e S B I B R T T
t'& e :,l O RN TR E R b R B L O T L NSA
1 A E i L ATTONAG, CENTRL Lo Pbicsder Jan Y RS
L
Vi, 0L BOYX SBE, 34100 TRIESTE i e R Ladatal PR

H4.SMR. 403/23

FIFTH COLLEGE ON MICROPROCESSORS: TECHNOLOGY AND APPLICATIONS
IN PHYSICS

2 - 27 Oclober 1989

Floating Point Numbers

P. BARTHOLDI
Observatory of Geneva, Sauverny, Switzerland

Th re in in istributign |

CONTENTS 2

T5 Whatare VAN T L e e 18

7.6 Operations with 0, 200 L i i e et e 18

. . 8 Floating point processors 19
Floatlng POlIlt NllIIlb eI'S 8.1 Floating point processors main characteristics PR 19
8.2 Stack operation (zero address processor}t i i a e e e e 19

. 8.2.1 Rules to go from usual algebraic to postfix {stack) notation 20

Paul Bartholdi 8.3 Attachemment of AMD 9511 as a peripheral to & Bbits P o oot uun ... 21

Observatory of Geneva 8.3.1 Operations e e e e e 2

CH-12?0 Sauverny 8.3.2 What to do while 9511 is crundung 22
Switzerland 8.4 BO086-3087interconnection i vt i it i it i e e e e 22

Preliminary notes - Trieste - october 1989 8.5 Very fast Floating point processor : Am 29325 ¢0vun. 23

Fifth College on Microprocessors

Contents
1 Introduction, what is the problem 2
2 Solutions 7 4
3 Scaled integer arithmetic 5
3.1 Note on modulo arithmeticc0iian. R |
32 Proand Cont it ittt i it i s e a e 8
4 Floating point arithmetic 7
4.1 Floating point softwarelibraries0 0 a0 e 7
4.2 Floating point representation ¢ v u v 8
43 Bangeand precision ot ca st ieana e 9
% Floating point operations 10
61 Normalizeanpumber vt it tnnrer s cenrnsenss 10
5.2 Multiplication Fr = Fy » F. [P e ea it e s e 10
5.3 Addition - SubLIBCHOD + » v v o s v e vt e cevs 11
5.4 R versus floating point reprwpentations, e e e e e e e 11
~ 6.4.1 Arithmetic / mathematicerrorsingeneral e 12
5.0 Somepracticalrulest i e . 13
$8 Proandcom ittt e e e e e e e e 14
6 The floating point axis 15
6.1 Truncationandrounding e e e e 15
7 IEEE floating point standard 16
71 Dataformatst v s vttt m e i e e e, 16
7.2 Special numbers O . 16
7.3 IEEE standard floating point eperations . . , i i a 17
T4 Exceptionhandling0 . it i ittt e i e e 17

L]

iy

1 INTRODUCTION, WHAT IS THE PROBLEM

1 Introduction, what is the problem

In mathematics, we have the following sets of numbers :

Hatural N 7,13
Rational Q 2/3 , 37
Real R 1.4 , 7, V2
Complex Y 7-iv3

Remarks :

o All sets are unbounded, very regular and easily defined (cf. Peano)

¢ Arithmetic operations behave in a uniform way

s We may add too and/or exclude 0 as divisor

In computers, we have :

Intogorl integer i, j, &

Packed decimal packed_decimal salary
Floating point real*4 weight, surface
Extended/multiple preciszion real*16 speed, mass

» All sets are of limited range and coverage.

-127...128
17846393276
3.2433 , 0.0014

3.141692653589793223846

« Arithmetic operations behave non uniformly, rules are not obeyed (irreversible etc).

s We may add 10, too ,NMetc.

The problem comes from the fact that the number of bita (or bytes) available to represent
numbers is strictly limited, usually fixed and not dynamically extendable.

HRemember : with n bits, you can represent 2" numbers,

In the real world, we have :
» data and results rarely exceeding 1% precision

e (very) large dynamic of numbers, due to units used

{ex. the mass of the Earth is 59850 00000 00000 00000 00000 Kg)

o complex arithmetic computations (ex. transcendental functions}

¢ some i{l-posed prohlems, that we would like nevertheless to solve

We alse want situation independent programmes.

1 INTRODUCTION, WHAT IS THE PROBLEM

10
16
24
32

on
256
1024
65536

167772216
4294967296

D...m

0...255
0...1023
0...65535
0...1677216
0...4294967296

-k...

-128...
-512...

-32768 ...
-8388608 ..
-2147483647 ...

!

127
511
32767

-8388607

2147483648

Figure 1: Range of integers with various word length

2 SOLUTIONS ? 4

2 Solutions 7

1. Carefully scaled integer arithmetic

¢ can be very fast and precise

s may need well planned programming and good problem understanding by programmer
and user !

2. General purpose floating point arithmetic
o usually {much) slower, use wmore memory
¢ can be used almost blindly
¢ good library are available

¢ rounding and truncating effects are more difficult to ascertain

3

3

SCALED INTEGER ARITHMETIC 5

Scaled integer arithmetic

1. Adapt units in such a way that all nambers are close to 1

2. Get an upper limit for all numbers operated on : |m| < 2V (if possible, choose ¥ =
0,1o0r2...)

3. Scale your numbers, (multiply them by 2*) in such a way that 2k+N _ 1 s the largest
representable integer in your computer
NB: you may have different k in different part of your programme, k may also be adjusted
during the computation.

4. Use normal operations for addition and subtraction
If you get an overflow, decrease k by one, and adjust all necessary numbers,

5, Use double {extended) precision result multiplication in registers, followed immediately by
division, or scaled by 2% (right shift & bits). Keep low order bits. If you get an overfiow,
decrease k and adjust all necessary numbers.

Remarks :

» Add and Sub are usually fast
s Mul is much slower and may produce double precision

— What do we keep ?
— What do we through away ?

¢ Div is still slower, and should start with double precislon dividend
Whenever possible, replace :

Mul by left shifts
Div right shifts

and avoid calculating unwanted partial results {lower of higher order bytes)

e Low precision functions are best dealt with tables {in ROM ?), with as many entries as
parameter values,

Ex. trigonometric functions
1. scale angles in such a way that 360 is represented by 256

2. have 256 sin and cos tables
1 memory fetch per function evaluation, or

3. have 64 (0 — 90°) or even 32 (0 — 45°) entries, and use high order bits for sign and table.

3 SCALED INTEGER ARITHMETIC i

3.1 Note on modulo arithmetic

» Usually, integer arithinetic operations work modulo Quize
you do not need extra operators for them

s Modulo is natural for many variables (ex angles}

» If high order bits are constant throughout calculation, they can be ignored during them, and
reset at the end. ex inean, deviation etc.

3.2 Pro and Con

Good : ¢ Very fast, even on microprocessors
» You get what you want
o truncation effects are visible and manageable

s it use all available bits for precision

Bad : ¢ Programme must be adapted to your problem, it may be difficult to nse again
» large dynamic is intractable
o large memory may he necessary for tables (algotithms need less memory only for high
precision)
Best for : « Real-time control
» signal processing
s FFT
» filtering
e graphics

4 FLOATING POINT ARITHMETIC

4 Floating point arithmetic

4,1 Floating point software libraries

Many very good software libraries are now available, some at very low cost, for almost all numerical
problems. They use the best known strategies for fast and accurate computation. They also repre-
sent many tens or hundred man years of effort, an effort that should not be replicated unnecessarely.

Among the best :

s look at the book by Cody for the elementary functions (trigonometric, exp etc)
» complete general purpose libraries (very good, expensive) :

NAG Nuwnerical Algorithms Group Ltd
NAG Central Office
Mayfield House
256 Banbury Road
Oxford OX2 7DE, UK

IMSL International Mathematical and Statistical Library
NBC Building, 7500 Bellaire Boulevard
Houston, Texas 77036, USA

¢ Numerical recipes

A book (25£+ shipping) about good numerical methods

— when and why to choose one or an other

~ example (short gith results)

~ code for all routines in fortran 77 and pascal
A second book with examples - code in fortran 77 or in pascal (only on choice)
A floppy or tape with all codes (routines & examples)

— It is very practical and usefull, but not good, nor sufficient to learn about numerical
analysis.

— It should be considered as a compagnion book

specific libraries

B-SPLINE apline interpolation

EISPACK eigenvalue/vector, matrix inversion,decomposition etc.
ELEFUNT elementary functions

ELLPACK partial differential elliptical equations

LINPACK linear equations

LLSQ linear least square problems

MINPACK function minimization

QUADPACK integration

They are all available at the cost of support through IMS3L {see above)

ACM Collected Algorithms, all kinds of algorithms, good and bad, also available through
IMSL :

4 FLOATING POINT ARITHMETIC

o digital signal processing

IEEE complete set of algorithms, from basie fit routines to complex filter design,

available through :

The Institute of Electrical and Electronics Engineers, Inc.

345 East 47 Street
New York, NY 10017, USA

or through John Wiley and Sons, Inc.

4.2 Floating point representation

A floating point number { FP) is very similar to the so called “scientific notation” : ex §.359.10~1?

We can always represent them in the form :

where :

3.f.ﬁ¢_b

] sign of the fraction
I fraction or mantissa
e exponent or characteristic
B8 implied base and decimal position
s sign of exponent, or
b implied bias of exponent

330 2

1 |j— 8 -t} e— 23

sign exponent ‘ fraction

Figure 2: Floating point number inside a 32 bit word

» for more dynamic : wider exponent

o for more precision : wider [raction {double word)

The fraction is usually normalised :

@™l

1A

4 FLOATING POINT ARITHMETIC 9

ar

1< f<g
Typically, 3 = 2,100r 16

In some cases, when § = 2 the most significant bit of the fraction (the one to the left) which
is always 1 anyway, is implicit and not represented in the computer. This increase the precision
without an extra bit.

4.3 Range and precision

The range is defined as the set of all nwunbers that can be represented, from the smallest to the
largest, irrespectively of the precision.

The smallest and largest absolute representable pumbers are :
Min = foni
Maz=F"~fras
Typically : .fml'n = lllﬁ and fm-l ~ 1

For example, if § = 2, epin = —04 enee = 63

Min ~ 4-10°™, Maz ~ 7-1077
Note that Min and Max may differ when positive or negative,

The relative precision is given by the amallest non-sero difference between two fractions.

Typically, if f is made of 24 bits {including the possible implicit most significant bit}), then the
precision ¢ ~ 0.6-10°7

The fraction has a fixed number of bits — the relative precision is constant, whatever the
exponent.

Is it always meaningful ? NO

When you subtract 2 similar numbers, significant bits are lost :

operand relative error
0.3141592 - 10* 107
-0.3141000 - 10! 10-7

0.5920000 - 1073 10-?

The zeros at the right of the result are not significant !

ry -

5 FLOATING POINT OPERATIONS

5 Floating point operations

5.1 Normalize a number

Basic algorithin :

While MSB of fraction = 0

do shift_left fraction one position
subtract one to exponent

ond

Example in binary {# = 2)

¢
7

-1
]

-1
5

f
G.001011 . ..
0.01011...
0.1811...

NB : The MSB (Most significant bit) may be implicit, see above.

Exampte in decimal (3 = 10)

0.0041 108

» 10 +10
0.0410 104

» 10 +10
0.4100 10?

for normalized unity

* 10 + 10
4,1000 102

NB: The value is unchanged, only the representation ia different.

5.2 Multiplication Fg = F » F
Multiply fractions
idd exponents
Renormalize (if necessary)

Add signs modulo 2

The division is similar

Example of multiplication in decimal :

Ir

eR =

SR

h*f

e+ e

n o

10

5 FLOATING POINT OPERATIONS

(-1)* . 0.4
* (-1 - 0.2

11

- 10 400
- 107 ~0.02

(-1)*1 . 9.08 . 103!

renormalize
(-1)' - 0.8
(-1 - 08

6.3 Addition - Subtraction

- 197! -8
- 10t -8

The operation on the fractions can be done only if the exponents are equal.

Basic algorithm :

If exponents not equal do

for number with smallest exponent
do shift right fraction { position

add 1 to exponent

until exponents are equal
4dd / subtract fractions (with signs)
Renormalize if necessary

Example of an addition in decimal :
04 - 10°
+ 0.2 . 107!

align exponents

0.40000 . 107
+ 0.00002 . 10®

400
0.02

same exponents

0.40002 - 103

400.02 no normalization necessary

5.4 R versus floating point representations

The range and precision of floating peint numbers are generally sufficient for all purposes, yet can

produce unexpected results :

Example: f(z) = {z -1}z - 2}...{z - 10}

Mathematically, ifz = 1,2 ... 10, f{z}) = 0

We can also represent f as a polynomial : f(z} = dg + ;2 +...a02™

12

5 FLOATING POINT OPERATIONS

{4

\/f\vﬂ\j/\\/\ \/ .

Figure 3: f(z) for —llegz < 11

What happens around ¢ = 1 for example ?

z=at=2"= ... =2z%=1

and so
f=a+at ...ap
in a first approximation : g9 = {—1}-2)...(-10} = 10 = 3.100

and the slope : = -3-10*

s We are adding/subtracting very large numbers whose (not roounded) sum should be zero

o for each amall step Sz, f“chmgu by 3.10°. 6z
e it follows that f is numerically never equal to 0, not even small !

5.4.1 Arithmetic / mathematic errors in general

Whenever we do complex numerical computations, we are facing the following dilemma : the round
etrocs tend to increase when we try to increase the mathematical precision (number of integration
steps, number of terms in developments etc}. In general, the optimun is obtajned when the round

off error equal the mathematical (truncation) error.

5 FLOATING POINT OPERATIONS .
£ 21

Figure 4: f(z), for # very close to 1

5.5 Some practical rules
« Never compare nuinbers to strictly, especially near zero
¢ Avoid subtracting similar nurnbers
s Avoid very small or large exponents (change units)
s Avoid taking powers,

— use Hoerner’s schema :
f=a+c(a+z(azt...)...))
~ use Householder or Givens transforms for matrices

— use double precision sums etc.

-tm

»
[}
>'$.
oY, , ‘t, -1
' St .
[]
[
-~ JL_m ’

13

s

5 FLOATING POINT OPERATIONS

VAW

) Ecrors

14

op'k-mq

Figure 5: rounding / truncating error behaviour

5.8 Pro and con

Good :

Bad :
L]
[]

Best for

¢ dont care about dynamic or scaling
good extended libraries, lots of experience accumulated
almost problem independent
code can be used again and again

fast (?) hardware floating point chips available

» may be to slow
use UNNecessary Memory
no standard floating point number representation

error, truncation, rounding more difficult to analyse

: + general purpose software

complex calculations

6 THE FLOATING POINT AXIS 15

6 The floating point axis

Floating point numbers can be represented (or not represented) in 7 region of R :

representable zero representable
negative negative negative positive positive positive
overflow numbers underflow underflow numbers overflow
— —_— . — —_
-0 Maz~ Min’l | 0 ' |Min+ ‘Maz*“ +o0

¢ The spacing between Min~ , 0 , Min* depends on the exponents only

s The spacing between representable numbers depends on the fractions

6.1 Truncation and rounding

Whenever we map R — FP, or when we renormalize a 7P after some operation, we may lose
extra significant hits.

There are then many possibilities for truncation, some of the solutions are :
o downward direct rounding |af

¢ upward direct rounding [a]

* truncation towards zero

¢ rounding away from zero

+ rounding to closest P, best, but needs three extra bits

The last three zolutions are symmetric arcund zero, but only the last is also regular around
zero.

+ We may get a good understanding of the rounding effects of a whole programme, if we can
run it twice with different rounding procedure.

¢ With integer arithmetic, rounding should be in agreement with remainder :

“ remainder must have same sign as divisor ™ — |] if divisor > 0
{ 1if divisor < 0

7 IEEE FLOATING POINT STANDARD

7 IEEE floating point standard

16

Currently, more than 20 different floating point representations are in use ! None is the best we
know off !

As a result, complex numerical software are not portable, while more precision could be gained
without extra bits.

The IEEE 754 standard defines :

7.1

7.2

o A denormalized FP is for results between 0 and +Mint,

3 {4) data formats
arithmetic operations
rounding

exception handling

special numbers (denormalized numbers and N AN

Data formats

single
word
length 33
sign 1
exponent 8
fraction (1)+23
bias 127‘
Max 1.7-10%
Min 1.2-107%
precision 107

R4

Special numbers

9 10%7
2.2.107%

double

n
+62
1023

lu—li

sign biased exponent

0/1

0

0

0
265
255
255

— It has less significant bits

[quad] extended
min max
128 44 80
1 1 1
15 11 16
+112 +31 +63
16383 1023 16383
1.2 10499 g-10%7
1.6 - 19-4%%
10-3% 100 10~
fraction meaning
0 +0
0 -0
#90 denormalized
0 +00
0 —o0
#0 NAN

7 IEEE FLOATING POINT STANDARD 17

— It can be added or subtracted to normalized numbers, but cannot be multiplied or
divided
— It implements gradual underflow
¢ A AN is the result of an invalid operation {v/(=3), 0%cc, oo — o0} etc.

¢ 10, toco are valid numbers, but only some operations are possible with them.

s Extended format should be used, whenever possible, for temporary results, to reduce
over/underflow and round off errors in long chains of operations.

All operations keep internally 3 guard bits {extended fraction} for rounding.

7.3 IEEE standard floating point operations
1. Basic operations: + — %
2. VFP , remainder
3. Conversion FP « integers (with round/floor)
Binary « packed_decimal {integer/FP)
4. Conversions between single , double , extended and quad precision
5. Compare and set condition code : > < = # "not comparable”
6. Rounding
necessary - unbiased to nearest FP
- towards zero

L4

optional - towards —oo

- towards 400

7.4 Exception handling
b exceptions :
» Invalid operation, NAN
s Overflow
s division by zero
« underflow h
s inaccurate result
They must :
» set a flag
e execute specified procedure
Trap procedure ;houlcl :
« indicate what and where it was wrong

» deliver acceptable result if continuation is wanted

7 IEEE FLOATING POINT STANDARD 18 8 FLOATING POINT PROCESSORS 19

7.5 What are NAN? 8 Floating point processors

i i lat lysi . . .
* you can put any (# 0) information in the fraction for later analysis Currently, 4 different types of floating point hardware processor are available. They differ consider-

« A AN propagate through any F'P operation : ably by their speed, operations available, and the way they can be attaclied to given microprocessors.

+ 1. AMD 9511-9512 for 8 bit uProcessors
NAN — NAN

3

2. Intel 8087-80287 , NS 32081 , M 68881 for 16/32 bit tProcessors

SR 4

3. Am, Wytek etc. high speed units for 32 bit pProcessors

. . 4. Sky-Map , HP-FFT , FPSxxx attached signal/vector processors for uProcessors
7.6 Operations with £0, oo

Overflow and division by zero produce too They are :
FPJ too — 40 » 10-1000 times faster than software equivalent
FP/ 20 — too o very secure (exceptions handled correctly)

40, too can be used for comparison ¢ easy to connect to uProcessors

¢ may not be supported by standard software (specially old versions)

But all these operations activate the "invalid operation flag”.)
8.1 Floating point processors main characteristics

! AMD 9511 | AMD 9512 8087 NS 32081 (M 68881 | WD
used as | periph periph co-proc co-proc | co-proc | ??
Structure | puprog pprog Hprog uprog pprog | 17
stack stack stack 8 reg 8 reg g
integer yes no yes yes yes "
FP bits 2 32,64 32,64,(80) | 32,64,(80) | 32,64,80 | 77
IEEE 754 no no ~ yes ~ yes ~ yes | 7
timing 32/64bits
FADD 28-128 276-1235 10 7.4/74 ? ?
FMUL 57 768-863 24 4.8/6.8 ?
FDIV 57 2043-2319 38 8.9/11.8 ? ?
FEXP 1956 - ? ? ? -
FSIN 1882 - ? ? ? -
SQRT ? - 38 ? ?

8.2 Stack operation (2ero address processor)

Like pocket calculators, many floating point processors use a stack instead of registers for operands.

All operations are done on the eperand(s) at the top of the stack.. New operands can he pushed
onto the stack, results can be popped out of the stack. The order of operands into the stack can he

8 FLOATING POINT PROCESSORS 20

changed with other instructions. Instructions (operators) do not specify address or registers. This
suppress the problem of memory/register allocation for intermediate results.

Basic algorithm :

- push operand(s) on stack
- do operation(s) en them
- pop result from stack

8.2.1 Rules to go from usual algebraic to postfix (stack) notation

1. Try to keep intermediate results on stack
2. Start from inner part of "usual” formula (brackets)
3. Do not push operands in advance

4. Do not be afraid of stack length. With the exception of recursive functions, depth of 3 or 4
is sufficient in most cases

5. Do not store intermediate results in memory

Example of transformation from usual to stack :
Usual mathematical notation :

5+ sinw/3

Stack operations : The lowest line represent the operations. An uparrow indicates a push, The

upper lines show the content of the stack, with the top-of-stack at the bottom. The final result is
always there,

B

5 3 5 5
B 3 r x/3 | sinx/3 | S+sinx/3 5 +anx/3
51 it | =1 |/ ain + v

8 FLOATING POINT PROCESSORS

B.3 Attachement of AMD 9511 as a peripheral to a 8bits uP

Address bus

c/D CB

T0R RD
pP T
wwl_ Llws o511

CLK CLK

Data bus

Note :
¢ C/D distinguish between data and opcodes & select
o Data bus is used both for data {a byte at a time) and for opcodes

8.3.1 Operations

s Load data, starting with least significant byte of first operand

* send opcode

o read result when ready

Have subroutines with addresses of operands as parameters

21

s

L4

8 FLOATING POINT PROCESSORS

8.3.2 What to do while 9511 is crunching

¢ read status and check busy bit (slows 9511)

o suspend pP with PAUSE

¢ do something else until interrupt

» execute WAI on 6809

8.4 8088-8087 interconnection

+ work in parallel

— instructions may overlap

- 8087 let 8086 fetch operands from memory when necessary

~ BOBT process only instructions with ESC code

N

|

L

C lock
Grou

nhecropt —I 808(
I
—_——
T el
[o RQ/ATL
@so asl Tex

Ra /aTo

|
I
l
I
|
|

=7CLK

— e — — VT

8057

22

Rug

8 FLOATING POINT PROCESSORS

8.5

Very fast Floating point processor

Part of Am29300 family

Single VLSI, 144 pin-grid array

32 bits + — + int — fp in single clock cycle
internal double precision sum of products
Newton-Raphson for 1/2 , y/z

Full IEEE forinat (+ DEC vax format also)
6 flags for status

3 » 32 bits-bus flow through + registers bus

: Am 28325

23

22 Computers, Errors. and Algorithms [Ch. 1}

1.5C USING ALGEBRAIC REARRANGEMENT TO AVOID
LOSS OF SIGNIFICANCE
If 52 >> |t then b2 — ¢, will not differ much from &3, hence

r(=)= b — /B¥ = ¢; will suffer loss of significance if 4, >0
"and '
=4+ \/33, — ¢y will suffer loss of significance if b, <0

(This is what we saw in Section].2B.) So the real roots of the quadratic
ax?+ bx+c=0 (a¥0)
can be calculated without loss of significance using the formula

€
root, = (=X|5| + vBI—¢;) and rmt,s;jt (62)
1
where
b [.
00100 SUBROUTINE GROOTS(A, B, C, ROOT1, ROOTZ, COMPLX, 1M, PRINT)
00200 LOGICAL PRINT, COMPLX
00300 (=== === LR e e A R i C
00400 ¢ THIS SUBROUTINE FINDS THE TWO ROOTS OF THE QUADRATIC 4
gosoo0 ¢ Adee2 + BX + C 4
005600 € IF PRINT = TRUE, IT PRINTS THEM ON OUTPUT DEVICE I, ¢
00700 C REAL ROOTS (COMPLX=FALSE) ARE RETURNED AS RDOT1 AND ROOTZ, ¢
00800 C AND COMPLEX RODTS (COMPLX=TRUE) AS ROOT1 +0R- I~R0OTZ. ¢
00900 (o= r e s e wsen==a- VERSION 1 5/1/81 == = = = 4
01000 Bl = ~{3,5+8/A
01100 €1 = C/A
01200 DISCR = BisB8Y -~ {1
01300 IF (pISCR .L7. 0.) GOTO 10
01400 [et
01500 ¢ 'REAL ROOTS: ROOT1 AND ROOT2
014600 . COMPLY = _FALSE.
01700 ROOTT = ABS(B1) + SGRT{DISCR}
01800) IF (81 .LT. 0.) ROOTT = ~ROOTY
01900 ROOT2 = 0.0
02000 1F (ROOTT1 .NE. 0.) ROOTZ = C1/ROOT1
02100 ¢
02200 IF (PRINTY WRITECIW,1) RDOT1, ROOT2
02300 1 FORMAT(® REAL ROOTS: ‘' E14.7," AND 'E14.7)
02400 RETURN
02500 €
02600 ¢ COMPLEX CONJUGATE ROOTS: ~ROOT1 +DR- IsROOTZ
Q2700 10 COMPLX = _TRUE.
02800 ROOTY = B
02900 ROOTZ = SGRT(-DISCR)
03000 ¢
03100 IF (PRINT) WRITE{IW,2) ROOT1, ROOT?
03200 4 FORMAT(® COMPLEX ROOTS:',E15.7,% +0R= I«(' E14.7.")")
03300 RETURN
03400 ¢

03500 END

- 4 mom s mauree A wemwnewer 8 RE o i met e e . mna

HIGH LEVEL LANGUAGES

High Level Languages

Allen, J.R.
Anatomy of Lisp
Me Graw Hill 1978

Brodie, L.
Starting Forth
Prentice-Hall 1981

Brodie, L.
Thinking Forth
Prentice-Hall 1984

Downes, V.A, and §.J. Goldsack
Programming embedded systems with Ada
Prentice-Hall 1982

& Friedman, D. and M, Felleisen
The little LISPer
Science Research Associates, Inc. 1986

Ghezzi, C. and M. Jazayeri
Programming language concepts
Jobn Wiley and sons 1982

Griswold, R.E. and M.T. Griswald
A SNOBOL 4 primer
Prentice-Hall 1973

-

Hendersor, P.

Functional programming, application and implementation

Prentice-Hall 1980

Kernighan, B.W. and D.M. Ritchie
The C programming language
Prentice-Hall 1978

o Kerridge, J.
occam programuning : a practical approach
Blackwell Scientific Publications 1987

o Metcalf, M.
Effective Fottran 77
Clarendon Press 1985

Winston, P.H. and B.K.P. Horn
LISP
Addison-Wesley 1981

Wirth, N.
Programming in Modula-2
Springer Verlag 1983

OPERATING SYSTEMS

Operating Systems

Brinch-Hansen, P,
Operating system principles
Prentice-Hall 1973

Brinch-Hansen, P.
The architecture of concurrent programs
Prentice-Hall 1977

Christian, K.
The Unix Operating system
John Wiley and sons, 1983

Coffman, E.G. and P.J. Denning
Operating system theory
Prentice-Hall 1973

Comer, D.
Operating system design, the XINU approach
Prentice-Hall 1984

Comer, D.
Operating system design, Internetworking with XINU
Prentice-Hall 1988

Gilton, H. and R. Morgan
Introducing the Unix system
Mec Graw Hill 1983

Hoare, C.A.R.
Communicating Sequential processes
Prentice-Hall 1985

Kernighan, E.G. et al.
Unix time-sharing system
The Bell system technical journal, 57 1897-1991 (1978)

Kernighan, E.G. and J.R. Mashey
The Unix programming environment
Soft. Pract. and Exp. 9 1-5 (1979)

Pechura, M.A.
Comparing two mitrocomputer operating systems : CP/M and HDOS
CACM 20, 188-195 (1983

Tanembawm, A. S.
Operating Systems: Design and Implementation
Prentice-Hall 1987

STRUCTURED PROGRAMMING

Structured programming

« Dahl, O. Dijkstra, E.W. and C.A.R. Hoare
Structured programming
Academic Press 1972

Dijkstra, EW.
GOTO statements considered harmful
CACM 11 147-148 (1968)

Dijkstra, E.W.
A discipline of programming
Prentice-Hall 1976

Hughes, Ch.E. et al.

Advanced course in programming using Fortran

John Wiley and sons 1978

¢ Kruse, R.L.
Data structures and program design
Preatice-Hall 19584

o Kernighan, B.W. and P.J. Plauger
Software tools
Addison-Wesley 1976

Kemighan, B.W. and P.J. Plauger

The elements of programming atyle
Addison-Wesley 1978

s Meek, B. and P. Heath

Guide to good programming practice
Eltis Horwood Ltd 1980

* Wirth, N.

Program development by stepwise refinement

(CACM 14, 221-227 (1971)

« Wirth, N.
$ystematic programming
Prentice-Hall 1973
s Wirth, N.
Algorithms + Data-Structure = Programs
Prentice-Hall 1876

¢ Yourdon, E.
Techniques of program structure and design
Prentice-Hall 1975

MODULAR DECOMPOSITION, ABSTRACTION AND INFORMATION HIDING

Modular decomposition, abstraction and information hiding

Parnas, D.L.

On the criteria to be used in decomposing systems into modules
CACM 15, 1053-1058 (1972)

L

Parnas, D.L. et al.
The modular structure of coruplex systems
IEEE Traas. on Soft. Eng. SE11,3 259-266 (1985)

Jump tables and other algorithms

e Dewar, R.B.K.
Indirect threaded code
CACM 18 330-331 (1975)

Knuth, D.E.

The art of computer programming vol 1 : Fundamental algorithms
vol 2 : Seminumerical algorithms
vol 3 : Sorting and searching

Addison- Wesley

o Loeliger, R.G.
Threaded interpretive languages
Byte Books 1981

Sedgewick, R.
Algorithms
Addison- Wesley 1983

Floating Point operations

Cody, W.J.Jr and W. Waite
Software manual for the elementary functions
Prentice-Hall 1980

s Cody, W.LIr
Analysis of the proposals for the floating point standard
IEEE Computer march {1981)

Tanenbaum, A.S,
Structured computer organisation
Prentice-Hall 1976

e Tituy, j.
Design precaution ensure the benefits of using floating-point coprocessors
EDN june 57-64 (1986)

Waser, 5. and M.J. Flynn
Introduction to arithmetic for digital systema designers
Holt, Rinehart and Winston 1982

P

NUMERICAL METHODS

*

Numerical methods

Numerical recipes : Methods for numerical computation
(with sources in Fortran 77 and turbo pascal)
Cambridge University Press 1986

Numerical recipe examples
{with sources in Fortran 77 and turbo pascal)
Cambridge University Press 1986

Abramowitz, M. and LA. Stegun
Handbook of mathematical functions, with formulas, graphs and mathematical tables
Dover 1965

Atkinson, L.V. and P.J. Harley
An introduction to numerical methods with Pascal
Addison-Wesley 1983

de Boaor, C.
A practical guide to splines
Springer 1978

Bracewell, R,
The Fourier transform and its applications
Mc Graw-Hill 1965

Chan, T.F. and J.G. Lewis
Computing standard deviations : accuracy
CACM 22 526-531, (1979)

Cloutier, M.J. and M.J. Friedman
Precision averageing for real-time analysis
CACM 20 525-529, (1983)

Garbow, B.S. et al.
Matrix eigensystem routines, EISPACK guide extensions
Springer 1977

Hamming, R.W.
Digital filters
Prentice-Hall 1977

Lawson, C.L. and R.J. Hanson
Solving least squares problems
Prentice-Hall 1974

Maron, M.J.
Numerical analysis
Macmillan 1982

UNCLASSIFIED T

Piessens, R. et al.

QUADPACK, a subroutine package for automatic integration
Springer 1983

¢ Shampine, L.F. and M.K. Gordon
Computer solution of ordinary differential equations, the initial value problem
Freeman 1975

e Smith, B.T. et al.
Matrix eigensystem routines, EISPACK guide
Springer 1970

» West, D.HD,

Updating mean and variance estimates : an improved method
CACM 22 532-535, (1979)

Unclassified

» Bentley, 1.L.
Writing efficient programs
Prentice-Hall 1982

¢ Dreyfus, H.L. and §.F. Dreyfus
Mind over Machine : The Power of Human Intuition and Expertise in the Era of the Computer
Basil Blackwell Ltd. 1986

» Weizenbaum, J.
Computer power and human reason, from judgment to calculation
Freeman 1975

g

