: w ! i NP ERKNATLTLOUNAL P S P
O L UNITED NATIONS EDUCATIUNAL, SO [Bl v c i sl i in o

el INTERNATIONAL CENTRE £07 Thoone s

LOLP, PO BOL 586, 54106 TRiLSS o i TN IR T

H4.SMR. 403/21

FIFTH COLLEGE ON MICROPROCESSORS: TECHNOLOGY AND APPLICATIONS
IN PHYSICS

2 - 27 October 1989

Software Technics

P. BARTHOLDI
Observatory of Geneva, Sauverny, Switzerland

These notes are intended for_internal distribution only.

Mac Bonisg Srrape Cosmitia 5 TEL 22437 Trogean D24163 Teeey 360207 Apiarico GuesT Hovgy Vs Gecas ;
Mikopaoeesson Lak. bia Bl oo L Te 2047 Terpees 224167 TeoEx 460342 Gatiteo Grest Hovsz o Ves Bow -

Software technics

Paul Bartholdi
Observatory of Geneva
CH-1290 Sauverny
Switzerland

Preliminary notes - Trieste - october 1989

Fifth College on Microprocessors

Contents
1 Introduction, why Software 7
1.1 Historical perspective i L i i e e e e e e e e
1.2 Grosh’slaw 0 e e e e e e e
1.3 Trade-offand conflicts e e
2 Structured programming
2.1 Goals .. e e e e e e e e e e e e e e e e
2.2 Proposed solutions L oL L e e e e e e e e e e e
3 Top-down design
3.1 Programme development phases e e e e e .
3.2 Somegeneralrules e e e e e
3.3 Programmecoding e e e e e e e e e e
4 Block-structured - Modular programming
5 Documentation
5.1 Internal documentation to the code (foreachmodule)
5.2 Programme logic manual - for mainterance,
5.3 User’s guide - reference manual,
6 Stepwise refinement

6.1 Anexample e e e e e e e e
User interface
7.1 Somegeneralrules e e e
7.2 Sometricks L e e e e e e e e e
7.3 A verysafeand stablesolution
7.4 Common user interface : MENU
7.4.1 Somedesignrules e e e
7.4.2 Whyldonotlikemenu i,
7.5 Latest fashion : ICONS e e e e

10
10
10
11

12
12

CONTENTS 2
7.5.1 Example of a screen withicons L oL 18

7.6 Signal generator user interface. L L L o e 18
7.7 Main interpreter loop L L L e e e e e e 19
7.7.1 The symbol table / jump table, 0 oo 20

7.7.2 Signal generator usingicons L o 20

7.7.3 Extensions to signal generator e 21

7.7.4 Address manipulator user interface L 00 0 21

8 Standard 24

1 INTRODUCTION, WHY SOFTWARE 7 3

1 Introduction, why Software 7

1.1 Historical perspective

Although history is always more complicated, we can put all computers into 3 groups, according
to the technology they are made off :

1. Tubes (valves) (1940-1960) , very bulky, costly, unreliable
2. Transistors (1960-1970) bulky, costly, reliable

3. Integrated Circuits (IC) (1970-...), very small, cheap, very reliable

During the last 45 years, we can see that :

s At constant price, the “capacity” (speed, memory etc) has increased by a factor of 1.4 — 2
per year

¢ At constant “capacity”, the cost has decreased by ~ 1.5 per year
or 10’000 in 25 years

Now, the hardware becomes available for all kinds of functions (down to coffee pot)
but it is the software which makes this hardware so flexible and performant.

The same hardware will be used for many different applications (-~ low cost).
For many applications, the special features of the hardware becomes less immportant.
Since 10 years, the cost of software >» cost of hardware,

and so we need tools to make good use of this cheap and powerful hardware !

1.2 Grosh’s law

30 years ago, Herbert Grosh published his “law” about the cost versus performance relation. At
that time, the most powerful computers where also the cheapest for a given application. But in
1957, only big main-frame existed. In fact, the Grosh-law is still valid inside a given class if we
separate the computers into classes like : super, main-frame, mini and PC.

In cost per instruction, the big supercomputers are not much cheaper than uP which are also
a little cheaper than the slide-rules. But the speed ratio is enormous. Typically, a super-computer
is 10° time faster thar a slide-rule (ignoring precision), which is the ratio of five times the speed of

light compared to a walking man.

We need tools and techniques to make good use of this speed.

1 INTRODUCTION, WHY SOFTWARE ! 4

Cost per A
OPéC'a*'ion

Maoin
? W\\ " F"OW‘U\EJ

NN

Figure 1: Cost per instruction versus performance

Supec computec

Pe('garW\Ow\ce.

1.3 Trade-off and conflicts

Very often we will face trade-off conflicts between :

¢ short / long term cost
» safety / flexibility
s speed / memory size

s personal / group advantage

No single rule can be established to resolve these conflicts. They are usually situation dependent,
but you must be ready to face them.

2 STRUCTURED PROGRAMMING 5

2 Structured programming

2.1

Goals

With the hardware improving so rapidly, the programmes became bigger and bigger, more complex,
but also containing rnore errors, being more delayed etc.

At some level, each correction of an error introduced more new errors, and so the situation
could only get worse.

So the goals of good programming became first to reduce the total cost of software, while
producing more and bigger programmes :

with less errors
that are easier to correct and modify

that can be understood by others

As a rule, a good programmer produce 10-20 lines of code per day, each line cost ~ 20 US 8.

2.2

Proposed solutions

Around 1970, 6 years after the introduction of the IBM /360 series, many solutions where proposed
to solve this problem of software cost :

goto-less programming - no spaghetti ! (see the article by Dijkstra)
block programming (1 entry - 1 outcome)

top-down design (hierarchy)

stepwise refinement

data structure as object

abstraction (ignore the details when not needed)

information hiding (ignore how the details are done)

correctness proof

It should be noted that many of these solutions are just good engineering practice, that some
are in fact equivalent, and finally that many of them can or even should be combined together.

3 TOP-DOWN DESIGN 6

3 Top-down design

Top-down design is just a good general engineering methodology to :

e guide the designer / programmer during development

s reduce error risks and total cost
o help maintain programme alive for as long as possible

! Cost is not only expressed in $ of £, but also in delays and manpower to produce and later
use the product.

3.1 Programme development phases

The development of a programme goes through many phases, and usually cycles through them with
testing - correcting - evolution :

I

i Cow\pi\e_l—}
'L Liwvk 3
lest

Figure 2: Programme development cycle

The further you have to go back, the more difficult it is !

3.2 Some general rules
o Always start designing at the TOP, taking first the general decisions
o Describe WHAT you have to do, postpone as late as possible HOW you will do it

o Describe carefully :

— what lower levels have to do
— which input do they get
— which output they should produce

3 TOP-DOWN DESIGN 7

3.3

— all exceptions , error handling

Hide to higher levels the information on how it is done
Plan for comprehensive test data set with simulated lower levels

Take the user interface to fix the highest level

Programme coding

Follow the same path for programme coding

— insufficient or incoherent design are easier and better detected

— use design immediately for documentation
Use simulated low levels to start testing higher levels very early
or start editing - testing at bottom and build programme to the top on certified lower levels

{Very) large programmes are safer on a pure top-down cycle, where conceptual errors can
have dramatic effects if detected too late

Bottom-up testing is usually faster, specially when coding errors dominate

3 TOP-DOWN DESIGN

Te T

S peci\c\/

be.s{gvx

Ruild

Test

J i |V
1w [|

|

AN AR

4R Y |0

Figure 3: Structured Top-down design time chart

4 BLOCK-STRUCTURED - MODULAR PROGRAMMING

4 Block-structured - Modular programming

¢ make a new module for each identifiable (sub) task

e each module should have

— a single goal

— only one entry and one outlet

s each module should be

— readable as a single object { < 1 page)

— easily understandable and verifiable (not to many paths)

-

>

Total = |

/ \

N

|

vk Pa’%“z\

 —— A ——

Total =2 ## et —

Figure 4: Global and modular testing

5 DOCUMENTATION 10

5 Documentation

Some programme are used once and never used again.

Most programmes

o will be used many times

¢ will be changed, up graded

o will go to other users

o will contain undetected errors

Maintaining, upgrading, using again, debugging, cost more time and money after a programme
is “finished” than before.

Good programming + Good documentation = lower future cost

5.1 Internal documentation to the code (for each module)

Header s name -+ descriptive title
o programmer name and affiliation
e date and version of revisions with changes
» short description of what it does and how
s input expected, limits
» output produced
s error conditions, special cases
e other modules called

Inline comments ¢ should help to follow execution
s break into sub-sections

indent if useful

e use meaningful names

do not duplicate code

5.2 Programme logic manual - for maintenance

s programine purpose, what it does and how
¢ names and purpose of principal modules

o cross-reference between modules

e name and purpose of main variables

e flow chart of malin activities

o debugging aids, how to use them

5 DOCUMENTATION

o interface for new modules
It should complement the Internal documentation (not duplicate it)

Look at your programme from above, think about it as an outsider,

5.3 User’s guide - reference manual

Should help the user !

& programine name
o what it does (briefly)

e input expected, controls available

e unusual conditions, errors, limitations

e sample run with input, output and comments
s how to contact author/maintener

o acknowledgements

o references (how it does it)

11

6 STEPWISE REFINEMENT

6 Stepwise refinement
1. describe programme action in a few very general steps
2. take each step, refine it into several smaller ones

3. continue refining each step until you get clear, simple steps

Each atomic step should be :

e written in a few lines (< 50)
e demonstrable to be correct

s detailed information should be handled here, not communicated to higher levels

You can use decimal numeration to help visualize refinement.

6.1 An example

program STATIS

1. call read_data(#data,data)
call statistics(#data,data,summary)
3. call print_ summary(#data,summary)
end
1. proc read_data(#data,data)
1.1 read #data
de for #data
1.2 call read_unit(data)
1.3 call check_data_unit(data)
end
1.3 proc read_unit(data)
1.3.1

etc.

12

f Usplt INITRIPACH _ La

7 User interface

The user interface is very important :

it is the aspect of your programime seen by users
it conditions strongly its acceptance

it may play a major role in user’s work quality

Some general rules

Help him, don’t hother him !

Put yourself in the user position, not him in the programmer position
put him at the commands, not the programme (with sorne exceptions)
Let him do what he is best at, let the programme do the rest, what he is bad or slow at
Consider him as knowledgeable, not as a stupid robot

Protect him against dangerous actions (double checking)

Have an UNDO command after all dangerous actions

Give him as much freedom as possible, without imposing a given path
Do not overflow his vision with unnecessary rubbish

Let him chose the degree of help he needs, and when he wants it

Give sensible answers to his questions and calls for help (on-line}
Avoid ambiguities

Build user-friendly error handling, with short but meaningful messages and restart possibili-
ties

Do not try to interpret what he may wanted ...

Use a uniform notation

Use a uniform syntax

Accept free format values, do not impose artificial or unnecessary rules

accept many commands on same line, execute them sequentially (left to right, as you read
them)

7 USER INTERFACE 14

7.2

Some tricks
have a HELP that gives the syntax (parameters) for a given command
have unfinished command symbol be expanded (as confirmation)
in case of ambiguities, suggest alternative possibilities
have a small built-in editor, that works on the last line(s)
have a short and long version of names, also synonyms

give the user some indications on how long it will run (if > b seconds}, show him once in a
while that the programme is still alive (% accomplished etc ...)

record all user inputs, and analyse them to understand :

— how he works (adapt your programune to it)

— which kind of errors he makes and why (improve your programme in consequence)

have some facilities for him to express what he do not like and why {could be included in the
previous file)

have a central, unique, resuable command interpreter, with simple jump table and parameter
passing

Good solution : FORTH-like, expandable, interpreter/compiler

7.3

A very safe and stable solution

The following example describes the user interface for an astronomical instrument that is to be
used at night, for decades, by untrained layman.

It has no screen, no keyboard, but :

a set of large push-buttons with green and red lamps
rotary switches for numbers

a different task is associated with each button. It can be :

no light task not running, not runnable
green light task ready, but not running
red light task running

To get some action done, the user has to push one or many of the green lights
the programme controls the execution by switching on green only permitted tasks

rotary switches have an extra FF that is set by user when numbers are ready, and reset by
programme after read-out

rotary switches can be set in advance, programme will not wait

user sees only commands available (green lights)

{ [V FR/Fn PN R RPN Y oI -

¢ push-button can be handled in the dark, even with gloves

e overall, it is very inflexible, what we explicitly wanted, as the instrument should stay un-

7.4

changed for more than 25 years !

Common user interface : MENU

Present on the screen a (short) list of possible actions that can be chosen with either a pointer
{mouse, cursor, finger etc) or with a single number or letter.

It

T.4.1

should be :

short
easy to read
without ambiguity

not disturbing the rest of the screen

Some design rules

present most probable choice first
keep the menu at the top, bottom or on the side of the screen

avoid erasing all the screen (you erase some information that could be useful for the choice
to be made, and it is rather disturbing for the eyes)

if the number of choices is too large, build-up hierarchical menus (upside-down trees). The
root menu selects sub-menus , actions are selected in the leaves

leave the choice to jump directly

— to the leave you want

— back to the root menu
have easy cursor like commands to go back and forth, up and down through the tree
keep track and show where you come from (use stack)

build “Jump tables” associated with corresponding choices for each menu/submenu

7.4.2 Why I do not like menu

at any moment, the choice of actions is limited

too many decisions are to be made, while usually I know exactly what I want to do
too much to read, too many changes on the screen

inflexible flow of actions

single character answer prone to errors

7 USER INTERFACE 16

Addresses
1 Select file
2 Edit address
3 Select address
4 Print address
5 End
Select file W Edit address Select address
1 Create new flle 1 New address i by Name
2 Use old file 2 Old address 2 by Town
3 Previous menu 3 Previous menu 3 by Country
4 4 4 by Qualification
5 5 5 Previous menu

Figure 5: Menu tree for address programime

7.6 Latest fashion : ICONS

moderatly good graphic screen are getting available at moderatly low price.

Textual symbols + keyboard can be replaced by
graphical symbols + pointing device.

Most of the work done on menu, icons etc. have been initiated in the Xerox laboratories in
Menlo Park (California).

Icons are heavily used in the Maclntosh (Apple), Apollo, SUN, MG1 etc workstations, as the
main interface hetween the system and the user/programmer.

Advantages :

¢ image are easier to catch than text
e illiterate can use them

¢ no need for translation

e easy to pack many on a line

¢ *“an image is worth a thousand numbers” [Chinese proverb]

7 USER INTERFACE 17

Risk 4 Total cisk Fyping €roc

W\C* i wg etfor

£ -
cetimum Sywbsl size

Figure 6: typing/matching error risk versus symbol size

Drawbacks :

o need really a good graphic screen

¢ need pointing device (slow and error prone)

o difficult to pass parameter(s)

¢ a “word” is much more precise than an image

¢ images are not good to express abstractions

The mediterranean civilization came up with the move from the hieroglyphes to the alphabet.

Should we go back to
hieroglyphes ?
ideogrammes 7

The answer is in your hands !

7 USER INTERFACE 18

7.5.1 Example of a screen with icons

A B C D E F

PN

L —r

= \\ =

fetch print print waste fetch get
name records stickers basket new current
delete file time
records
files
etc.

The lower part with text is usually not present on the screen, it is here just as comment.
Pointing E brings on the screen a list of available files
Pointing one of them, then D will delete it

Pointing C will print the list of stickers

7.6 Signal generator user interface

Think in terms of Electronic Engineers using generator at the bench.

we have :

1. signal form triangle
square
sawtooth
sinus

2. period (in us or ms) or frequency (in Hzor KHz ...)

1. and 2. are not necessarily related. You may want to change one or the other, rarely both at
the same time.

If it was a non-uP instrument, you would touch only the knobs you wanted, ignoring the other.
The user commands could be in the form :

(n) is any number. Frequencies and Periods are both very useful. The calculations to pass from
one to the other are easily done on a P

¢ if the command interpreter finds a valid name, it executes it

7 USER INTERFACE

TR

5Q
SAW
SIN

(n) HZ
(n) MS

Figure 7: List of commmands for signal generator

or

or

or

or

or

or

TRIANGLE

SQR or SQUARE
SAWTOOTH
SINUS

(n) KHZ

(n) MMS

¢ if the name is invalid, it says so, and ask for an other one

1Y

o if it finds a number, its value is given to a global variable used by all commands as a parameter

7.7 Main interpreter loop

Next_word ; (loop for ever)

if line_empty then read_line ;

branch next_word ;

get_a_word ;

if number then put_into parameter ;

branch next_word ;
if valid_command then execute;

branch next_word ;
if non_above then type "unknown command"” ;

empty_line ;

branch next_word ;

end

7 USER INTERFACE 20

7.7.1 The symbol table / jump table

STABLE JTABLE
2 T R I TRIANGLE
3 5 Q U SQUARE
3 5 0 R SQUARE
3 s A W SAWTOOTH
3 S I N S5INUS
2 H Z HZ
2 X H 2 KHZ
2 M 5 MSEC
3 M M 5 MICROS
3 s E c SEC
2 E X I EXIT
2 E N D EXIT
1 v 0 L VOLT

o the first table STABLE is 4 bytes wide : 1 byte for the minimum valid length, 3 bytes for the
first 3 characters of the symbols

o the first column of STABLE gives the minimum valid length for the corresponding symbol

o the next columns of STABLE give the valid symbols. Some of them can be shortened to 1 or
2 characters. Some are synonyms like EXI and END, or SQU a_nd SQR.

e the second table JTABLE is 2-4 bytes wide depending on the processor, and contains the
relative address of each subroutine corresponding to the valid symbols in the STABLE

o both of these tables should be built using macro.

7.7.2 Signal generator using icons

» variables can be adjusted with up/down “buttons”

¢ or with pointing device on cursor

It seems very user-friendly, but fine adjustments could be difficult and slow.

7 USER INTERFACE 21

¥
Volt units msec
—y— 10 -|--— 5
»w—
cursor
(adju_s'\'ec‘ L:y sUS
—
6.43V current valtes 2.00 ms

Figure 8: Screen with icons for signal generator

7.7.3 Extensions to signal generator

¢ Add new commands like (n) VOLT or V or MV to fix the amplitude of the signal
¢ Put a loudspeaker at the output of the amplifier {with load/impedance adaptor)
¢ Add (n) SEC for the duration of the signal

e Add musical commandslikeC D E F... orD0 RE MI FA... for sounds, and LARGO, PRESTO
for tempi

o What happens if

— a command needs more than 1 parameter ?

— we type 2 numbers before a command ?

7.7.4 Address manipulator user interface

User commands :

7 USER INTERFACE

- NAME Vidal
TOWN Ankara
SELECT country Nigeria
SORT_BY name
LIST
ADDRESS

fetch/create record “VIDAL"

set / change element of record “VIDAL”
extract all addresses in Nigeria

reorder previous selection

print report, 1 line per record

print stickers

All lines start with a command (followed by parameter(s))

It has been very well received and used for many years by untrained clerical workers.

The programme looks like :

Programme Address_manipulator

end

pToC

end

proc

end

proc

end

proc

initialise
do get_line ; get command ;
if end then break
else execute
enddo

execute
case command of
1 : name ;

2 : first_name ;

34 : print_address
endcase

name

get_parameter

search parameter

if found then fetch record
else create record

print_address

if no_selection then abort " no selection done yet"

for i=1 to selection_count
do print_sticker(name(i))

print_sticker(name}
fetch record(name)

22

7 USER INTERFACE

print_line(title,tirst_namo.name)
print_line(street)
print_underlined(town)
print_country

end

8 STANDARD 24

8 Standard

A standard means for vou :

¢ No unnecessary changes

¢ Transportability

Reusability

Stability (good and bad !)
» May not use latest "fashions”
e To be useful, it should be complete and should not contain any extension
There exist now :

standard character set (ascii - ebedic)

no standard instruction set

no standard assembler

no standard file system

standard language definition (Ada, algol, fortran, pascal etc)

standard hardware interface (GPIB, CAMAC, VME, MULTIBUS)
standard floating point representation (ieee 754)

no standard operating system

- Currently, the best defined and enforced standard is for Ada (see the notes on software tech-
niques}.

DO NOT USE |
EXTENSIONS
TO STANDARD

