INTERNATIONAL ATOMIC ENERGY AGENCY -@

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

Ii‘g@.} UnN1T ED NATIONS EDUCATIONAL, SCIEN TIFIC AND CULTURAL ORGANIZATION
fe

LCLP, P.O. BOX 586, 34100 TRIESTE, ITALY, CasLE: CENTRATOM TRIESTE

H4.SMR. 403/22

FIFTH COLLEGE ON MICROPROCESSORS: TECHNOLOGY AND APPLICATIONS
IN PHYSICS

2 - 27 October 1989

Software Tools

P. BARTHOLDI
Observatory of Geneva, Sauverny, Switzerland

Software Tools

Paul Bartholdi
Observatury of Geneva
CH-1290 Sauverny

Switzerland

Preliminary notes - Trieste - october 1989
Fiftl College on Microprocessors

Contents
1 Introduction, Which Topics ?

2 Machine Code

2.1 Howtoprepare Hand coding v o n it i i o i
3 Amssembler
3.1 ‘Three Phases of Processing v et e v s
3.2 Assemblerinformalcode e i s e e e s s
33 Assembler Tables i e s
33.1 SymbolTable oo i e e
332 OpeodeTable .,o i
3.3.3 Opcode Table Organisation o0 it
334 PseudoOpeodes i i e
335 Rewarks. e e e e e e e e
4 Symbol Tables
4.1 HashTable ot i i e e s e v e e e e e s
400 Solutions e e e e e e e e
4,1.2 Signal Generator Symbol Table
4.2 Letter - Tree o i 0 v i i e e e e e e e e
42,0 General Formof Cell 0 e
4.2.2 Letter - Tree for instructions opeades o o0 v e e e
4.3 Binary Tree o 0 o it e e e e e e e e e e
4.3.1 General Formof Entry e
4.3.2 Sigoal Geperator Binary Tree . . . o 0 o o000 Lo o
433 Remarks . o v o 0 o o e e e e e e e s

CONTENTS 2

& High Level Languages 16
6.1 Comparison hetween Assembler and High Level Languages 16
5.1.1 Small Bxampleo . 0 e e e s 16
5.1,2 HLL and Virtual Machine, cee 1T
5.2 Typesof Statements it e 17
5.2.1 Declaration Statements PR 17
5.2.2 Structured Data - . . . i e e s 18
5.3 Subroutines and Procedureso e 19 -
Programme controls 20
6.1 Programming SyntAX v v v v v s s s e s e e e 20
6.1.1 Conditionals 0 e e e e e e 20
6.1.2 Countingloops i e s . 20
6.1.3 Conditionalloops i e e e e e 20
6.2 Flowchart for programme comtrolso oo o e 21
18 S T I 21
6.2.2 CBE® e i e e e e e e e e a e e e e e e e e e s L .21
B.2.3 FOT v v v i e e e e e e e e e e e e e e e e e e 22
6.24 while... e e e e e 22
6.25 do...until ... L. e e e e e e e e 23.
6.26 do...if...repeab. i e e e e e e ey e 23
6.3 Examples it et e e s s s . 24
6.4 Correctnessproof e e e e e 4
Compiler / Interpreter 26
T1 Compiler o it it e e e e s e 26
7.2 Interpreter. o o i i it e e e e e e e e 26
T.2.1 Hemarks . . . o v v v v v i v e v v e e e e e e e e 26
7.3 multipasscompiler L L e s e e 26
7.4 Jump tables for interpreterso i e e 27
741 Remarks.t e e e .
7.6 P-code, M-code and Co. e e e e e e e e e . 2T
7.5.1 Historyof Pascaland Modula-2 oo 27
7.5.2 The Pascalcompilers.ttt 28
7.5.3 Bootstraping process i e e s 28
7.5.4 What is P-code, S-code, M-code00 28
7.6 Remarks about ADAand Modula-2 i i 29
Function of an Operating System 30
Bl Goals . .ot e e e e e e e e e 30
8.2 Operating Systemn layeredmodel oo o oo e e e 30
8.2.1 Layered model : exempleo oo e 31
B.3 Whyhavelayers T 0 it v it i e e e e e 31
8.3.1 Disadvantages. - . . v vt v st n e e 3l
B.3.2 Advanbages i et it e e e e e e 31
8 Moenitor 32

ry

CONTENTS

10 UNIX
10.1 Main characteristics . . .
10.2 Sovime bad points of Unix .

10.3 Other conunon Operating System for microprocessors

10.3.1 059, ..
18.3.2 MS-DOS

11 Editor
11.1 Typical conunands
11.2 Environment .,

11.2.2 Context editor . .
11.2.3 Full screen editor .
11.2.4 Language (context)
11.3 Remarks _.

12 Debugger

sensitiveedilor e

12.1 Use of & non-symbelic debugger

12.2 Symbolic debugger . . .,

13 File system
13.1 Generalities
13.2 Manipulation on files . . .

13.2.1 Global operationon files, e
13.2.2 Operationonrecords e e
13.2.3 Pseudo operations on file/record/character

13.3 Special files : directories .
13.4 Physical support

13.4.1 File organisation on physicalsupport

13.5 Three layers of abstraction

14 Think

33
33
33
34
34
34

36
36
35
35
35
3d
36
36

37
37
38

a9
39
a9
i
39
39
39
40
40
41

42

I INTRODUCTION, WHICH TOPICS 7 4

1 Introduction, Which Topics ?

We are going Lo look at varieus teols in a bottom up fashion, from RESET Button to File Systemn
and- Context Sensitive Editor, from Hardware towards Abstract Machine that are adequate for
applications. .

» Programming

- Machine Code
~ Assembler
— Compiler - Interpreter
— Linker - Editor
+ Systemn
~ RESET/ABORT Button - Switch Register
- Monitor - Debugger
- Functions of an Operating System

s Input/Quiput
— Hardware devices {ACIA, disc controller)
— Device Handler
- File System

We will not necessarily follow strictly this order, nor, and by far, give equal weight to each point
above. We will also make some lateral excursions.

e

J MACHINE CODE

2 Machine Code

It allows direct interaction with hardware, which can be very useful

o acceptable for very small progranunes

¢ may be necessary for bootstrapping

2.1 How to prepare Hand coding

use tables of
opcodes,
addressing modes,
postbytes,
instruction sizes.
(all are very much CPU dependent)

build tables of
variables and constants,
branching labels,
while you write your code on blank sheets, leaving most addresses unfiled.

fill the tables
with the real addresses

put real addresses
back in the code (instractions)

This is very similar to what & real assembler does. Although it uses your brain, hands and
pencil and not electronic circuits, it may well be faster in some cases than using an editor to
prepare the instructions, loading and then running an assembler to produce machine code, that
has to be eventually loaded into the computer and then executed.

3 ASSEMBLER 6

3 Assembler
An Assembler will automatically execute the previous steps of hand coding.

Very often, it includes mnacro facilities that are not really part of the assembler.

3.1 Three Phases of Processing
The input string {file) will go through three phases :

1. Macro expansion. Macro definitions are stored in the local memory, and all macro calls are
replaced with the expanded code of the macro and all the parameters replaced by their local
value. This phase is independent of the processor, and in fact of the assembler. .In many
cases it is an other programme that is called automatically by the assembler before starting
its execution, ‘

2. Builds symbol table. The input string is scanned to find all symbols used in the programme,
where they are defined, what kind of object they represent. This table may be saved to be
used later by the symbolic debugger.

3. Machine code generation, Now that all addresses are known, the input string can be scanned
again to produce both & listing with the symbolic code and the machine code, and a second
file containing the object, relocatable or executable code.

3.2 Assembler informal code

The following pseudo-code gives some idea, in a top-down fashion, about how a real assembler
works, '

Programme Assembler
Macro_expansion
Initialise_Tables
Pasa_1
Pass_2
Print_summary

end{prograpme}

Proc Pass_1
for sach line
do{ get_beginning_ of_line
if label then check_label
elgs ignore
get_instruction
analyse_instruction }
end{pass_1}

Proc ignore
end

Proc Check_leabel
search_symbol table
if present then error_label

3 ASSEMBLER 7 3 ASSEMBLER 8

else add_ label 5. lines where the symbol is used
and
Note that :
Proc Analyss_instructicn 1
get_opcode + 1 and 2 are pecessary

search_opcode_table

* 3 may be useful
case class_O then error_opcode Y

class_{ then class_1_code s 4 and 5 are necessary for errors and cross-reference
¢lasg_2 then class_2_ccde
class_3 then ... o 5 is highly variable in size

end e during Pass.l we add and search through the table

Proc Class_1_code o during Pass 2 we only search through the table

get_address
if illegml then error_address 3.3.2 Opcode Table
add length_opcode + address to programme_counter

end What do we need ?

stc. 1. opcode name [symbol

2. opeode value
Proc Pass_ 2

for each lins 3. instruction class
do{ get_instruction {(ignore label part) . .
analyse_instruction } 4. instruction length
end

Note that :

(modified proc, vhat is called both by Pass.1 and Pass.2 :) « 4 is not necessary, could be better in instruction class.
Proc Class_1_code
get_address
case first_pass then if illegal then srror_sddress
add length_opcode + address to programme_counter

This tahle is fixed for a given processor, we have no need for additions or updates.

3.3.3 Opcode Table Organisation

cuss second_pass then assemble_code (cpcode & address, using symbel values) The best organisation for the opcode table is probably a 2D table :
end
stc. Symbol value class cl. name
CLRB 5F 1 ‘epu’
3.3 Assembler Tables .
LDA Ab 2 ‘merm’
An asserubler uses at least & symbol table and an opcode {instruction} table. BOT 9R 3 i’

3.3.1 Symbol Tabl
yubol Table 3.3.4 Pseundo Opcodes
What do we need 7
Most assembler need instriuctions that help structuring the progranune, but do not produce any

1. name / symbol executable code :
2. address in menmuory 1. set symbol value for exarnple : RDSY EQU ©
3. type of symbol {variable, label etc.) 2. organise memory for exatnple : ORG

4. line where the symbol is defined 3. reserve space (set to values)for example : FCB , FCC, FDB

3 ASSEMBLER

4. conditional assembling for example : IF{cond} ...ENDIF
B. macro, for example : HON
* 1 and 2 produce nothing, they are used vnly in Pass. 1
» 3 initialise memory, but do not produce executable code
& 4 allows conditienai production of code (with or without floating point processor etc.)
« 5 help produce repetitive code (and psendo-code !)
3.3.6 ' Reinarks

+ by modifying the opcode table, and the class_code procedure,
the assembler can be updated to new hardware.

e the assembler transforms our symbelic pruogramme into machine codes,
of transforms the hardware into something more sophisticated !

Can we go further 7
Can we add an other layer to make a ‘machine’ which is able to understand more nat-

urel language !

= High Level Languages

4 SYMBOL TABLES 19

4 Symbol Tables

Remarks :
The main entries are ‘symbols’ with :

e many characters (1neaningful symbols may be quite long}

o very few possibilities used

For example, 4 letter words correspond to 26 or 456’976 possibilities,
or 6 ASCII characters corresponda to 96° or 7.8 - 101! possibilities.

It is therefore strictly impossible to reserve an entry for each possible symbol.
Here are some possibilities to organise these tables in a reasonable form :

s lexicographic order (as in the dictionary)
= hinary search

¢ hashing (randomized)
== hash - coding, random access

s ‘letter’-Tree or B-Tree (list)
== list search

4.1 Hash Table

The symbols chosen by users are usually not random at all. The idea behind hashing is to transform

each symbol intc an integer K corresponding to the position of the symbol in the table, in such a
way that :

s 0 <K < N = size of the table
* K is unique for a given symbol

s K has no memory of the characters forming the symbol, that is K is randomly distributed
although the symbols are not.

For example : if the symbol is represented by C,C2Cs...C,
then

Hash|symbol] = Zi X C.] mod N = [Z[ixC; mod N]1 mod N

=1 i=1
® it is very fast to

— search through the table

— add new entries to the table

e it is slowed down by collisions (two or more different synmbols with same key K)

it contains no pointer

When the table hecomes full, the risk of collision is very high.

e

4 SYMBOL TABLES

4.1.1 Solutions
s have an overflow secondary table
» rehash with an other function

« take next free entry

Rule of thumb :

Hash tables are very good if less than half full

4.1.2 Sigual Generator Symbol Tabie

{see Software Technics)
Let us use the following hash function, assuming a table size of 16 :

hsymbol) = Ei x C; mod 16

Then
R(SAW) = (1x19 + 2x1 + 3x23) mod 16
=(3+ 2+ 3x7) meod 186
=10

and in a similar way :

h(END) = 13 h(EXIT) = 0 h{HZ) = 12

WKHZ) = § h(MMS) = 0 h(M8) = 3
h(SAW) = 10 h(SIN} = 15 h(SQR) = 11
h(SQU) = 4 b(TRI) = 3

They-are 2 collisions (on addresses 0 and 3). We have chosen to take the next free position.

11

4 SYMBOL TABLES

The table looks, when filled, as :

K Symibol adilress
T EXIT
1 MMS
2 6
3 MS
4 SQR
5 TRI
6 0
7 0
8 0
9 KHZ
10 SAW
11 SQR
12 HZ
13 END
14 0
15 SIN

12

4 SYMBOL TABLES 13

4.2 Letter - Tree

[n this organisation, we huild a cell for each letter used in a given position in & symbol.

4.2.1 Geuneral Formn of Cell

f ‘letter’

T ®——————— Lo next position

l opdode

L — _ 1L ___]

to next letter, same position
» fis the opcode flag, | if the letters encountered up to now correspond to an existing opcode
symbol _
& pointer with a value of zero indicatea NIL or END OF LIST
» it use a lot of space (many pointers)

® it is very easy - to search for a given symbol
« to add new symbol

4 SYMBOL TABLES ' 14

4.2.2 Letter - Tree for instructions opcodes

BGT
0 B / o G / 1 T
l ~ v e v .
E | 3
CLR CLRA
0 C / 0 L / 1 R / 1 A
I 1 Y 1 v 1 .
6F | 4 E| 4
CLRB LDA
0 L / 0 D / 1 A 1 B
| 7 i - -
n]s 4 5F 1

Y v indicate NIL, or nothing further in this list

long arrows point to the next element in the list

5

ry

4 SYMBOL TABLES

4.3 Binary Tree

4.3.1 General Form of Entry

left = “smaller” subtree

The upper hox (8 characters 7) contains the characters of the symbol. The next three hoxes
.contain pointers, that is addresses of other boxes (left and right subiree), or of the code (procedure)
associated with the symbol.

‘Symbol’

corresponding procedure

4.3.2 . Signal Generator Binary Tree

HZ

END

MS$S

MM3

EXIT

KHZ

4.3.3 Remarks

right = “larger” subtree

5IN

SAW

5QU

SQR

TRI

Many different Binary ‘lrees can he huild with the same set of symbols.

® a tree is halanced if the lengih of any path is < log, (number of symbols).

& & tree can be optinused in minimising cesf =

3 path.length x probtarget.aymbol)

5 HIGH LEVEL LANGUAUES

5 High Level Languages

5.1 Comparison between Assembler and High Level Languages

In Assemnbler :

» There is & strong relation between the symbolic instructions and the machine code.

1t is therefore hardware dependent

16

¢ Macro instructions and subroutine are like new instructions with no direct counter part in

hardware

s There is a small relation between the symbolic instructions and the work to be done

== too much secondary work

In High Level Languages (HLL} :

¢ It has no relation with hardware {almost)

¢ [t use ‘natural’ expressions
¢ [t may be well standardised

o Large libraries are available

+ Execution can be slower (in some cases much slower)

» Direct access to hardware is rarely possible

¢ Programmer and user can be relatively well protected against errors

5.1.1 Small Example

FLOWCHART
N < MAX e
J, yes
FLAG = 0 FLAG =1

5 HIGH LIEVEL LANGUAGES 17 5 HIGH LEVEL LANGUAGES 18

Assembler Operators will have different meaning depending on data type :
LDA N For example : x = 3, y=b, z=x/y
CMPL MAX
BLT 2FLAG HLL if type is integer, then z =10
real, z = 0.6
LDA ®1 i N < MAL then FLAG = 0O complex z = {0.6,0.0)
STA FLAG else FLAG w 1
BR4 DONE
s in FORTRAN, (and other HLL) default data types are given to undeclared variables
ZFLAG CLR FLAd == less work for programmer,
DONE EQU . less semantic error detection
¢ in PASCAL (Algol etc.) all variables tust be declared
Remarks : = atrong typing (cross checking allows the detection of many errors)

in FORTRAN all variables (except in COMMON} are local or imported, without any control

s HLL foliows strict formal rules and are so ‘readable’ / translatable by computer of type

¢ HLL is very easy to read and understand by user

some HLL allow the specification of new data types and associated operators (ex Algol 68,

¢ all three notations {flowchart, assembler, HLL) are equivalent ADA, FORTH}
5.1.2 HLL and Virtual Machine §.2.2 Structured Data
HLL make available an abstract - virtual machine 1. simple structures : complex, vector, matrix eic.

for example :
» with instructions adapted to applications
as if , sqrt , sin , read.disc etc.
dimension result{1:100},sigma(1:10),covar(1:10,1:10)

o with data type (structure) also adapted to applications do dw=1,10
as integer , real , complex , vector , Yecord , string etc. sigma(i) = sqrt(covar{i,i))
¢ part of the virtual machine may have correspondent in the hardware, enddo
¢ other part will be dealed with by software library routines (run-time libraries) ors
5.2 Types of Statements counts = arzay[1..100] of integer

They are basically 3 types of statements : covar = arzay[1..10,1..10] of real

2. complex structures : made of simpler ones

1. declaration statements for example :

2. normal statements, execution - conumands

3. control statements type months = (january, february, ... december) {user defined)
date = record
5.2.1 Declaration Statements day : 1..31
i month : months
s specily the type of variables year : integer
end
e specily simple or complex data structures
o specily global, local or imported variables and procedures date.day = 25

date.month = june

e

& HIGH LEVEL LANGUAGES _ 19

date.year = 1986

print date {will print complete date) *

Some HLL wiil allow to define operators on new structure, to incorporate checking routines
elc,

In FORTRAN, you will have to play tricks, using equivalence, and only with standard types.
5.3 Subroutines and Procedures
They add higher level, more specific instructions to your ianguage
Goal : Build up a new language, in which you can naturally express your needs / applications.

e use as many layers as needed
s put them in libraries
» hide the *how’ in lower levels

e whenever possible, reuse existing routines

6 PROGRAMME CONTROLS

6 Programme controls

8.1 Programming syntax

6.1.1 Condit

Only one of two possible block is executed :

if condition

Only one of many possible block is executed :

ChBe

end

ionals

then body true
else body_false

erpreasion of
valve_1 : body_1
value. 2 : body_2

6.1.2 Counting loops

A given block is executed an exact number of times ;

for var = first.value to last_valee do loop.body

8.1.3 Condit

ional loops

20

loop_bedy is usually executed at least once

A given hlock may or may not be executed many times depending on a condition. The condition
may be set inside the block.

while conds

tion do conditional_body

do conditional.body until condition

do body_1

if condition then_break
else body.2 repeat

check done before first execution

check done after first execution

check done after first execution of body._/
before first execution of body. 2

6 PROGHRAMME CONTROLY

6.2 Flowchart for programme controls

6.2.1 if...

true

falae

body _true

w

-
|
|
|
L

I R

|
body _false |

may be abaent |

SREES

6.2.2 case ...

expression
= valbe_1 l = value 2 l
body_1 body .2

= value_n 1

body-n

add velue_other and body_other

6 PROGHRAMME CONTHQOLS 22

6.2.3 for...

var = first_value

may have other increment

usually ezecuted ail least once body var = var 4 1

irue

var < last_value

0.2.4 while ...

true false

body
body may never be executed

e

v

6 PROGRAMME CONTROLS 23 6 PROGRAMME CONTROLS 24

8.2.5 do...until... 8.3 Examples

if x > xmax then x = xmax

o if a < b then min = a ; max = b

olse min = b ; max = a

body
* case gymbol class of

0 : not_a_number

1 : integer.length

2 : real_length

falre 3 : 2 real.length

otherwise unpermited symbol_ cless

always execuled at least once

true

end

for menth = 1 %o 12 do print{mean_value{month))
e vhile amount < reserve do payment ; reserve = reserve - amount

sdox=(N+x*x)/ (2+x)until abs{ N- x »« x) <1

6.2.8 do ...if ...repent « do read_tapse

if sof then break
slse print.data
Iepaat

body -1
ody 8.4 Correctness proof

This is just a very sketchy overview of a subject considered by many to be the key of any good and
alwaoys ezecuted at least once secure programming.

¢ for each block :
false
- find what is logically invariant

— verify that your code does keep it invariant

s Verify that the information is always available when needed

body .2 s Verify that the loops always terminate correctly

may never be ezeculed

Does your loop terminate in all cases?

7 COMPILER /INTERPRETER

7 Compiler / Interpreter

7.1 Compiler

Source

Compiler

Object Libraries

-

\\ J

Linker

Executable

: Loader

l

Programme

executed

Slow cycle, fast execution

25 7 COMPILER / INTERPRETER 26

7.2 Interpreter

Source

Ll_/

Programme

interpreted

Lines of source are analysed and immediately executed
Cycle is fast, execution is slow

Memory usage is bigger

Otherwise, Compilers and Interpreters offer the same possibilities, the same degres of abstrac-
tion etc.
7.2.1 Remarks

¢ Many compilers produce intermediate code (ex assembler etc.)

¢ Both compilers and interpreters exist for some languages (ex Basic)

o Some interpreters produce code that can be reused later on

o Forth works both as an interpreter and as a compiler

o The “user interface” of an Operating System is an interpreter (usually very simple !)

7.3 multipass compiler

lexical analysis {orthograph)
recognize reserved words
build-up symbol table(s)
report unacceptable symbals

syntax analysis (granuuar)
recognize logical relations between symbol “words”
report grammatical errors

code generation (translation)
generate op-codes, usually in assemnbler
allocate memory, registers, etc.

7 COMPILER / INTERPRETER 27

code optinmisation
reorganise code for speed-up, locally and glebally

assembler
produce definite object code
7.4 Jump tables for interpreters

Like the assembler and compilers, an interpreter needs Symbol and Op-code tables (with higher
level instructions instead of hardware ones)

Then, instead of producing machine codes, it gives an offset into a table of jumps to varjous
routines, which will eventually jump back te the analysed.

Example :
Jump table BRA Add_integer
(+1) BRA idd _real
(+2) BRA Add.complex
(+74) BRA Sqre
(+96) BRA Read dimc
(+97) BRA Write disc
(offset) BRA Address of routine

7.4.1 Remarks
¢ Jump tables can be replaced by procedure address tables with indexed jumps.

¢ Jumps can be replaced by calls to subroutine, so that they can call other subroutines {of
lower level) present in the table

* Incremental interpreter can be build if new entries can be added by the interpreter (see Forth)

» Parameter passing niust be very carefully planed (use of stack, global variables etc.)

7.5 P-code, M-code and Co.
7.5.1 History of Pascal and Modula-2

Algol 68 4 60 : hefure computers where widely availabie.
(very) good theoretical ideas, but no inplementation,
while IBM pushed FORTRAN, which was much worst, but was hased on existing compiler,

FORTRAN = FORMULA TRANSLATOR

exception : Burroughs 5000 (and its successors} whose hardware is based on Algol (no as-
seinbler, pure stack arclitecture)

7 COMPILER /INTERPRETER 28
1960-1968 : Algol 68 : cuntains every thing you can think of
== very difficult to implement, to use, to teach ...

Paacal : Wirth (and Hoare) separated from the Algol 68 team, and designed Pascal as a simple,
limited language for teaching good progranuning. They produced inuuediately a compiler
(*Zurich” compiler for CDC)

7.5.2 The Pascal compilers

The first Pascal compilers where written in Pascal (bootatraping).
The goals where :

o check the theoretical design
® teach Pascal and use it immediately

* have a large progranume to demonstrate the use of Pascal
Different versions have been buijld :

Pascal-S with some limitations,
produce internal §-code that can be inunediately executed (interpreted, no object file). The
§-code is processor independent. This version is particularly efficient for small Programmes
with fast turnaround, whose compilation may cost more than execution.

Pascal-P full implementation,
produce P-code in object file, for later execution {interpretation) or translation in pure ma-
chine code. The P-code is processor independent.

Optimised Pascal full implementation, but optimised for & given processor. Only the first passes
of this compiler is processor independent. Very good for big programmes whose execution
cost dominates.

UCSD and Turbo Pascal developed more recently for personal computers. They both offer not
only a compiler {not very efficient, UCSD Pascal produces P-code that is later interpreted)
but also a powerful environment with editor, interactive debugger, graphics etc.

7.56.3 Bootstraping process
Start with a very limited, unoptimised compiler, write a new hetter one, using the previous to
compile the next, and iterate !
7.5.4 What is P-code, S-code, M-code
It is the op-codes of a non-existing processor that js :
* very near lo real processurs
¢ produce optimised translation from Pascal

e based on stack(s) architecture

7 COMPILER / INTERPRETER 29

Around 1982, Wirth proposed Modula-2 (against ADA) for real-time and multitasking, and
the M-code as intermediste language. With the exception of the Lilith, the M-code is usually
translated into 1nachine instructions.

At execution, a snuall interpreter is loaded with the P/S/M-code to realise the virtual P/5/M

prucenor.

NB: Western Digital (ATT) has a fast pprocessor (similar to J11 from DEC) that execute
directly P-code instructions. Wirth him self has build a special processor {the Lilith) that also
execute directly M-code instructions. Moore has build a single chip (Novix 4000) that execute
directly Forth high level instructions.

7.6 Remarks about ADA and Modula-2
Both are based on the same ideas :
+ produce highly secure code for real-time, iultitasking environment
o provide all facilities for tasks cooperation {semaphore, fork, ‘rendez-vous’etc.}
o help abstraction and information hiding
+ import libraries with invisible informations (hided) for checking
» assign new operators with new data structures (in libraries})

but they differ very much in :

ADA is huge, does every thing, took 6 years to have the first compilers (!},
is very well defined and standardised (DoD}
has no subset, no extension
ADA is now available on many computers, although most compilers are still very slow.

Modula-2 is small, perfect for small, manageable applications, use a very amall, provable, kernel,
had a compiler (written in Modula-2 and/or Pascal) available immediately with it's definition,
is not standardised, nor supported by any major manufacturer,

Theoretically, ADA is more secure, but can we trust a monster !

It seems that ADA will always come in a coimplete ADA-environment, including editor, loader,
file handler, linker ete. all special purpose, necessary to make it work, but also a big help for the
programiner.

8 FUNCTION OF AN OPERATING §YSTEM

8 Function of an Operating System
8.1 Goals
» provide the interface between

- the user
— the processor
- the external workd (1/0}

* maximise

— security
— standardisation

— easy access
s control resource sharing

— time [memory space
- I/0O
~ disc files
s provide general purpose tools
«~ file system

- assemnblers

coinpilers
editor(s}

— sort/merge

!

— debugger

— general facilities

8.2 Operating System layered model

User Application l Usercommand interpreter
3 System library routines
2 [/O driver, System Programmes
1 Kernel

o the Kernel should be very small, very secure and protected

» most layers are in fact multilayered

o calls and informations can only move between adjacent layers (up or down)

30

-

g -

8 FUNCTION OF AN OPERATING SYSTEM

8.2.1 Layered inodel ;1 exaapie
layer progranune instructions systetn conunands
4 Data login prog > list file
call create > delete file
call read.data > run.programne
call store > send_mail
3 proc proc proc proc proc proc
create store delete read print
2 read write read write lock start
disc dise A/D D/A disc prog.
1 handle intertupty, semaphores, hard locks ete.

8.3 Why have layers 7

8.3.1

s no direct access/control over what is happening

Disadvantages

s slow down by multiple transfer

« difficult to change rapidly

Layered model is not always better

8.3.2

* no aeeds for the user to provide O8 functions

Advantages

no needs to know anything about hardware

no needs to adapt to new or changed hardware etc.

good protection against errors

standard interfaces

system as seen hy users are very stable

Layered iodel is mostly much better

31

9 MONITOR 12

9 Monitor

Monitors ate considered here as elementary Operating System, available on some small single card
computers.

The set of commands available is :

o read content of memory
s put data in memory
¢ start execution at given address, provide procedure calls to ;

— display results

~ read in ‘keys’

- do I/O

get/send ASCII characters on RS-232 lines, etc.

s debugger
— read/set memory /register, in any forrat (opcode, decimal, octal, character)
- set break-point(s)

— execute single step {one instruction at a time), or of groupes of instructions

1o UNIX 33

10 UNIX

10.1 Main characteristics

Unix was designed around 1970 by Kernighau and Ritchie {rom the Bell Laboratories as a much
simpler version of the Multics Operating system developed at MIT. For many years, Unix was used
~ only inside Bell labs and in some universities,

o it takes some {Lhe best) ideas from project MAC at MIT (= Multics) but avoids making a
monster

make things as simple, as uniform as possible

+ make it processor independent, write it in a high-level language (C)

provide tools for users, make source code available for corrections, and also to reuse part of
existing code

e provide powerful yet simiple multitasking kernel, with task cooperation facilities
s very simple, yet powerful and uniform file system

~ sequential character string
« hierarchical directories

very powerful corunand interpreter {similar to C) with variables, conditionnals, loops, pro-
cedures etc.

redirected 1/O {pipes) for parallel/sequential execution
example : ncquisition | sert | print
print sorted resuits produced by the data acquisition programme

Most tools are very short programmea that do only a single operation (like sort, print, extract
lines etc.)

The combination of these tools using pipes and a powerful system command language gives
Unix its power.

Unix is available for many processors, from & bits micro to large Amdhalaawd (.'ro., .

10.2 Some bad points of Unix
e it is old, has limitations dating to 1970 hardware
¢ was never standardised.
® main versions available :

— ATT Unix version V.2 (some older System 111}
— Berkeley Unix 4.2 or 4.3 (mainly for Vax} Sun oh:-)

10 UNIX 34

» has a very poor user interface with

~ meaningless names

— no protection against catastrophic errors
 has good C but bad Fortran compilers
s has

- 1many many tools for computer scientists,
- many tools for physicists ete.

— very few tools for commercial applications

+ is not very good for real-time applications (exception HP-UX%} Mad cowp)

Most modern operating systema (MS-DOS, FLEX, CP/M etc) have been inspired by Unix |

10.3 Other common Operating System for microprocessors
10.3.1 059
+ Developed originally for Motorola 6809, now also available for Motorola 68000.

e Support Basic 09 (almost nothing to do with Basic), Pascal, C, Forth, word processors etc.
» Can be very powerful, specially in a lab and if you can help.

o It is an open system, on which you can add new 1/0 handlers etc.

10.3.2 MS-DOS
« Developed for the IBM-PC with Intel 8088, 8086 or 80286 processors

¢ Probably now the most used O$ = de facto standard, although very few versions are really
100 % compatible.

» Support all sorts of languages, programme, data base, word processors etc.

¢ Can be very goed both for lab and commercial applications.

11 BEDITOR

11 Editor

To manipulate text not numbers

+ Most interpreters have an internal core editor (+ load and save)

s Some monitor commands implement alse a primitive core editor

11.1 Typical commands

find, change, add, delete, display, ¢copy, move, insert, repeat etc.
on character{s), word(s), line(s), paragraph(s) etc.

11.2 Environment

11.2.1 Line editor

an used in Basic and Flex, for example.
s references by line munber
¢ line numbers temain fixed, = keep gaps left to insert new lines
o display current line for modification

« restricted manipulations

unacceptable for text or large programimes

11.2.2 Context editor
It is now the most commonly available editor,
s references by strings in text
+ relative and absolute current line number
» allow local and global modifications
» powerful ‘regular expressions’ {define string by Lemplate)

o display current line for inunediate use

35

acceptable for all purposes, can be very fast, but you do not see globally what you

will get at the end

11

EDITOR 36

11.2.3 Full screen editor

Very coinmon on supermini and large computers,

o references by pointing (cursor, mouse ete.} and string

s display the ‘page' around last change

* needs

— high resolution screen
- good cursor conunands

- high speed communication with memory

very powerful, you see what you get. Implemented on modern (single and mul-
tiuser} interactive computers, but produce heavy demand on I/0O

11.2.4 Languege {context) sensitive editor

Are still not very common

usnally combined with full screen editor

provides inunediate lexical and syntax analysis.

report errors irnunediately

ean also be combined with symbolic debugger on different windows

some prototypes verify assertions (logical invariants) provided with blocks (structured pro-
granuning) for correctness proof

good to produce syntax error free code (the easiest to correct !)

Improvements have been very slow !

Is it due to user conservatism or trade-off between speed and power ?

11.3 Remarks

Nu standard editor exists,
Every processor, every system has a different editor.
But, as for animals, muest of them can he traced back in evolution to very few originators.
Smiall differences can therefore be more dangerous!

12 DEBUGGER 317

12 Debugger

Almost all progranunes contain error {= bugs in relay)

¢ add guards while coding

& prepare simulated input, first simple (easy to trace by hand), then more complex (difficult)

Debug each module alone, then in small integration
» chose critical point where you know what you should get if previous step are correct.
o advance by small steps

— from input forward
~ from output backward

o analyse wrong result to see what/where this value comes from

o try all (very) imnprobable cases

Rules :

if some thing can go wrong, it will !
if an error can be damaging, it will !

if it is very improbable, it will still exist
l

12.1 Use of & nen-symbolic debugger

They usually need absolute and/or relative addresses.
prepare them in advance 3

e list of entry-points

» offset to them (critical points or interesting variables)
» variable addresses

® as given by

- assembler
— compiler
- linker

Symbelic debugger can use symbols instead of numerical values for entry-points and variables,

12 DEBUGGER 38

12.2 Symbolic debugger
They need a file, produced by the assembler/compiler/linker with ;
namne, address, type for each symbaol

Then names can be used in place of absolute or relative addresses.
It is much easier to use, more user friendly, but do not provide extra facilities.

13 FILE SYSTEM 39

13 File system

13.1 Generalities
e If correctly generalised, can cover all 1/0, including internal data transfer.
e A file is a collection of records,

— it has a name
— a set of permissions
- & set of special characteristics

o A record is a consecutive chain of characters (words),
— it has & record number
— possibly one or more access key(s)
— & set of permissions

s Records can be of fixed or variable length

* Records can be accessed

— sequentially
— randomly

- through index

13.2 Manipulation on files
13.2.1 Global operation on flles

create, erase, delete, upen, close, rename, copy

13.2.2 Operation on records

find, read, write, add, erase, move, copy

13.2.3 Pseudo operations on flle/record/character

loek : prohibit momentarly any other access
change : read/wrile/execute/erase permission {passwords)

All these commands should be completely independent from the hardware on which
the file vesides,

files and records are abstractions,
imiplementation inforimations are hidden !

13.3 Special files : directories

Contains user’s given and hidden implementation informations

13 FILE SYSTEM

13.4 Physical support

s magnetic tape and cartridge

s floppy, removable/unremovable hard disc

o optical disc (ROM, PROM,RAM)

bulk storage

size (1886) 10° to 10'? characters

s access time from 107% to 10? seconds

¢ usually divided in unit/track/sector

s the sector is the smallest physically accessible unit,

it has no relation with records

13.4.1

File organisation on physical support

40

To make effcient use of support, records belonging to a given file rnay be scattered

all over in many different physical subflles (by sectors or even characters).

Some meana are necessary to find them back rapidly

» chaining pointers

» pointer tables {map)

¢ hit maps , clustecs

s etc.

chaining

pointer table

rl

.

r4

P

7 r2

e

5

N

R

5

(1

]

A

A

rd

r3

In both cases, we need a ‘file’ of free sectors.

13 FILE SYSTEM

13.5 'Three layers of abstraction

User commands :

open, read, lock etc.
command
file.name
record_number
character

logical access commands
chaining pointers etc.

Command
untt
track
sector

device handler
seek algorithin
electrical signals

14 THINK

14 Think

Think !

¢ think before doing
¢ think while doing
¢ think after having done

e your are responsible, you are the master
never give it to uP

® 1P must obey, not dictate

Think small !

¢ ‘Small is beautiful’
¢ keep things manageable, under control

¢ use small modules

Think with others !

¢ do not reinvent the wheel
¢ make your work shareable
¢ build-up libraries

e accept help, call for help

e the others can and must think too

42

14

THINK

Think on your own

¢ do not accept buzz words for granted
» adapt to your own country
+ do not destroy your richness

® never accept dogma

!

43

L

s

