYrewritten here in detail, b = 2 and his
equaticn has the final form
K6 ) H"‘@)

Mualem's (19?6) derivation was slightly modified and with
b = 0.5 his equation is read as follows

K, = N [ dﬁ:—‘ / f A%e

H (8% )
(1980) procedure of combination of
Ehe equation of the retention curve <{elmdtuj-—winshsb TS

(43)
552

If wvan Genuchten's

7
G = T\ (48)
E (14 (< |H]]7)
Kr(‘l%) is generalized, we obtain
//m. 49
K, (6 )= 8" [1-(1-" " 1
withm=1-¢/n, n > 1
a=1, b= 2, ¢ = 2 for the model of Burdine
a=2, b=20.5 c¢c=1 for the model of Mualem.

ot bre—modificati-ei-ei—the—vanr—demrcirtente—lge.{4.30) _iS—
applied,—we-obtedif-awsinilar..ag L =it . T B - ¥ S
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If K(H) is wewwe expressed in a similar way, the equation
is for the Mualem's model

K@) _{7-(dt) 11 G174 (o)

Ks [1+ (< HTY"T™L
In a similar way, for the retention curve of Brooks and
Corey idwdbmtn (/{ //'/) is (M
5
K8 ) _ ﬁ +ald S

and &t 4 [a

K(H) _:( Ha ) s24

KS‘ H {5+57)

with a = 2, b = 2 in Childs and Collis~-Georges'

(1950) method,

a =2, b=3in Burdine's method

a =2, b=2.5in Mualem's method.
It should be remarked that in the derivation of the ahove
equations, approximations were done at several steps.
First, the soil porous system was modeled by the bundle of
cylindrical capillary tubes, then the approximation in
equalling the pore‘fdzistnbutlon function to the retention
curve followed and further on there was the derivation
of the value of b, However, in spite of all the
approximations adopted in the derivation of the K("ﬂ- )
and K(H) equations, the most problematic is the proper
interpretation of the 80il waterfretention curve close

to-ﬂ' “ﬂ-&ﬁﬁple_baken—fm—tu: detailod-tEudy-ob-Vogal
WmMgnm%wmm
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The formal sengitivity vnelysis of Wosten end ven
Genuchten (19LE&) shows that when 1-£c is preperly nieasured,
the differences in K increase \ith the uecrease in H,
iees with the drymg, of the soil, when one oi the paraue-
ters is altersd, sec Fig., &. The behavior of the expo-
nent n is the only one siception in the very wet region,
in the graphs, Kr is replaced by the rcal 4 and the
801l water rc.tentlon curve is

b=t o %

RN LTS
liore applicable are the results of the genetical sensiti-
vity analysis (Vogel et nl. 19L5, 19L8). Firat, they show
the role of the error J'h(-e-) in the experinental dstermi-
nation of H(éy). 1f J—i(OL) ie constunt in Lhe range
0{0‘ %1, the absolute error N ol K(€;) rises stecply with
the increase of -G'L, see Fig. 9, .":.ecoule, our impropexr
knowledge of the internsl porous structure leesds to sub-
ptantial errors, see Fig. 10. <the domain of v cloge to
6’ is the dominznt source of srrors. Here, the monomodal
pore size dlatribution is essuned and the van Genuchten B
Lg. (48) is modificd with-@r vihich repleces Ot

b — &
& = b (54)
e .gé‘_.,gi

\.here.év 'Q'b are fitting parameicrs, only, allowing
.Gv>/-es and 1655 O. Ligs (54) ip treated 2s an empirical
equation without physicel meaning o1 peraneters, The reten~
tion clrve is transforued to & more flexible type, see
Fig. 11. The Eq. (49) is theu modificd to

' ac (1 =BT )™ j
Kr/“"e) (4_,9:,%71,)4» (58
d = (7- @}'/”" K

U

the physicaily real port is in O<’4:-<v-

It follows irom the cengitivity ‘n.,lvm.:. that Jor
a reliable deteruinction of L (4:0') we have to apply oue
of the feasible procedures:



N
w

l. Kr(ve'e) i computcd frowm the H(-Gre) which ic a divectly
measgured relationship. As natching ionctors, we have to
measure directly KS) and X at 4 not far irom 05.

Z+ The measured H(&e) ang Kb are takcn as stariing ve-
Jues in the optinication proceda;e, viiere the acesured
flux process (e.Ze ini‘iltrntion,Areuistribution) vith
pimple boundary condiiions io cowmbined vwiinh the mwmerical
pitwlation of the same flux procecs.

When the moil jorous systcm is charecieriued Ly a
bi-model pore size cistribution curve {(lig. 1lz), the
relation K(H) shows distincitly two regions: ln C>U>H,
is K(H) expreseible by LQ. (33) or (34) and the pardi.c-
ter ¢ can be detected only by dirvet ucasurcucnt oif L(H)
in the field. In the region Hl> H, the lucler ¢ model
{46) is appliceble, i.e. L(I) ic computed irowm the expe-
rimental H(&e)or fron H(%)’ gce Diekkriegcr et al,{1%BY4).

Up to this point we have assumed that the validity
of the Darcy's law is fully applicable to the unsaturated
flow. However, when the hesitation on the validity of
Darcy's law exists for the saturated flow in clays, the
non-Darcian prelinear flow domain should be even more
pronounced in the unsaturated flow in clays. The earlier
experiments indicate this possibility (Swartzendruber,

1962) with the opportunity to the theoretical explanation
(Bolt and Groenevelt, 1969). 7

The influence of the temperature upon the K{4 } is
usually expressed by '

13
K(—B*)=Kﬂ_(19')Kﬁ S"w?/ﬂ“w (5+58)

However, there is the experimental evidence {Novak, 1975,
Constanz, 1982) that in some instances Eg. ( .58) could
be taken as approximative, only. It is to be reminded
here, that in the saturated clay paste, the influence

SEFe 24

of the temperature upon the change of the non-Darcian
behavior of water has been found {(Kutilek, 1967) thus
offering one of the possible explanations for K(T)
different from (M {T). Wwhile the deviations of the
measured K(-,T) data from that ones obtained from Egq.
{ 56) is of less importance forﬂé near to 1, in the
range of - <0.5 the deviations should be considered even
in the solution of practical problems if the experimental

evidence was confirmed.

The measuring technics of the determination of K(4 )
are mainly related to the solution of the specified
unsteady flow processes. Jhe—metinot—will-he therefore.

concd saly-—diraanatttit-—tiaeand—af-Chapbei—Fr—
Y r

3.3 Richards' Equation

The equation (5::!-:;1) is fully applicable to the
solution of the steady unsaturated flow when dv/dx = 0,
dv/dt = 0 and d#/dt = 0. In practical situations we meet
more freguently d4 /dt # 0 with the unsteady type of
fiow. In this type of problems, the flow rate and the
rate of change of # in time are to be solved and two
equations are therefore needed. While the flow rate is
described by the Parcy-Buckingham's equation, the rate
of filling or emptying of the soil pores is described
by the equation of continuity. For its derivation, a
prism element is considered, Fig. .5.¥TI. The difference
of the volume of water flown into the element and flown
out of the element is equal to the difference of water
content in the element in time At. The length of edges
of the element are AX, AY:. AZ. The rate of the inflow
{macroscopic) is v, the rate of the outflow is v). The
change in v in the element is continuous.

The conditions in the direction of the x axis are:
The inflow rate is vy.

i = é
The outflow rate is % = V. ~Ax 9’25:/ v
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The inflow volume is Ay A% A & AL
The outflow volume is ("VB-}-A& 31’1/9&).&/}:& Al
The difference of the inflow and the outflow volume is
Ve Ay Ar At -4t (1 +8k 21, 2k )ayan = (52)
_-_...(vaz/?,c)(AcA?,A/z,Ai)
Similarly in the direction of Y axis, the difference of
the inflow and the outflow volume is (530J
- (2 /73 )(Ax oy ap At)
and in the direction of z axis
— (9% /02)(ax aganat) BL)
The sum of the differences is equal to the change of the
content of water in the element. If ~0 (t) has a
continuous derivation for t > 0 then for At is

o
_(g_:’.;-.'. %* %)MA?A&A'{Z =§IMA?.A¢—ATE (: .59)

erhhsﬁx%O,Ayﬁo.Azdo,ﬂt¢00mgﬁtm
equation of continuity

Pug Y, D) %
- oy ) T
Tty tam ) 5 ¢ .60)

If we insert for vy, Vy: Vz from Eq. (gggid we obtain
7 R %] 7 87
stk W)g] + 9‘;[’((")@" *a‘E[((”)FE;/ =
_ e
-T

f.

provided that the socil is isotropic. In one-dimensicnal
form for f- H+ 2z is

H oK 796
—Z—[K(H) o4 + — = { .62)
24 7 P 0t
Bg. ( .61) and {' 62) are called Richards' (1931) equa-

tions according to the author who derived them for the
porous media.

If one direction of the pProcess 1is supposed, i.e.

Y-

either drainage or the wetting, 4 will be uniquely depen-
dent upon H only and :

i de H
96 " AH 7t

From it, the capacitance form of the Richards' equation
is obtained:

D[ 74 2K
Gy )57 =5 K2 [+

ﬁ-@ { .63)

with the water capacity (or specifiec or differential’

water capacity) Cy = a.8 /aH fL‘]-}. Bq. ( .61) is
frequently used n=the-pumeriewl-Sisthods. The alternative
type ofﬂ‘éevelopment leads to the diffusivity form of
Richards' equation with

W Ak e

T de x
and

o4 ? Py dK I8

Ay RO R

where the soil water diffusivity D is the term derived
from

D) = K("")ﬁ [LﬂTMJ ( .65)

The name of Eg. (. 64) was derived from the equation's
resemblence to the equation of the molecular diffusion
when the second term on the right hand side of the Egq.
(. 64) was omitted. The units of our D are identical to
the wunits of the diffusion coefficient, too. The
Equations ( 61} to ( 64) are strongly non-linear and
they are called Fokker-Planck's equations, too. The
diffusivity form is frequently used in the analytical
and semianalytical solutions. However, if in the soil

! e ————

T PR T

T
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is the domain of positive pressure, Equation { .64) is
not applicable. Sometimes, the Kirchhoff's transformation

v
[,{:J/\’(H)d,// (66
it

is used with

and Eq. (5.61) is then transformed to the form
GyH) ou w1 Ak pu
K(H) VE T 0 KMy AH &
26 9%y ok
7t ~oat 24
Since the second term on the left hand side of Eq.
{ .60) or the last term on the right hand side of Eq.

( .67)

{ .61) and ( .62} originated due to the existence of the
‘gravitational component z of the total poten-
tial f f it is frequently referred to as the

gravitational term of the Richards' equations. The first
term in the mentioned equations expresses the flow of
water in the so0il due to the gradient of the moisture
(matric) potential component. In some instances, the
gravitational term is neglecte? and the problems are
solved approximately. The Ig-f-‘aeetcag" diffusion equation
is then applied w1tliche non-constant diffusivity

M_ [D(,a,) { .68)

Solutions of (..68) to various types of boundary
conditions are analyzed in the literature dealing with
the mathematics of diffusion or of the heat flow
{Crank,1956, Carslaw and Jaeger, 1959). If the flow is
horizontal, the solutions according to Eq.( &6) are
exact.

3.4 Soil Water Diffusivity

5/3- 08

The most, frequent D(A+ )} relatioship is demonstrated
in Fig. .1Z by the curve (a). With the exception of the
domain of a very low soil water content it is a curve
steeply rising with 4 . This monotoneocus D(® )
relationship starts at a very low value ofﬁ{, obviously
related to the moisture potential hbelow H = - 10°5 cm.
In the dry region between -6-— 0 and 19— the great portion
of pores J.s ”;"L A l’?.e’;r are thus free to the water
vapor flow while the 11qu1d water flow is limited to the
flow of the only existing very thin water fggilms on the
soil solid surface. The streng dependence of the rate
of flow of the film upon the thickness of the film has
been demonstrated by Eg. (535). Here, the vapor flux
exceeds the liquid flux. A more detailed discussion on
the water vapor flux will be given in the next Chapter

3.5. Now, we shall study in detail the monofoneoualy
rising part of the D{g ), i.e. for ‘19->-|91-|!'r . Among the
empirical equations, the exponential form of Gardner and
Mayhugh (1958) is well known and frequently used:

D=D°WV[ﬂ('6-—0-o)] { 69)

where Dy corresponds to ‘90. or,

= G )
D= tepo (ﬁ A (.70}
at 4
where % is replaced by ’ﬂﬁin 19£‘and with D G{v The em—
pirical coefficient ﬂy is in ranges from wunits up to
approximately 30. Swartzendruber and Ahuja (1972} have
proposed a three-parametrical equation supposing the exi=-
stence of Hp and therefore dH/d# »boat 'ﬁ-—H?-g:
4
= & ——— (#.71)

Physically more exact will be the form derived from the
scil water retention curve and from thaghysically
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49 A
expressed K(- ). With Eq. (5-53) in Mfalem's form and
with Eq. (438) inserted in Eq. (5.65), van Genuchten

{1980) obtained for D(-t%) p
D= (f-/??b)Kc;‘ ,9_72—/’”/
04/’?11@3—’9‘ ) £ (F.72)
- [(1-%, 2" - efmy™ 5]

If a simpler Eq. (1736ﬂ is applied instead of (4725) we

receive
4o K (4 ~1)+a-1)/4
D A 549_ g (5.73)
A (s - )
with the values of a and b derived earlier when Ky was
discussed, see Eq. (5756) and ‘5 ), i.e.
& =2,b
a=2,b

2 in Childs and Collis-Georges' meéhod
3 in Burdine's method
a=2,b=2.5 in Mualem's method.
The derived equations starting from Bg. (8772) are appli-

cable mainly to th%umencal solutions.as—chay-—a«re—too——

eemp%acated»—t&r—the~—anaLytkca%——solusaon

Nevertheless,
the comparison of Eq.

(£.73) after its rearrangement to
Eq. gf 71) could offer the approximative physical inter-
pretation of the empirical coefficients.

In some clays, mainly alkali Vertisols, D decreases
with the increass of19 if the soil is Prevented from
swelling by confinement, see curve (b) in Fig. S+17 (Ku-
tilek, 1984). In some undisturbed soils D does not wvary
as strongly with 4 ag above Qiscussed and as mainly
proved for the disturbed repacked soil columns in
laboratories (Clothier and White, 1981), If Dpax —
is less less than half an order, the Eq. (£.68)

be used in the linearized form 2s a good appr

Dpin
could
oximation:

99;5‘“_ D %;_- (¥.74)

5434 3,

where the mean weighted diffusivity D is for the wetting
process (Crank, 1957)

3(49— %) Sf(-a- )0(«9')0['9- (#775)
and for the drainage process

b= (&4f)135 f("' 19') D(#)d&(ﬁf )

where 4%15 the initial 6011 water content and'ﬁ'xl £t at
x=0 for t » 0.

The soils where D = const. are called linear because
tha Eq. (;'7&) is a linear equation with D replaced by
D = const. as exact. If the Brooks and Corey's reten-
tion curve, Eq. (g.74) is applied, then Kr(dz.) is
described by Eq. (f and D(-ﬂé) by Eq. {£.73). The
condition of D = congt. is satisfied in thesea equations
if

either = -(a - 1)/(b - 1}

or a=bh =1,

If the first condition is applied to Burdine's method
we get H = Hpa® and K, =¢9 -1 Neither of these conditions
is physically real and 51m11a esults are obtained with
other two approaches, i.e. of Childs and Collis-Georges
and of Mualem. fThe first condition is therofore
unreasonable. From the second condition we get for the
linear soils (Kutilek et al., 198%):

-1
H = ;; 2 (/.77)

7y +1
k.= 6;”?' =
hk ﬁ;s
b=~ (8.79)
BERNCEES i

T

[
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Ifﬂ, = 1, the relative conductivity function is quadra-
tic and meets the requirements of the solutions of the
Burgers' equation (Clothier et al.., 981). Sl

thesreivally
Ghapkar—fes In general , there existy'a
soils described by the above equations. Eg. (%.78) of
Kr('ﬂé.) looks different from the up to now described

scils. We have to emphasize that the roots in this

amily of linear

deviation 1lie in the transfer from the theoretical
distribution function of the soil pores f(r) to the rea-
lity of the scil water retention curve 4 (H).

Concluding, we should keep in mind that we apply the
soil water diffusivity in the basic Richards’ equation
in order to reduce the number of variables and the phy-
sical meaning of D is indirect, D is strictly defined
only mathematically, see Eq. {(K.65). Further on, as D i)

is dependent upon the derivative of the soil water
retention curve, it should have different values for wet-

ting and drainage processes. The influence of the tempe-~

rature upon D(# ) is predictable in an approximative way, oa/yl

due to some not well defined effects acting upon both,
the A~ (H, T) and K{(4, T) in addition to the change of
the surface tension and of the viscosity with T.

.3.5 Diffusion of Water Vapor

In the previoqis Chapter : .3.4 we have already shown
that the peak in D(# )} relationship in the dry region
of soll is due to the flow of water vapor. It means that
the s0il water diffusivity D contains two components: Dp,
the diffusivity of the 1liquid water, and Dg, the
diffusivity of the water vapor,i.e. in the gaseous phase
and D = D + Dg (Philip, 1974}. To derive Dg, we follow
the procedure of Jackson {1964). The Fick's law of
diffusion is

% (é(.ao)

5436 o

where wvg is the flow rate of the water vapor,ﬁais the
relative density (concentration) of water vapor, Dp is
the diffusion coefficlent of water vapor in soil which
is approximated by

Lr

where Dy is the diffusion coefficient of water vapor in

=« (P-8)C 5o

free air, ®{ is the correction factor of the porous media aAdf

. e /nte agpcoen?
which shmild the tortuosity. More abog_t.ﬁd
it and about Eq. (5.81) see Curie (1961) amd-Rese—{196%}, k.’o:_-/;:?/;/ﬁ
The analogy of the Richards' equation, i.e. the ¢ D)
combination of Eq. (¥.80) with the equation of continuity

is

%06 2 /D4 9(%)_ 1 e
2% e \T-¢ x/ P-6 0 (9.82)

where the second term on the right hand side of Egq.
(,5.3'2) denotes the sink due to the adsorption by which %G/?Z‘
is altered, too, not only by avG/ax. Since the change
in® is small compared to (P—Hin the relatively dry soil
where the vapor flow is examined, we can approximate/p—é-'

= const., and

? 24 ? o@
(T—-4) fie M;) (£.83)

7¢ *7E T ‘Df"%o

Taking the first term on the left hand side of Eq. (F.83)
as negligible when compared to 76‘/)[':and since for the
single valued gliq.@):.s

~

9ﬁqu@G oL
2 de dxe
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we get the final equation
p2 ? a ¢
77 T e @4 rYR ) (%.84)

where the water vapor diffusivity Dg is analogical to
the earlier introduced scil water diffusivity and it is
expressed by

C{, A
.DG =‘D/v 2‘% (#.85)

The term df‘aﬂ\’is actually the slope of the adsorption
isotherm and its inflection point corresponds to the peak
in DG(dy). The water vapor diffusivity rises to this ma-
ximum from 4 = 0 and reaches this peak at the relative
water vapor pressure p/Po = 0.3 up to 0.4 in majority
of 80ils.The maximum value of Dg is in wide ranges
between 107® wp to 10-3 cm2sl i, dependence upon the
texture, mineralogy of'clay fraction and organic matter
content, see the Fig. F.13. Further increase of & results
in the decrease of Dg while the component in Dy,
increases, exceeding Dg at B/Pg=0.5 up to 0.8. In terms
of the average thickness of the adsorbed water Ffilms on
the soil solid surface, the water vapor maximum in is
reached after the first molecular layer is completed and
before or at least when the second molecular layer is
formed. D exceeds Dg when about 4 up to 6 molecular
layers of adsorbed water are formeqd.

Here, we can show that if the non-Darcian prelinear
flow is expected in the first molecular layers of water,

the effects can be overshadowed by the flux of the water
vapor.

5438 34

3.6 Two Phase Flow

Up to now we have Supposed that the water flow does
not meet the resistance when water is filling in the
pores. The fluidity of the soil air is by orderd higher
than that one of water so that the resistance due to the
slow flow of air is implicitly neglected. The assumption
on one phase flow, i.e. the flow of water onl&, is not
sufficient in such instances when the free escape of air
is blocked by small Passages owing to the existence
either of a layer of a higher water content, or of a less
permeable layver., If such a case is met, the flow of both,

of water and air should be solved as influencing mutually
each the other.

In the theory of the two phase flow, the two phases,
air and water are assumed to behave like two immiscible
liquids and the basic flow equations of the
Darcy-Buckingham's type will be rewritten in the form
simply fitting to both phases and the pressure gradient

is taken first as the driving force (Morel-seytoux,
1969):

V= A (3 -0,2) e

V2 =~ (%%‘“ ~@ig)

A (£.87)

where the index W denote water and A air, p is the
pressure [L‘1MT‘2] . FD is the density ['L‘3M1 ¢ g the
acceleration of gravity LT‘21. The coefficent}l is the
fluid mobility:

A= %ﬁm (5.88)

where Ky is the relative conductivity of the given fluid,

g pp———

P A e
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Kp is permeability [Lzlandcu is the dynamic viscosity.
The dependence of both Kya and Kyy upon the soil water
content as determined experimentally by Touma and Vauclin
(1986) in sand is in Fig. 534 The continuity equation
is for water

3 (Pw?) " 2Py V) W)
¢

?/b (¥.89)

and for air

9[%‘%4)7,_ 2pa 72 — 0
9+ A (%.90)

with‘t" =P 19‘the volumetric air content. The difference
between the pressure of two fluids is the capillary
pressure p. = pp -~ Py and for water taken as
incompressible fluid we get

Sa _ta Pw 4
PAo Mo Pwo

where the index o denotes the value at the reference

(£.91)

atmospheric pressure. As the pressure head was more
convenient in the one-phase flow formulations, we can
use

L MM T
o fw ¥ A Pw
H, = HA ~H, (F-93)

and Bq. (9¥.86)} and (ﬂﬂB?) are transcribed in a more
familiar form

(;f.92)
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W=_./< (rﬁ—)(a#"’.—. ) (8.94)

U
vz~ Ky (%) 7?; ’55,:,) .o

with Hp - Hy = Hc wieh—Hp, Ky is identical to earlier
notation K(f ) and Xp =5ﬁv?‘1 is the air conductivity,
both in [LT'll . The analogy of Richards' equations is
obtained (Touma and Vauclin, 1986) for water

L]

and in the capacitance form

G e - 71 - e

with

= At [ H,
For air is

7
9@;2,4 T A(Jéﬁﬁ "ﬁ) Fo

When we substitute’é1 P~ ‘&w1th A ﬁ (’[*# /#Jand using

Cy we get again the analogy of the capacitance equations
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fa W9#W [(p #) PAD -Gy 9#4

) b‘#A _ _)] (5 59)

When the air is continuously connected to the external

atmospheric pressure which was taken as the reference,
then Hp = 0 and Hc = Hy and Eq. (F.97) is identical with
Eq. (#.63).

The presented theory offers reliable results if the
pressure (or potential) drop in water across the less
permeable barrier is small, or, if the barrier is not
reached by the wetting front in the case of infiltration
and limits only the flow of air. If a substantially less
permeable layer exists in the domain of the flow of
water, a steep gradient of the water pressure {(or of the
water potential} . develops wusually across the less
permeable layer. In these circumstances, air and water
cannot  be considered as immisecible fluids. The
dissolution of the air in water should be formulated as
the dissolution of individual gases of the mixture
according to Henry's law

C.{; =R, /"4) (£.100)

where Cj is the concentration of the i-th qas, ki is a
constant dependent upon the temperature and the nature
of the gas and p;j is the partial pressure of the i-th
gas. Considering the numerical values of ki and of pj
of gases composing the soil air, the dissolution of the
nitrogen and of the oxygen will play role. When the
pressure in soil water varies in order, the same will
be for the concentration of the dissolved Nz and 03 in
s0il water. With the abrupt decrease in soil water
pressure when water passes the less permeable layer, the
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originally dissclved gases will be released. Small bubles
of air are thus usually accumulated mainly on the bottom
boundary of the less permeable layer. By this mechanism
the hydraulic resistance of the less permeable layer
increases and the increase is time dependent. For a
detailed quantitative understanding, the experimental
data are still unsufficient.

.3.7 Practical Conclusions

The unsaturated conductivity K is physically dependent
upon ¢~ and as ~& (H) exists, K(H) is derived, too. From
the mathematical treatment of the equations the
characteristic soil water diffusivity D(#) is derived.
It is typical by the less steep relation to #, when
compared to K#). D changes usually up to two orders less
with # than K in the range of scoil water content between

dry and saturated soil.-An-example—ef—the basic—hydraulis
o Higd) K () 3 D) i . . 41?

Owing to the close relations of K(#) and D(¢) to Kg and
to H{#) we can expect that the dependence of K(&) and
D(#) upon the nature of the soil can be deduced from the
earlier discussed influences. The change of the soil bulk
densitySDT owing to a simple compaction results in the
decrease of the volume of pores of big radius and in
extreme the domain of these pores is eliminated at all.
This change is reflected by the change of H(4 ),
sometimes its original analytical expression according
to Eq.{#3#) has to be substituted by the model of Brooks
and Corey, Eq.(¥£36). The consequence is not only in the
shifting K{(4 ) to lower values but it means that Ky(4 )
is changed.

The nature of the exchangeable cations influences the
shape of K(4- ) and of D(£ ), too, mainly by the altera-
tion of the aggregation and due to the coagurflation and
peptization processes. Practically, it is dornfﬂa.h+|1
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the value of the exchangeable sodium percentage ESP which
plays the dominant role. The lower is the concentration
of salts in the so0il water, the more expressed is the
influenfe of ESP upon the reduction of K{-¢ ) values,|see

n—elays Kt
approximately -20%,—sep-Pig—318. When this type of drastic

changes in K occurs, the swelling capacity of soils is

altered, too and the decrease in 4 does not necessarily

meand the increase of the degree of unsaturation, and

applied. The change in K(# ) and in D(4 ) brings about

the alteration in av 11ab111ty of so0il water to plants
<ly Erks ‘éwéq?v 5 per

If we assume e. g. ﬁa% Da = 0~ YernZmin 1 is a

critical wvalue for the flux to plant roots to prevent

the permanent wilting, we obtain the critical value ofﬂc'

which replaces merely empirical wilting point. This value
of«% ig extremely sensitive to the ESP in clays of the
Vertisol type provided again that EC_is kept at a low
value of EC < 1 mmhos.cml, see Fig. . which summarizes
the data of Kutilek and Semotdn (197%) and of Kutilek
{1983). Further informations on the combined effects of
EC and ESP upon the hydraulic characteristics of soils
are available in the study of Shainberg (1984).

Y gk
5.4 Flow in Non-iméwt Soils

When the soil swells or shrinks due to the change of
the water content, the egquations untill now developed
should be modified. For the sake of simplicity, the one-
dimensional flow of water will be considered, only,
involving the one-dimensional wvolume change, too. A
complete theory has not yet been developed cn
three-dimensional wvolume changes resulting in opening
of cracks when the s0il dries and in closing them when

the soil is moistened. The volumetric change of the soil

5t ko

to the change of the scil water content depends upon the
degree of the preconsolidation of the soil, especially
in the wetting process, this being again a difficult
task. The theory presented here is therefore just the
starting point to the understanding of the
swelling-shrinkage phenomena accompanying +the flow of
water in soil. It is more applicable to the artefacts
of laboratory procedures then to the field hydrological
problems and only some clearly specified teriain
processes can be' solved approximatively by these
theories.

When the soil swells during wetting, the Darcy's law
should be modified according to Gersevanov (1937) and
the flow rate of water should be related to the solid
phase. Instead of the Euler's coordinate system, the
Lagrange's coordinates are considered. In the
onedimensiomal treatment of swelling, the original
proposal was redefined by Smiles and Rosenthal (1968) as
follows:

am, T 1
Y = e (; 01}

and integrating

{9.102)

pon

b3
A
38

or X
/m/zf(’/— P) olx (§.103)
)

Equation (§(101) shows that the ratio of the material
coordinate m to the Eulerian coordinate equals the ratio
of the volume of the solid phase to the total volume of
the soil. Fig. .#9 is instructive in demonstrating the
material coordinate and it depicts the following type
of experiment: The dry soil has been originally put in
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a tube up to a certain height denoted by x = 0. After
that, the surface 1is flooded with water. As water
infiltrates into the soil, the iﬁégiégégiég}i-water rises
since the soil swells. After a certain time of
infiltration we measure the depth of the wetting front
from the woriginal x = 0 and denote it by Xg.
Simultaneously with the water content, the bulk density
is measured and the porosity P is so determined and
plotted against x. P will be plotted into the negative
part of x, too, since the soil surface rose compared to
the original position of the surface x = (0. The material
coordinate m expresses the volume of the solid phase
flown by the water. Since we ca#n not predict to which
elevation the soil will swel% we define the lower limit
of integration as —o& . Mind that the integral (#.103}
has a zero value for P =1 and therefore m = 0 in ranges
<- 00 , recent surface>., If the soil is preconsclidated,
we can assume that 2 = e(l + e} = const. for x > xg. If
the seil is not preconsclidated, the soil is compressed
ahead of the wetting front by the swelling pressure. This
peak of the minimum ;>min is moving at the same rate as
the wetting front and the value of P min decreases, l.e.
the value of fl“/pmin’ increases with time and with
the surface load (Kutilek, 1984). All these effects are
very distinct in montmorillonitic clays of Vertisols and
they increase with the increase of ESPF and with the
decrease of EC. .

Darcy's equation in the Lagrangeian coordinate system

is
add
'% = '_'K/m/ d. o (5.104)

where d; is the total potential where the envelope
potential is included and Ky is the function of the soil
water ratioﬂ;hich is replacing the volumetric soil water
content in the equation of continuity which is modified,

5446 Lo

tog
N
5 = T (£.105)

Since the element of water in the element of dm is

(1re)é dm = —— com

1+ e = {(9.106)
) =T 7

and the change of this element in time dt is equal .to

the change of the flow rate over the dm, we obtain

7 [ ' 9?5;1/
e [ (T4 6)19’_/':— e (£.107)
2 ¢ ( ? -
Combination of {5.104) with {5.105) leads to

b D ?
52 :%[KWM) "9}%{"] (¥.108)

and as dm = dx/(1 + e), we get for Ky

K
K =— {£.109)

m T+e
where K should be practically Kg as the saturation is
supposed, but in the swelling soils K(1l) or K{e) and
even for the saturation the conductivity can not be taken
as constant. The term K is determined in the Eulerian
coordinate system. If the single valued relationship ﬁHH)

is assumed, we get for the horizontal flow in the
unloaded system

2 D 2
--——91_ :?—-”;V—Z_.D(ﬁ')m {(F.110)

2H Al 2t
D, AV Dmo

and r..
Jp(iﬂ) A A = K . A
1+e o & mo of 1*
Further developuwcnts for the loaded curince and icr
vertical dlutiltration cee Philip (19735)

with

Llk

T

g

T
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INTRODUCTION TO THE INFILTRATION PROCLSS
by

Miraslav KUTfLEK

Technical University, Prague, Czaschoslovakia

Notes to the lecture at the College on Soil Phyeics, ICTP,

Trieste, Italy.

1. DEFINITIONS

Infiltration is the process of entry of water intd the

89il through the soil surface,
S5il surface - plane: horizontsl -or inclined,

- concave or convex, combination,

- cavity: sferical or tubular.
Source of water - covers the whole surface,

- only & part /point, line.../
Solutions: one dimensional vertical
horizontal / = absorption/

two and three-dimensional

This introduction is restricted to the one-dimensional vertical
infiltration thraugh the horizontel plane. Soil will be

considered as inert to water /no shrinkage, no swelling/.



2. NOTATION AND BA-1C T<RMS

A

parameter in Philip’s algebraic equation of infiltration

A2,A3..parameters in Philip“s series solution

Cov

qOC

{8

empirical constant in empirical infiltration equations
goil water capacity, C, = do/dH

so0il water diffusivity

Diriehlet”s boundary condition -

Flun concéntration relation, F = q/q

s0il water pressure head

air entry value of H

initiel value of H

nressure heed st z = 0

sressure head al the wetling front in Jreen wnd supt’s
approximate solution

cumulative infiltration

cumulative infiltration with DDC

hydrsulic conductivity K{(s)

hydraulic conductivity at the initinsl esil water content -&;

gaturated hydraulic conductivity

depth of the wetting front

sorptivity

flux

infiltretion ratz with DEC

effective rain intcneity

flux at 2=0, i1nfiltration rate

constant infiltration rate for DUC, theoretically at t —>eo

approximateas of Ks

-1 -
Q51 infiltration rate at t=1, usually at t = 1 min
Q. rain intensity

t time

tp ponding time

z vertical coordinate

é,ﬁ%y;e empirical exponents in empirical infiltration
equations

Boltzmen’s variable

aoil watér content

initial s80il water content

80il water content on the soil surface, at z = O

us? cﬁ) ,ﬁ? (Q o

saturated scil water content

g

A

g

R



3.

Al

ROL: OF INFILTRATION

In hydrology: Infiltration divides the precipitstion in
(a) portion of the surface water exceas:

(al) immediate surface runoff,

(a2 ) surface storasge etc.
{(v) portion of water entering the soil:

(bl) storage of water in soil porous medium,

(bz) feeding the ground water,

(al) and (bE) supply the river discharge.

B.

C.

D.

In plant production: Continuous flux of water through
the plant - Discontinuous source of water in precipitation

Scil: storage reservoir with A.(bl).

In environmental proéestion: Water = carrier of polutents,
Rate of transport of polutants from the socurce of polutants:

by A(al)>> ab2).

In soil hydrology: One of the elementary processes.

A note: Soil hydrology = elementary processes (infiltration,
redistribution, drainage to ground water, upward fluxes,
evapotranspiration‘) + meteorolozic situations and processes.
The resulting storage of soil water is classified according
to the degree of the excess or insufficiency and to the
duration of such a period. The year’s and vegetational

period is considered, tooc.

4. BOUNDARY CONDITIONS

Richards® equation ie solved either in the diffusive form

(Klute, 1952)

- _ D I W1 AK D%
2t 9 P(&)ﬁ] Ab I

(1.1)

or in the cepacitance form

A IH pi TH T 9K(H)
5 T k()] S5 (t.2)

0(19-/0(_/{= C, the moil water capacity.

Soil is considered as the semiinfinite column. Richarda’
equation is solved for (&) the initial conditiony in the

gemianalytic and approximative procedures:

o= t=0 z >0 r3)

In numerical methods H = Hy ingtead of 6 = B¢, In the field:

A9'=:61(z ). '

(b) the boundary conditions. We distinguish Dirichlet’s

boundary condition-and Neuman’s boundary condition.
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4.1. Dirichlet’s boundary condition (DB@ , concentration
condition 2

Formulated as either scil water content €4 or the soil

water pressure head H on the boundary:

& = B z=0 t>0 (T4+)

Usually: ,ag =By

= H, 2 =0 £> 0 T.5)
(exact}

Field situations: Floods,
Irrigation: Check-basin irrigation,
border irrigation,
furrow irrigation.
Infiltration tests: Double ring infiltration test,
basin infiltration test.
Note: H = H, (t) is formulated in some numerical procedures,

too, e.g. for infiltration with falling water table,

Reeults of the tests and of the theoreticsl tremtment of the
problem:

The eo0il water content profile & (z,t ) is similar to pidbn-like
flow (:atep-like profile), especially in sands. Inclination of
the wetting front in clay incresses with time (Fig.l' data

from Heverkemp et al., 1977). If-ei increasses, the rate or

advance of the wetting front increuses, too.

-7 -

Cumulative infiltrotion in time I{(t) is steep at short
time, after long time I(t) is a straight line (theoretically
at t-ﬁbuo) + Infiltration rate q, decreases firast rapidly with
time, at t = 0 is qy*oQ « After long time, dq,/dt — const.,

theoretically lim qa(tj = K . Constant rate q, is denoted
t > o0 '

sometimes q ('Fig.2). The shape I(}), q,(t) depends upon

the hydraulic characteristics of the sail KG&O,‘sfﬂ) end upon
@4, €. With the increuse of 8; the rate q_ decreases CFig.3 Vo
light clay, Philip, 1957). When H_ > 0, end the depth of water
on the surface increases, the infiltration rate q, increases,

too (Fig.4, light clay, Prilip, 1958).

The procese can be partitioned into matrie and cravitational

components, [ig.5 (Kunze, Fieléen, 192 ). Tha antrie Povess have
the dominent influsnce at ihe carly sltoge of infilt=ation, the
gravitatisrel forea et larze time. The relativa Aifference of
the position of th: wetlinz front betwean the horizontal and

vertical infiltration incrs:ces with time.

4.2. Neumen’'s boundary condition (NQC ;) £lux condition )

7

On the boundary z, instead of the s3il wuter rontent
(or pressure head ) as in DEC, the flux q, ic defined. Bither
g, = eonst., or qo(t):
pLE
= —D o) — & s = ~
g ()ag, k() £2=0 >0 @s5)

or

o= K(H) 2 k(M) rmo >0

R

g

R

s
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Field situations: Rain infiltration.
Irrigation: Sprinkler irrigation.
Infiltration tests: Rain sigpulutors.

S5ince the infiltration rate q, ¢en be under cerigin
cirrumstances lower than the rain intensity Qe We have to
use in the diecussion these terme with the sirict meanins:
qn = rain intensity ( = flux from the atmosphere),

q, - infiltration rate (flux through the soil surfnce).

4.2.1. q, = const.

Two claasses of problems of rain infiltration exist, if

Q4 ia the rain intensity:

A. 0 <qx_/1{8'§_- 1 and q, = 4

The boundary condition isCLE). The profile ot the soil
water content is in Fig.6, the s0il water content at the

surfacea@a increases with time, approanhlng-@a in g, = Kfeb).

B. q./K,>1

B.1. Time interval O0<t< t,, g, =q,

The boundary condition is in the form of NIC:

rn
zoﬂ—*;b('ﬂ—)%; + Kf#) 2=0 o<t< t]v 6)

-9 -

The 83il water content at the surface ’96 increases with

time, reaching &, = €, et ponding time t = tp (Fig.?).

B.2 Time t )-tp

The boundary condition is in the form of DBCW . +h .

either no runoff of excess water

h=h(¢y 2=0 t >ty -

or full runoff of excess water

b = [} t>7,('

& = 4 (x.8)

Ly
or b = 0

Time of ponding tp separates from the rein the effective rain
which can cause the immediate surface runoff. The greater ie
the rain intensity, the shorter is the period without ponding

and tp decreases (Fig.s, Rubin, 1969).

4.242, Q:! t ! e

Note: Infiltration with DBEC (from the ponded surfece with

H, = 0 ) can be formulated as infiltration with the flux

boundery condition and with qr/Kd-;_c> when the non-infiltrated

o y )
excess water flows away-(full runofleiThe ponding time t, for ir&j

is obtained from two equalities (Kutilek, 1982, Peachke and
Kutilek, 1982 , based upon the development of Mls ;1980 and
Kutflek | 1980);:




t Tk :
g (t)dt = [g, ()2
0

; ()

fa_ (ffu) :_Zb (fx)

(X 10)

where q ie the infiltration rate with DBC ( = ponded surface
with H, = 0). Graphical demonstration is in Pig.8. When

q, = const., and q /K > 1, we get

tx
t, = (t At
Ln 5( 250 @11)

see Fig.8.
The infiltration rate g, at t >t is qp (T°) with
T=t - (tp - t,), i.e. the q) curve is shifted by (tp - tx).

Effective rain rate is
7= 9.(t) = 7,(%) @z)

The relations between the infiltration with DBC and NBC as
discussed above in eq{)9) to(1l2) are velid if the soil
surface is not affected by the resin in a different way from
the ponded type of infiltration. The sealing of ihe surface
due to the kinetic energy of rain drops is not conecidered,
As it follows from the development, the ponded infiltration

test with DBC should offer sufficient informstion for the

w 1] =

determination of‘the rainfall infiltration C'with NBC )
provided that the sealing by rain does not exist.

Graphical illustrations for rain intensitiee closer to
reality and to the hydrological practice ere in Fig.o
(Peschke, Kutilek, 1982).

Pl
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5. CLASSES OF SOLUTIONS

5.1. Physically based solutions

The solution of the Richards’ equation({.l) te the initial
and boundary conditions(LJ) andﬁ.4) is searched and the form
I{t) or q(t)ie preferred.

Philip’s (IQBH procedure starts with the solution of the

horizontal infiltretion and the result is corrected with
regard to the gravitational term, Fig.5 1is instructive. The
solution is based on the similerity solution ot the one-dimen-

eional absorption of the gravity-free Eq{d), i.e, of

e 7 e 7
ﬁ=gp(4ﬁfg/ (#13)

for conditisns(§,3) and (1_4). Solution of dq({.l;a is the first
step of the solution of }:.q(i.l) end it hes the form CFig.lO)

%
7 ( / b ( ¢ (1-14)
The cumulstive volugie of water thus infiltrated is

o
Z, = I/Z,, (ﬁ? t)d# (4-15)
Py
When the term sorptivity S (Philip, 1957) is introduced

rQ‘O
8- § 9 (B) it (16)
..6)‘,{'.

we get

I =S5t @a7)

As Eq{l.l_’}) is equal to Eq.@-i) when the gravitational term
?K/‘a/b ia introduced, the solution(l.ld;') has to be corrected

by the term y and
=Ty @.18)

where again y (t,f&') . However, the solution allows to obtain
the approximate of y only, denated here ¥ and y --ﬂjvl + o,

where uy is the error of approximation and
A= mgt g (4a9)

with transformations analogic to ({-14). The final solutioi

of (l.’l) has the form of a time serie solution
% 34
2 ; cew
(e t) =t Bt T (<0
In enalagy to(l.l'j) and (#17) Philip obtained

7 3/ /3
I=S4t/2'*f‘f5\'g_ﬁ +A3t ot Ay T “’“Kif(q.zl)

The laat term expresses the flux at -B-= '6':1’ gince

oo Bo
((t=t,) tn - fao= T(4) Kt gy
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Parlange s (1971) approach was different, He integrated

in the first atep the equation of continuity, the result was
combined with the Darcy-Buckingham equation, integrated again
and this first approximate zy was used in the next second step ete.
The method wes modified by Cisler <i974) and by Philip and
Knight (1974):
Philip (}973) first discussed the flux concentration
relation (Harel-Seytoux, 1971)

fﬂ..
AL
ﬁ@*)d@ Z @)
G

1

in various types of the unsaturated flow processes and for
the envelope of possible solutions;
(a) the linear soil, D = const.,

(b) soil with D{@-) according to Diree O -function.

Further on, Philip and Knight ( 1974 )have propoged an
iterétive scheme for the solution of the horizontal infiltration

( absorption)with sorptivity expressed aa

l’%( 6:) D (%) Th
b b

SIW:P’I d,guj (1-24)
B

f (%)
The index n denotes the n-th approximate, Fn is B priori not
known except of linear soil and Dirae d-function soil. Generally,

F (b,193 61,-66) . For the solution of the vertieal infiltration,

- 15 -

they started with en anslogic development as for absorption
and finally they obtained a relatively laborious iteration
scheme. The principle disadvaﬁtage in applications is that

I(t) is not explicitly formulated.

Parlange et al, (1982 )hmve utilized all tools up to now

developed in the solution of the vertical infiltration. The
procedure was extended to the ponded infiltration (Parlange'
et al., 1985) end modified (Hbvarkamp and Parlange, 1987).
The description of the solution of the “"double integration
method” will be subdivided into 5 ateps:

lat step: Richard’s eq. with & changed dependent variable is
integrated, The e#plicit?expression for z is obiained and
the flux concentration ratio is introduced.

2nd step: In the cumulative infiltration I = {2z a-6 the
srevious expression (1at integral of Richards” eq.) is
substituted. DE&-)is subdivided into two domeins: 1. domain
with D{6 ) continuous. 2. domein with D defined by the Diere
I:function. This expresaion is transéribed into saturated
conductivity and the water entry veluz H, is introduced here.
3rd step: In the previous expreasion a difficult solvable
integral cccurs, It is treated now by o shape factor. This
parameter occurs tozether with FGG') when the relative con-
ductivity is related to the relutive sorptivity., After substi-
tution of a new varieble in the relative cicstivity and
derivation, the inte_ral from the 2nd SLep Lo inle.rated,
4ih step: The correctlon owing Lo the soalursbel sotie ol the

surfece is performed by Durcy’s law.

P

T

E—

L
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5th step: The equation is rewritten to dimsnaisulecs Leims
and I is obteined as a function inter alia of g, after
derivation, rearrangsment and integration, the final eolution

is obtained with the shape foctor from the 3rd step equal unity:

[T-Kk;t]=

Ko (Hy —Ha )% — 0% )
Jo ~Kg

S+ 2 Hy /{c
t

1&') /ﬁv 71¢££__'(_'£—
< (]t@ zirq .ZL -

(%
)

(1.25)
Ko (Hy —Hn )&~ 0¢)

(ks ) (%

S'b-f—_z Ks //A ('9'0 “'9‘41) .

2(9,— Ky )(Ks k) @-2)

* LK (Ho= L Ha (s —<
L(ks —#; )"

=

,Z’Ks
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2.2, Approximate solutions

when the convergence ot Eq.(l.?l) is ronsidered, a simple

Philip’s elgebraic equation (Philip, 1957) is obtained
T N

3
= § +FAE
'a t (1.2.7)

where A includes theoretically Ay, K; end the truncation error.
Philip (1969) has shown that A is related to K., generally
/(8/3 <A< 2'/3 K., However, for large time a4 —> Kg

In the method of Green and Ampt ((1911), the soil water

content profile is simplified to the step-like profile C?ig.ll)
with H. acting es the accelerating force on the wetting front,

ith{ N 1976
wi ( eumann, Ar ) 5

f /< !K(H}AH ——;9»(&)0(,& (1.28)

or

[ gt -Lt K(H)
f G — 4. kg d/ﬁ ("'29)

As the whole step-soil water profile is the saturated cdomain
of the soil, infiltruation is solved by the application of

Darcyfa law:
/¥o — ﬁ;'vkziJL
Ze - KA L B (430 )
f . L

Here, KA ia the approximete of KS' K, >~ K
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Philip (1957 and 1973 Yhes shown that the step-like profile

is exact when D-9- is the Dirae’s J:function} and then K, = Kg.
As q,(t) end Lf(;), too, éo(t) is expressed as

di/dt, I = Ly (6 - 9;)» end after integration

5Tt (1+ L) Can)

with
Ky b « T

= L= — (.32
fﬂi"'ﬂ-‘-)(#o"iff) (ﬁ."ﬁ{)(ﬁo‘ﬁf)@ )

f:k
since for horizontel infiltration I = Stl/2 with

%
‘C=FLKA ﬂf’—ﬁf)((% _r&")—’[ (433 )

eq él)can be transcribed to

4
!
Kot=TI - é—/ﬂb[ﬂ zr?] (154)

\Y

or

I .
T=K, ¢ mz/&u[ujf] (1)

win A= (B ~Hy ) (% -, ).

=19

From the Philip s serde solution (I.21) hutilck end Krejéa
{19&7) obtained the three perameters cguation

k)
I=d,t"§' "‘”C&f f‘CJf /2. (I.30)
for dg/at 7_';0 is_ e,
Lim 30 (1.37)
an¢ ae approximation for q(tlim)c:,ks is
éé '.

Swartzendruber (19&7) hae adjusted the Fhilipé serie solution
(I.21) to the limit t-so throush the exponcntisl form end he
got through this fully empirical step

7 ¥
I-=§;[1_gyf‘,(-Aof Bt -0t 2--_-/+.(gz."- (1.39)

When he neglectwuemnberg of higher order, he gete

7%
T =_%[7..“/_, (At )]+ Kt (140

A simplification of (I.40) is the Strooanijder}equationd (1976).

If we express exp(-Aotl/?) in eqe (1.40) aau & serie and when
we consider the £ist 4 members only, we et aftur reaprange—
ment

T-st™r Xt + Bt oty

A= Ks "on /2 (1.42)

F = (sA.) /¢
and then using the symbols of (I.36) we (et

ko= (% CC, )ﬁ' O, (1.45)

Brutsaert s (1977) equation is basod upon the Philip s series
solution {I.21), too. After simplifying the originel treat-
ment we get

g

L

-

T R



L=StE g * 5t (1.46)

with 2/3Sa £1, wost frequently a=2/3.

In Collis-George s (1S77) Gerivation, the cupiriccd upproaches
prevail. He stgr%e with the requirement ihat for very ehort
time is8 I = Stl/2 while for t-»ew ig 41/d4t = ks according

to our notation ueed hcre. With some pimplificetlions is

I=1I, (tanh T)%1 4 ¢ (1.47)

where I, = S(tc)l/? and t, is the time of the stert of the
quesi-gtesdy infiltration, T = t/tc.

24

5.3. Empirical equations

The empiricel relations were proposed for the gradual

decrease of the infiltretion rate a, with time t:

%Q)aamemmmﬂm

Kostiakovs equation:
e —— e .
jo - C?.,t (T.4g)
04 (f"n{}

T = t (L.4¢)
Vhat-3

where C,, ol are the empirical coefficients, €y shauld equal

Q1 the infiltration rate after the firet time unit, usually
Bt t = 1 min, 0 <« o< 1. The equation is not a.proprimste to

the descriptiosn of infiltrotion at large time as qo-> 0 at

t ~> o0 . To overcome this incovenience, Mezencev (1948 )

proposed the shift of q axisg:

i

io CJL * CG f_ﬂ (t.5)

!

7 2(74)
I = C!lf 7 ';j;;f_" C;g 3 (r.51)

where CE' 03,/@ are empirical coefficiernts. For t—= o0 is

€y =2 Qua» the constent infiltration rate, when the quasi-steady
infiltration is reached. Theoreticslly v = K. (Cp + €))
should equael q_;, the infiltiration rate after Lhe first time

unit and ¢ <f/% < 1.
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Zxponential decay of qO(t):
Horton’s {1940 Vequation:

20 0y t Gy 20 (2 (5)
LG b e SO [T frt)]

where 04, CD and }r-are empirical coefficients, 4t t = 0 has
q, @ final velue, in contradiction to the theory of flow in

porous medie, For t —>oo0 is 04 - q,, ond 04 = K, is frequently

supposed.

Decay of g, with I:
folten’s (1961) equation:

&
Jo = ¢, (W' I) * C,Z (1-5%)

where Cy, C,, £ are empiricol coefficients, Cq = quer W is
s0il water storage mbove the impeding layorﬁlf_is not

integer, most frequently &£ > 1.
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