ey TN TERNATION AT Ao oot Aok ey b
gw ¥ UNTTT I NATTIONS FOLCATTON o1, SCH NI 0 AND U U EER A ORGANIZATION
Ny rid

INVERNATIONAL CENTRE FOR THEORETICAL PHYSICS
LO.LI 10, BOX 586, 34100 TRIESTE, ITALY, Cast1 CENTRATOM TRIESTE

H4 SMR. 403/4

FIFTH COLLEGE ON MICROPROCESSORS: TECHNOLOGY AND APPLICATIUNS
IN PHYSICS

2- 27 October 1989

Characteristics ot the M 6809

A. MARCHIORO
W. VON RUDEN
CERN, EF Division, Geneva, Swilzertand

Overview of the lectures

M6809 Basics

Instruction Set 1

Instruction Set 2

M6809 Hardware
Connecting Memory and 1/O
Advanced Addressing Modes

Interrupts

M680Y Characieristics; MO8V Basics

Lecture 1: M6809 Basics

* Introduction to the M6800 family
* Main Characteristics of the M6809
* M6809 Programming Model

* Programs and Data in Memory

* Simple Instructions and Addressing Modes

M6809 Characteristics: MOROO Basics

The M6800 Family of Microprocessors

. MC 6800, MC6802, MC680Y

First generation of simple 8 bit machines

» MC6801, MC6803, MCo804, MC68701, MC6BHCI]

Single chip microcomputer for high system integration

. MC6809, MC680YE
8 bit P (16 bit internal) with advanced instruction set
powerful addressing modes and high level language support through
= good stack organisation
« position independent code

= multitask and multiprocess organisation

. MC6805, MC68705, MC146805...
CMOS processors with special built in functions (ADC, PLL)

for industnal control

MOS0V Characteristics: MO8DY Basics

Why did we choose the MC6809 ?

. Very elegant and simple 8 bit machine with 16 bit registers

» Simple hardware architecture

. Powerful addressing modes

. Orthogonal instruction set

» Position independent code

. Ciood stack architecture for high level languages (PASCAL etc.)

. Memory mapped /O

+ Wide range of similar (compatible} machines and support chips available
in the MC6800 family

. Very good support by Motorola, in particular for our Colleges

MOBUY Characteristics: M680Y Basics

Main Characteristics of the M6809

Hardware:

4-6-8MHzclock, | -0.66 - 0.5 ps machine cycle

MO6BOYE version with external clocks

16 address lines and 8 data lines

3 interrupt lines

Control logic for Slow Memories, DMA
Extemal Event Synchronisation

Single 5-Volt supply

Compatible with all M6800 family peripherals

Software;

Many Addressing modes

1464 Instructions

16-bit arithmetic, Multiply
Effective Address Calculation
Save/Restore any Set of Registers

Etficient Stack Manipulation

M6809 Characteristics: M6809 Basics

M6809 Block Diagram
B - VCC
Al - AlS DO-D7
-+ VS§§
8
16 /
“—> PC — Instruction
U -— Register
S Reset
l r NMI
-
Y Interrupt - FIRQ
-t x i Control - m
DP b —_
r DMA/BR
A B — RAW
Bus Control b~ HALT
e BS
l l I L BA
A4 X TAL
Timing
ALU - EXTAL
- MRDY
cc g e E
—_— = Q

M6B0Y Characteristics: MO Basics

M6809 Programming Model

7 0
e A Accumulator A
s r 7 0
: A B Accumulator B
15 87 0
Xhigh 1 Xlow X Index Register
Yhigh + Ylow Y Index Register
SPhigh ! SPlow Stack Pointer
USPhigh ‘ USPlow User Stack Pointer
PChigh : PClow Program Counter
DP Direct Page Register
elelali[nlzlvle] Condition Codes
Register

MaROS Characteristics: MOJ0Y Basics

The Condition Code Register

The Condition Code Register (CC) has two main functions: it contains the result of
the last arithmetic operation in H, N, Z, V, C and it controls the interrupt operations
with E, F and L. The first function is needed to control the flow of the program by
testing such things as "result was zero” or an "overflow" occured. These bits are

explained here, whereas the interrupt related bits will be treated in lecture 7.

L Carry

* Overflow

Zero

» Negative

» Half Carry

MOBUY Cliwracteristics. MOSOY Basics

Programs and Data in memory
The M6809 is an accumulator based machine, i.e. all data movements and ull
arithmetic operations go via the accumulators. Before discussing the memory usuge
Dy program and data, we have a look at the instruction format. ‘The M6809 has a larg
instruction set with many addressing modes and therefore the length of an instruction

varies from one 1o five bytes. The general form is

Operation Operand

which both can have various lengths. When looking at a program in memory, one
cannot tell what the meaning of the bytes is, because instructions contuin a mixture of
Opcodes and Operand addresses or even constants,

The organization of programs and data in memory is as follows:

$5005

$5006 | OpCode LDA B6
$5007 | Operand $50 50
$5008 | Operand 02 02
$5009 OpCode LDB Cc6
$500A | Constant #13 oD
$500B | OpCode MUL D
$500C

Mo809 Characienistics: M6%0Y Basics

Data are stored in memory as bytes; multiple bytes are used to represent 16-bit
itegers, 32-bit floating point number, strings, arrays, etc. The convention for the
MG6BOY is that the most significant byte is always stored first, for instance the value
$1234 is written in memory as follows:
low address..... v 11213470 .,high address

This is very convenient because just by opening the memory one can read a value in
the correct sequence. (Other machines, like IBM-PC or VAX, have the opposile
convention, the lower address contains the LSB of a word).

In the same way also 32-bit words are written in the correct order, for example the

value $12345678 is written as:

e 1121341561781 ...

Strings are stored from the left to the right in ascending memory addresses. The texi

“TRIESTE" expressed in ASCII code would be found as
e 154 521491451531541454 ...,
When data are pushed onto the stack, they are stored in the opposite direction,

because the stack addressing is backwards. Of course, the order in memory in again

the same.

iy =

MEKUY Characteristics: MOEOY Basics

In summary :

We distinguish three main areas in memory: program, data and stack. Programs
including their constants should never change, so they might be stored in Eprom,
Data are variables needed by the programs or information for I/O devices. The stuck

arca 1s used by the system and the user program for temporary data store.

MOXOY Characteristics: MG Busics

M6809 Addressing Modes

» Inherent

« Immediate

» Direct

» Extended

* Indexed

« Relative

» Extended Indirect
» Indexed Indirect

» Long Relative

MOBOY Characreristics: M6809 Basics

Simple addressing modes and first instructions

1. Inherent

All information needed to execute the instruction is contained in the instruction itself,

In the case of the M680Y, also the accumulator address information is part of the

instruction, Examples:

Mnemonic Code(hex)
CLRA 4F
CLRB S5F
INCB , 5C
NOP 12

2. Immediate
The data needed in addition follows immediatly after the opcode. Ouly constanis
(data known at program load time) should appear here. The '# sign is used 1o

indicate this mode. Examples:

Mnemonic Code
LDA #$25 8625
LDX #300 8L1:012C

LBPY #65535 108EFFFF

M680Y Charactenistics; Mas0Y Busics

3. Extended

Here the opcode is followed by the 16-bit address of the operand, which allows to

Mnemonic Code

LDA 52001 B62001
ADDA $2002 BB2002
STA $2003 B72003

This little program will.add the numbers in location $2001 and $2002 and store the

result in location $2003.

4. Relative

Relative addressing refers io the program counter and is used 10 make programs
position independent. In the M6809 most ‘flow of control’ instructions use relative
addressing (branching). Branch instructions test a condition such as equal, negative,
ctc. and take a branch, if and only if the condition is true. The branch destination is
the present program counter plus a positive or negative offset allowing to transter
vontrol forward or backward in the program. This offset is expressed in two's
compiiment notation and can be 8 or 16 bits wide.

Branch instructions are shorter and execute faster than Jump

instructions and produce position independent code!

MoO80Y Characteristics: MOBOY Busics

Example 'Delay loop'
This is an example for a delay loop in software, which may be needed in simple
systems, in particular to save hardware such as monostables, if the CPU time is not

needed to do more useful things,

Addr Code Label Instr Operand Comment
{200 86 6F LDA #111 Set loop counter
0202 12 WAIT NOP waist CPU time
0203 12 NOP

0204 4A DECA end of loop?
0205 267 BNE WAIT

0207 next instruction

How to calculate the branch offset ?
As long as ACCA is non-zero, the program should go to 'WAIT, else the next

instruction is executed. The offset is the destination address minus the present

address, in our case $0202 — $0207, which is SFFFB. For short branch instructions.

only the lower byte is used (8-bit offser),
Note: The ‘present address’ is always the address of the 'next instruction’,
because the program counter will already be there afier reading the

instruction and before actually executing it.

MOSOY Characteristics: Instruction Set

Lecture 2: M6809 Instruction Set

» Instruction Set Overview

+ Arithmetic and Data Move Instructions
* Logic Instruction

» Pointer Register Instructions

» Branch Instructions

* Instruction Usage

MO80Y Characteristics: Instruciion Set

Instruction Set Overview

The instruction set of the M680Y contains 1464 instructions accerding 10
Motorola. Such a CPU falls in the category of Complex Instruction Set Computers
(CISC) as compared to Reduced Instruction Set Computers (RISC).

CISC type machines employ a large variety of instructions combined with
complicated addressing modes implying variable length instructions and variable
execution times, CISC machines support high-level languages such us Pascal, which
make frequent references to the stack. Modem 16 or 32 bit CPUs employ microcode
for instruction decoding and execution, which makes them rather flexible, in
particular if there is "writeable control store”. But often a large fraction of microstore
is needed to implement a few complicated and rarely used instructions.

RISC machines use very simple instructions, usually some 30 - 50, which
typically have a fixed length and limited addressing capabilities. The advantage is thut
instruction decoding becomes simple and that pipelining gets efficicnt. Such CPUs
€xecute an instruction at every machine cycle, as long as the pipeline is not broken,
i.e. no branch instructions. Of course, there are many more instructions needed to
execute a given task,

There is no easy way 1o say, which architecture is preferable, it olten depends on

the application. In this lecture we will present a M6809 instructions and explain them

with simple examples,

Instruction Set — 2

M6809 Characieristics: Instruction Set

Arithmetic and Data Move Instructions

These instructions cover the needs for calculations, such as additions,
subtractions, muitiplication and decimal arithmetic, The M6809 has no divide
instruction or any floating point support, which will have to be treated in software.
Most of these instructions support the four major addressing modes (immediate,
direct, indexed, extended). All operations are executed via the two accutmulators A

and B and operations consists of sequences like

load calculate calculate cee store

There is a set of instructions called ‘data handling' instructions by Motorala,
which could be called arithmetic instructions as well. They consist of shift and rotate
operations used frequently in calculations. Note that the multiply instruction works
only with unsigned 8 bit integers and shifts and rotates are needed for signed

multiplications.

Inctrietinn Qar . 1

oy W

M6809 Characteristics: Instruction Set

The following example shows how to add 1o 16-bit numbers N1 and N2 and to
store the result in SUM,

The data are stored in memory as follows:

$100 NI high

$101 N1 low
102 N2 high
$103 N2 low

$IA0] SUM high
$tAl SUM low

The program to add these to numbers is:

DA $101 add LSB of N1 and N2

ADDA 5103

STA $1A1 save intermediate result

1 DA $i00 add l\;TSB‘s and Carry from last add
ADCA 5102

STA $1A0 store high byte

A second method uses the double accumutator D, which is the combination of Ac
A and Acc B, A having the MSB and B the LSB.

ILDD $100
ADDD 5102
STD $1A0

MOBOY Characteristics: Instruction Set

Logic Instructions

Logic instructions operate on individual bits rather than on bytes. They di(fer
from arithinetic instructions by not using any interdigit carry. AND, OR, EOR and
COM correspond directly to their hardware equivalent but they always work on 8 bils
at a time, The instruction '"ANDA #$0F for example will AND each bit of AccA with
the corresponding bit of the data byte $0F and store the result in AccA. In our
example bits 0-3 of AccA will remain unchanged, bits 4-7 are forced to zero. Such
operations are often called ‘'masking’. The following rules can be used to employ

logic instructions:

AND tum one or several bits off
OR turn one or several bits on
EOR invert one or several bits
COM invert a complete byte

Logic instruction are very useful to program 1/O ports and interface circuits as we
will see in lecture 5. The M6809 instruction set does not include direct bit set, bit clea
or bit test-and-set instructions. The latter are needed to program semaphores in
operaling systems or multi-tasking applications. On the M6809 semaphores can be

programmed using logical shift instructions.

‘ _ M68OY Characeristics: Instruction Sct
MBI Characterisucs: Instruction Sct

Branch Instructions
Pointer Register Instructions

* Unconditional

One instruction called LOAD EFFECTIVE ADDRESS exists in the M&809 used
BRA branch always

for pointer or ‘effective address' calculations. Normally the CPU calculates the BRN branch never
addresses needed to reference data in memory, but there are cases, where one is not
interested to actually fetch the data, but only to calculate the address where the next

* Conditional with one condition code
data should be fetched from.

. S BNE Z=0 branch on not equal
As an example, assume that several messages are stored in form of text strings in
BEQ Z=1 branch on equal
memory and the messuges are numbered from 1 to n. Let us also assume that there is BPL N= branch on plus
a table with the start address of each message. To send a given message to a terminal BMI =1 branch on minus
) _ BCC =0 branch on carry clear
4 program would extract the message address by calculating the pointer to the BCS -1 branch on carry set
corresponding entry in the address table and pass this information to a print routine or BVC V=0 branch on overflow clear
to the operation system. BVS V=] branch on overflow set
The LEA instruction exists for the X, Y, Uand S registers and uses only indexed
addressing modes, . * Arithmetic branches (after compare), here we use CMPA [M]
Condition Unsigned Test Signed Test
A=M BEQ 2= BEQ Z=1
Az M BNE Z=0 BNE Z=0
A>M BHI C+Z=0 BGT Z+(N@V)=0
A<M BLS C+Z=1 BLE Z+(N@V)=1
Az M BHS C=0 BGE N®BV=0
A<M BLO C=1 BLT N@V =1

In<triction Ser _ T

iy -

M6RO9 Characteristics: Instruction Set MBS Characteristics: Addressing Mudes

Instruction Usage

To determine the importance of the different instructions, one may have a look at the
Lecture 3: M6809 Addressing Modes

frequency of usage. Motorala has published a static analysis of instruction usage

based on about 25000 lines of M6800 assembly language code. The result is

» Direct Addressing

Instruction type %
» Long Relative Addressing
l.oad 234 %
Store 15.3 % + Extended Indirect Addressing
Subrolu.tme Calls 13.0 % . Indexed Addressing
Conditional Branches 11.0 %
Unconditional Branches 6.5 %
Compare, Test 6.2 %
Increment, Decrement 6.1 %
Clear 4.4%
Add, Subtract 2.8%
Others . 11.3%

Use of the offset in indexed addressing

Offset %

7Cro 40.0
5 bits 53.0
6 bits 1.0

R hits 6.0

MOKOY Charactenistics: Addressing Modes

More on Addressing Modes

1. Direct addressing

Both extended and direct addressing are flavours of absolute addressing.
Extended addressing uses 16 bit addresses to refer to any location within the 64K
address space. Direct addressing uses only an 8 bit address, the LSB of the memory
address, the MSB being taken from a register, the Direct Page Register (DP). Afler
reset, the DP is cleared to make the M68(9 compatible with the M6800, which does
not have a DP and where direct addressing refers always to the range $0000 - $00FF.

This addressing mode is vseful in cases where optimum execution times are
required. Having only one byle for the operand address means one less memory
reference. Of course, the DP has 1o be loaded before, and that can be a headache if
different values are used in difterent parts of the program. There will be always a cas.
where one forgets 1o load it. We recommend to use it only where really needed or o

restrict it to one fixed value.

2. Long Relative Addressing

This mode is identical 10 the relative addressing mode, except that the offset is 1€
bit and therefore any location in the 64K addressing space can be reached. Nole that
the address calculation is done in two's compliment (signed integers) and that there iy
no overflow checking. ‘Therefore, addresses which exceed $FFFF will wrap around

and start at $0000 aguin. Use this mode rather then absolute jumps.

MOBOY Characteristics: Addressing Modes

3. Extended Indirect Addressing

Indirect addressing refers to operations where the operand contains the address of
the data rather than the data itself, This addressing mode saves address calculations in
table operations or during parameter passing in high-level languages. The CPU reads
the instruction, finds that the addressing mode is extended and will therefore read
two more bytes from memory. Indirect implies that this address is used to read two
more bytes, the address of the operand, and only then the operation is execuled. The
instruction LDD [$3200] will refer 8 times to memory; the instruction itself has two
bytes, the address $3200 needs to be fetched (2 bytes), then the contents of $3200

and $3201 is read to get the operand address and finally the two dara bytes to be

loaded in AccD) are loaded.

M6R(9 Charactenistics: Addressing Mades

4. Indexed Addressing

Indexed addressing is the most complex mode in the M6809 and thercfore we
only treat the simple modes here. The more complex ones will be delt with in lecture

6. We distinguish four main groups:

« constant offset from register 35Y
+ accumulator offset from register B,X
= auto increment / decrement register 0,5++
+ constant offset from program counter (PC) label, PCR

Note: All these modes exist also as "indirect”

LDX {ARRAY.Y]

MR Characteristics: Addressing Modes

Register usage:

1. There are four 16-bit registers in the M680Y which may be used as

INDEX register: X, Y, S, U.

ta

All offset calculations are done in two's compliment, also for the LEAX

type instructions,

Examples for the use of indexed addressing:

. 16-bit counters (delays)

. search operations (string search)

’ address calculations (computed goto, menu's)

. parameter passing through registers (monitor calls)
. accessing parameters on the stack

= amray manipulations

. data structures

Instruction format:

(pre-byte) opcode post-byte (oftset)

M6B0Y Churactenistics: M650Y Hardware

Lecture 4: M6809 Hardware

* Synchronous and Asynchronous Machines

M6809 CPU signals
M6809E specials

M6809 and slow devices
CPU state definitions
Instruction Timing

Cycle by Cycle Operation

M6809 Charactenistics: M6809 Hardware

Synchronous and Asynchronous Machines

Computers are usuaily based on multiple functional units connected via buses. We
tind two fundamental types of units called masters and slaves. Master units such as
the CPU or a DMA controller control the bus and determine the transactions to be
performed. Slave units respond to the requests of masters by consuming or
producing data.

How are such connections established? How does one ensure that the data
transfers take place correctly? A well defined protocol is the answer. One finds two

basic types of protocols for parallel buses, synchronous and asynchronous.

L. Synchronous protocol

In synchronous system the data transfer between a master and a slave {read or
write) is simply started from the master, who assumes to get a reply from the slave
within a predefined time. In simple systems such as on the M6809 there is not even
any confirmation expected from the slave and therefore one may well address
non-existing addresses and get in return the data from a floating bus. Another
implication is that the slowest unit defines the overall system speed.

Synchronous systems are usually simpler than asynchronous ones, but they are

less safe,

Ty

. MORGY Characteristics: M6 ardwire
M6R09 Characteristics: MO%09 Hardware - o , ! , __(“1“1?\qu_n\uu M\?O‘)H_lrd‘w e

2. Asynchronous protocol M6809 CPU signals

In asynchronous systems the bus activities are also started by a master, but here

the master waits until it gets an active response (acknowledge) from the slave. Such V_SS_ U ® S HHALT
NMI O 1 XTAL
answers may be accompanied by extra information about the success or failure of the RGQ O 1 EXTAL
FIRQ 1 RESET
transaction. In this way, the master adopts automatically to the speed of the slave and B O H MRDY
there is no problem in mixing slow and fast devices. if a slave does not respond for BA H Q
vee O O E
whatever reason, the master will wait forever and the system hangs, unless a bus AD [g 1 DMABREQ
Al [] RW
timeout has been foreseen. A2 O Q Do
A3 [) 1 DI
Ad [%] D2
As [S 1 D3
A6] \O a |
AT T D5
< > A8 (] 1 D6
WE g 5 A9 [1 D7
< Al0 [J 1 AlS
: A1l [1 Al
Master A2 O O A3

acknowledge

Mos0Y Churacteristics; MOBOY Hardware

M6809E special signals

‘The M6B0YE has been conceived for systems with extemal clock generation and

allows to build systems with two processors running with phase-shifted clocks. The

main differences to the M6809 are

Eand Q

TSC

LiC

AVMA

BUSY

are input signals

(Three State Controt) available for multiprocessor applications

(Last Instruction Cycle) indicates that instruction fetch follows

(Advanced Valid Memory Address) says that CPU will

take next bus cycle

indicates during complex instructions such as Read-Modify-Write

that the bus is needed by the CPU. Also used in muiti CPU systems.

Mo630W Churacteristics: M680Y Hardware

M6809 and slow devices
For devices with long access times the M6809 provides the MRDY line. When
MRDY is high, E and Q run normally and when MRDY goes low, E and Q may be
stretched in integral multiples of quarter bus cycles. This stretching takes only place
during valid memory address cycles and MRDY is ignored during internal CPU

activity to avoid slowing down the CPU unnecessarily,

A possible solution is shown in the following circuit:

Slow -ob Clk
Clr Qf~—————» MRDY

[=)=]

Clock

Counter

The SLOW signal is generated by the decoder detecting that the CPU wanits 1o
address the slow device. The delay needed can be adjusted using different outputs of

the counter.

e

e

e

M6R09 Characteristics: M6%O9 Hardware

CPU state definitions
The M680Y has two status outputs, BA and BS, indicating the CPU state to the
external world. These signals are needed only for advanced hardware
implementations like interrupt vectoring or DMA techniques. It would exceed the

scope of this lecture to explain them in detail, we just mention the different states and

show how to decode them with a simple piece of hardware.

BA BS {p State
0 0 Normal
0 1 Interrupt or Reset Ac knowledge
1 0 Synch Acklowledge
1 1 Halt or Bus Grant Acknowledge
A simiple State Decoder:
BA B - INTACK

0—— SYNC ACK

-‘{_—_Q O— BGACK

MEROO 74LS139

d944

MER9 Charactenstics: MOR0Y Hardware

Instruction Timing

‘The M68O9 is 4 synchronous machine and therefore the instruction timing can be
castly determined if no ‘slow devices’ are used. The standard version of the CPU
runs with a 4MHz clock divided by 4 internally. The basic machine cycle is therefore
fus.

How to find the execution time of a program? The M6809 reference card (pocke
card) has for cach instruction and each addressing mode of these instructions an entry
marked '~ indicating the number of machine cycles used. These numbers refer to the
complete instruction, including instruction fetch, decoding, address calculations and
exccution. The '+ in the column of indexed addressing modes means that one has to
add between O and 8 cycles depending on the type of indexed addressing used. There
is another table containing this infermation.

A second possibility is to use the listing of an assembler which also indicates the

execulion times in terms of clock cycles.

Examples:
instruction N® of bytes N* of cycles
CMPA <8F3 2 4
LEAY 5Y 2+0 4+i
IDA #1 2 2
1DA [$200,PCR] 2+2 4+8

SWI | 13

M6R0Y Charucteristics: M630Y Hardware

Example for a delay loop:

DELAY

LOOP

EQU
PSIIS
LDX
LEAX
BNE

PULS

#N
-1LX
LOOP

X.pC

TOTAL

MO680Y Charactenistics; M680OY Hardware

Cycle by Cycle Operation
The cycle by cycle operations of the M6809 are described in the M6809 data
sheet. Hardware designers or maintenance people have to know about them in order
to understand the signals generated on the buses. For complicated hardware problems
a Logic State Analyser may be required. For M6809 based systems 24 channels are
sufficient, 32 are preferable. We give here as an example the cycle by cycle operation

of a read-modify-write instruction using the extended addressing mode.

The instruction is ASL $312C, the program counter would be at $1000 and the

contents of location $312C is supposed to be $01 before instruction execution.

Cycle Address Data R/W line Function

1 1000 78 1 Opcode fetch

2 100t 31 1 Operand address read high
3 1002 2C | Operand address read low

4 FFFF * 1 Internal cycle (VMA low)

5 312C 0l 1 Operand read

6 FFFF * 1 Internal cycle (VMA low)

7 3l2c 02 0 Data write

1003 next instruction Opcode fetch

Mb8(H Characteristics: Memory + 1/0)

M680Y Characteristics: Memory + 1/0

Addressing Memory

Addressing a one byte memory:

Lecture 5: Connecting Memory and I/0

CPU Mecmory
. Addressing memory
. Internal decoding 8 data lincs
< > Data
. External decoding RAW
. Base Address Selection Enable

. Partial Decoding
. Case Study: A Simple 1/O Device

Adding three address lines:

CPU Memory

Al
AD

§ data lines

Data

9

YN/

Enable

Maomremr TN 1 Mermowrue 1Y D

M6809 Characteristics: Memory + [0 M680Y Characteristics: Memory + 1/0)

What is the capacity of this memory ? Internal Decoding

‘The next diagram shows the intemal decoding for a 16K*8 multi-chip memory

CPU Memory
10 address lines > Addresses
A0 - A9 A0-AI3 Af%AlO
*
8 data lines mﬁm% { L //// K8
C " Data DO - D9 fé é]
7 \
» RW ﬁ 5//////¢ 2K*8
Z 7
™ Enable ,/‘/4/ .
Cs ECs6 9/"
. /é ;
- / :
Answer: E : é 0
- / :
10 address lines allow 2'%=1024 combinations, the capacity of ot Z :
. . . :
this memory is | Kbytes Decoder % '
3=>8 é :
/ :
7 :
Z .
Note: The read/write signal R/W is used to determine the direction of the data Z
/ 7 ZK* G
exchange and the Enable signal provides the timing. Usually, R/W is L7 \
comes together with the address signals and the Enable gets activated RIW
when the data are stable.

Example: CS6=CS+E+Al3+Al2+All

Memorv+1/Q0 — 3 Memory+l/O - 4

e

M680Y Characteristics: Memory + /0 M6ROY Charactenstics: Memory + 1/0)

In this example, the memory consists of 8 chips with 2K bytes each. Each chips Connecting ad4K byte Memory to a 16 hit System
needs 11 address lines (AQ - A10) to address one out of 2048 bytes. The next 3 line:
(ALl - A13) are used to select the one out of 8 chips at any time using a 3 line 10 § Processor Decoder
ling decoder. The chip select signal CS validates the decoder and the enable signal I ::i __-_:' E I— E
provides the timing. The read / wrile signal R / W* is determines the direction of the Al3 - E
data transfer, Al2 > : 0
E
Note: Using the next higher address lines A1l - A13 to select the chips L‘Al_l.y_—**—
provides a contiguous memory space. DO - D7 4K
K———| memory
R/W
External Decoding
Connecting a memory system to a CPU requires additional decoding to locate the Memory Map FFFF
memory in the available address space, which is usually much larger then the space
occupied by the memory. The next figure is an example showing how 1o connect a
4K memory to a CPU with 64K address space. The memory itself may well be
constructed from several chips and have its intemal decoding. We use a 4 line to 16
linc decoder to divide the address space in 16 equal pieces of 4K cach. There are
maily other possibilities to decode addresses, for example using PROMs, PALs, 1000
comparators, etc. The choice depends upon the requirement of the overall system and 4K memory 2:;; :

on the possible need for later upgrades.

- A
Memory+1/O - 5 Memorv+ 10

M680Y Characteristics: Memory + KO M68(9 Characieristics: Memory + /O

A Minimum System The Concept of the Base Address

A minimuwn system consists of a CPU, EPROM or ROM memory, RAM memory
and some 1/O circuit. The system has an address bus with 16 lines, a data bus with 8 Example 1: A 4K*8 memory on the M6809

lines, and a control bus which carries the control and timing signals. Each unit

hooked up to the bus uses a certain number of address lines, say n, for internal « The M6809 has 16 address lines fi 64K addresses
decoding and 16-n lines for external decoding. The external decoding determines the * A 4K*8 memory needs 12 address lines
memory map. For the M6809 the classical configuration is RAM starting from + We have 16 possibilities to place a 4K block in 64K

50000, EPROM at the top of the map and /O below the EPROM.

Address . N FFFF [
Dus | — 7
Control J - :
SLILISILITII IS SIS IISIISS I —]
6FFF|__ i

6000 (Ll ria

As Ay Az Ayp AApAgAg Ay AgAs A A A AL A
Base Address Intemal Address

Application

|V PREA, S F'a T | Memory+l/O - 8

M6809 Characteristics: Memory + /0

MR Charactenstics: Memory + /0

Example 2: A 16K*8 memory on the M6809
Example 3: A 4 byte I/0 device on the M6809
» A 16K*8 memory needs [4 address lines
« A 4 byte YO device needs 2 address lines * We have 4 possibilities to place a 16K block in 64K

* We have 16384 possibilities to place a dbyte block in 64K

FFFF

1y 1111 1111 111
C000 11

" W 10

1100 0100 1010 G000

4000 | —1 01,
0000 00
0000 0000 0000 0000
Ars Ay AAnAnAAgAgAr AgAs AL A A AL A
AMs Mg A3 A Ay A g Ay Ag A; Ag Ag Ay Ay A, A Ay Base Address Internal Address
Base Address Intemnal Address

Memnrv+T/Y - 10 Memorv+I/0) — 9

M6809 Characteristics: Memory + [/

Partial Decoding

As can be seen from the last example, full decoding of addresses for /O devices is
rather complex. Normally there is enough address space available to accomodate the
devices needed. Partial decoding is a technique to reduce hardware complexity for
applications, where full decoding is not needed. In the following example we show

the partial decoding for a 4 byte device using only 8 address lines.

As Al A3 AR A A Ag Ay AjAgAs A Az A, Al Ay

Base Address unused Internal Address

fFor a device at address $C400 we have

1100 0100 XXXX XXI11

1100 0100 XXXX XX00

The device will also respond to the addresses

C4FC -~ C4FF

C4F8 - C4FB
C484 - C487
C404 - C407
C400 - C403

fi The device exists 64 times in the memory map

Memory+l/O — 11

M68(® Characteristics: Memory + L/O

Practical Implementation
Whenever the timing signal E becomes valid the base address decoder conipares the
pattern defined on the switches with the address line A8 to A15. If they match, a chip
select signal CS is generated activating the intemal circuitry of the I/O device.
Address lines AQ and A1 determine the internal register to be used. Address lines A2
1o A7 are not connected, and therefore the device will respond to a range of 64 times

4 addresses.

AB-15 I:>

g » Base address
decoder

Al —» ﬁ
i
b seesases
A3 o
A2 —» Switches ¥
CS
Al ™ RS1 >
AD ~ RSO ————
-~
R /W ™ R/W :
j——————p»~
D0-7 < > D07 e
I/O device

Memory+/O - 12

oy

s

M6809 Characteristics: Advanced Addressing Modes

M680Y Characteristics: Advanced Addressing Modes

Application of Indexed Addressing Modes

Lecture 6: Advanced Addressing modes

Reminder;
. Application of Indexed addressing modes < constant offset from register 15.¥
. Case Study: Average of Arrays + accumulator offset from register B,X
. * auto increment / dec t registe S++
« Case Study: Circular Buffer auto increment / decrement register
« constant offset from program counter (PC) label PCR
Note: All these modes exist also as "indirect”

LDX {ARRAY,Y]

This lecture deals with auto increment / decrement and indirect

and examples, questions and answers

ALdie Addcanrios]

Mosl Charactenstics: Advanced Addressing Mudes

The uppendix contains an overview of the indexed addressing modes, followed by
examples tor auto increment/decrement and the indexed indirect addressing. Rather
then spending time on going through each instruction, we will present two
applications, the first one calculating the average of two arrays element by element

storing the result in a third array, the second using a circular buffer.

Case Study: Average of two arrays

We would like to perform the following operation on the arrays K(i), L.(i) and AV(i):
AV(i) = (K(1) + L{iy)/2

Such a program wrilten in Basic would look like
IFOR [=1 TON

AV = (KT + L2
NEXT I

where N is the number of elements in each array, assuming of course that all three

arruys have the same length. To write the same program in assembly language, we

will first define the algorithm and draw the corresponding flow-chart.

Adv. Addressing — 3

M6B09 Charactenistics: Advanced Addressing Modes

setup loop
conditions

l

repeat until

next task

calculate
AV(@)

Adyv Addreccinn _ A

iy -

¥ K K ¥ ¥ X ¥

* % Z % * ¥
~z

START

NEXT

EXIT

NAM AVERAGE

This program calculates AV(D=(K(D+L{I)}/2, where AV,

K and L are one-dimensional arrays of equal length N.
The arrays have been previcusly initialised by another
program. The data are assumed to be small enough not

to produce overflows.

LIB MONCALLS

Reserve space needed

EQU 10
RMB N
RMB N
RMB N

PROGRAM STARTS HERE

EQU *
LDX #0
EQU *
LDA K.X
ADDA L.X
ASRA

STA AV.X
LEAX 1,X
CMPX #N
BLO NEXT
EQU *
MON RETURN

A e

include ROSY definitions

length of arrays
arvay for result

index for all arrays

get element K(i)

add L(1)

divide by two (signed)
store result in AV(i)

next element

all done?
if not, do next

back to system

Addraccinm S

M6809 Characteristics: Advanced Addressing Modes

M680Y Characteristics: Advanced Addressing Maodes

Case Study: 'Circular buffer'

Data from peripherals often comes in bursts or at times where it is not expecied,

whereas programs that handle the data are in general executing steadily. Circular

bulfers arc used to derandomize data-flow and to isolate the data collection function

from the data analysis function. Examples are the asynchrounous data transmission

by a4 network or a type-ahead buffer for a terminal such as in ROSY.

daia in

wrile —»

full -—

data out

Emet

«4— read

— emply

In practice, it would be unreasonable to implement a FIFO in this way because it

would imply many copies from memory to memory and the "fall-through time"

becomes a function of the amount of data in the buffer. A circular buffer provides the

same functions, but is by far more efficient.

Adv. Addressing — 6

MEROY Characteristics: Advanced Addressing Modes

The 'circular buffer' concept

FIFQ descriptor circular buffer

__I';)uifer— m x| x| =
pointer S| 2| @

length z é K

write index § T

read index) P

A circular buffer consists of a piece of memory called 'buffer, which is managed
with two pointers, the 'write pointer’ and the-'read pointer’ (also called ‘head' and
tail” pointers). At the beginning, both point to the same memory location, not
necessarily the first of the buffer, and that condition is called "buffer empty'. Each
time a byte is stored in the buffer, the write pointer moves forward by one, until it
reaches the end of the buffer, where it is set back to its beginning. Should it reach the
read pointer from the back, no writing is performed and this condition is called
‘bufter full'. Each time a byte is read from the buffer, the read pointer moves forward

towards the write pointer and reaches it eventually when the buffer becomes empty.

Adv. Addressine — 7

M6809 Characteristics: Advanced Addressing Modes

In summary:

If read index = write index: buffer empty

If write index= read index-1: buffer fuil

Two routines are needed to control such a scheme, namely PUT and GET, which
will write or read one byte from the buffer. We give an example for the PUT routine
the GET routine can be derived easily from it. Both routines use the carry bit in the
CPU’s status register to return a ‘completion code', ie. if C=1, the operation was
successfull, else C=0 (buffer full or empty). From the user's program the calling

sequence may be

LDX #FIFO points to the descriptor

LDA #H we want to store ASCII'H'
JSR PUT

BCS OK PUT returns C=1 for success,

C=0 if buffer was full

What follows is an example for the subroutine PUT. The convention is that ACCA

contains the byte to be stored and the index register X points to the FIFO descriptor.

AAde. A BAonil o

g -

* X X X X X ¥

PUT

PUTI

STORE

M6809 Characteristics: Advanced Addressing Modes

Subroutine PUT

Stores the contents of ACCA in a circular buffer who's
descriptor is pointed to by X. On retum, C=1 if ok, C=0
if buffer already full

EQU
PSHS
LDB
INCB
CMPB
BNE
CLRB
EQU
CMPB
BNE
LDB
ANDB
STB
BRA
EQU
LDY
STA
STB

- ILDB

PUTOUT

ORB
STB
EQU
PULS

0.8
*

CC,B,Y.PC

save registers to be used
If write index+1 = length,

then set it to begin of buffer
If new write index = read index,

then flag buffer full
set C=0 in CC on stack

else store date
pointer to buffer

update write index
set C on stack

endif
retumn with onginal registers

M6R0Y Characteristics: Advanced Addressing Modes

Here we show i second version which uses a few tricks to get it faster. Note that the
CC register is not saved.

* K ¥ ¥ ¥ ¥ x

PuT

PUT!

*)

PUTOUT EQU

Subroutine PUT (fast version)

Stores the contents of ACCA in a circular buffer who's
descriptor is pointed to by X. On retumn, C=1 if ok, C=0
if buffer already full

EQU *
PSHS Y B save registers to be used
1.DB 3.X If write index+1 = length,
INCB
CMPB 2.X
BNE PUTI1
CLRB then set it to begin of buffer
EQU * If new write index = read index,
CMPB 4,.X
BEQ PUTOUT
LDY 0.X else store date
STA B)Y
STB 3.X update write index
ORCC # set flag
*

endif
PULS B,Y.PC

(*) if two operands are equal, the C-bit is always set to 0.

Adi. Addeinnimie. 14y

MoYU9 Characieristics: Advanced Addressing Modes

Appendix to 'Indexed addressing'

The following slides show the different flavours of the indexed addressing modes.

For more information, please consult the M6809 programmers manual.

Adv. Addressine — i1

M680Y Characteristics:

Interrupts

Lecture 7: Interrupts

+ 1O Methods

* Interrupt Principle

« Interrupts with the M6809

* Interrupt Vector Table

* Condition Codes for Interrupts
. Stacking of registers

* IRQ Timing example

» Case Study

M6809 Charactenstics: InterTupts

Introduction:

The three classical methods of input/output are

« programmed

= interrupt driven

= direct memory access

They can be classified as follows:

programmed interrupt DMA
hardware low low high
software simple,limited medium complex
speed low medium high

The actual transfer speed in both programmed and interrupt mode is not different, but
the programmed mode will be much slower and cumbersome to program, if many 1/O
devices have to be serviced. Both interrupts and DMA allow for 'multi-tasking’,

programmed [/O needs complex 'polling'.

M680Y Characteristics: Interrupts

Basic principle of interrupts

When an interrupt occurs, the context of the running program must be preserved. the
vontrol is passed to the ‘interrupt service', which does the necessary work to handle
the interrupt. At the end of this 'service’, the previous status must be restored and

control is returned to the interrupted program.

This means, that an interrupted program does not realize that it was interrupted,

cxcept that its execution is slowed down.

M6RUY Charactedsiics. Intermupsts

Interrupts with the M6809

The M6809 has the hardware interrupts Reset, NMI, IRQ and FIRQ and the

software interrupts SW1, SWI2 and SWI3.

‘The CPU handles all hardware interrupts in a very similar way, the differences
will be explained as we go along. When an interrupt occurs, the M6809 finishes the
execution of the present instruction, saves all the registers on the S stack (only the PC
and the CC for FIRQ), updates the interrupt mask bits I and F and the E bit. It then
fetches the interrupt vector from the table located at the top of the memory map and
puts it in the PC, which means that instruction execution is passed to the 'interrupt
service’ routine. This routine should clear the interrupt source and finally execute the
‘RTY instruction, whereby the CPU will recover its status from the stack and resume

instruction execution in the interrupted program.

The Reset is not really an interrupt, because it does not save the CPU status,
but it is usually included in the discussion of the interrupts due to the way it is done ir

the CPU.

M680Y Characteristics: Interrupts

The NMI or Non-Maskable-Interrupt is an edge triggered input to the CPU. As
the name says, it cannot be masked and whenever a high to low transition is detected
on the NMI input, the CPU will execute the NMI sequence. The only exeption js after
Reset, where the NMI is blocked until the S stack pointer is loaded for the first time.
Caution: If more than one device is connected to the NMI line, special care has to be
taken to avoid dead-tocks, which may arise when the second device pulls the NMI
linc down while the first one is being treated and the line was low already; no further
transition can occur and the system may hang.

The IRQ or Interrupt ReQuest is a level sensitive interrupt input of the M680Y
and is the most commonly used interrupt, because it is the easiest to use.

The FIRQ or Fast Interrupt ReQuest is foreseen for devices which need a fast
service and where only a small number of CPU registers are needed to service it. It is
the programmers responsability to save such registers and to restore themn before the
RTT is executed.

The SWIs or SoftWare Interrupts are under program control and they are very
useful to implement operating system features such as breakpoints and monitor calls,
Monitor calls are independent of changes in the system software, as long as the
numbers are fixed, and they also allow the system to use all registers, because the
CPU saves them automatically. The interrupt sequence for SWIs is identical to the

hardware interrupt sequence, with the only the difference that they are synchronized

10 the tlow of the program.

-

I

ry W

M6809 Characteristics: lerrupts M6ROO Characteristics: [nterrupts

Interrupt vector table

E{FIHII|N|Z|V]|C

Reset FFFE/F highest prionty A
NMI FFFC/D ?— IR(Q mask
Swi FFFA/B
IRQ FFF8/9 FIRQ mask
FIRQ FFF6/7 has priority over IRQ Entire flag
SWi2 FFF4/5
Swi3 FFF2/3 lowest priority
reserved FEFO/A Interrupt bits set bits not set will go through
Reset ILLF NMI after 'LLDS'
The priorities are determined through the way the interrupt mask bits are sel in NMI ELF NMI
the condition code register (CC) by the interripts. The next figure shows the position SWI E.LF NMI
of the bits related to interrupts. The 'Entire’ bit is needed, because there is only one RQ E. 1 F NML, FIRQ
RTI instruction to be used both with normal interrupts and the FIRQ. E=1 means that FIRQ LF B NMI
alt CPU registers have been saved on the stack, for E=0 only the PC and the CC W2 g I F NME. FIRQ, IRQ
registers are saved. Note that this bit is set/cleared by the CPU before CC is saved on SWI3 E LF NML FIRQ. IRO

the stack.

MOB(Y Characterisues: Interrupry M680Y Characteristics: Interrupts

Stacking of registers Timing example for IRQ
The CPU saves the registers automatically when an interrupt has been accepted.

We distinguish two cases: The following example shows a typical IRQ sequence. Note that the IRQ line

o £0es up as soon as the interrupt condition in the peripheral chip has been cleared, but
‘normal’ FIR
the interrupt service routine is only finished when RTI is executed. Should another
/ Y, // / A
val:ddy / ////// interrupt arnve on the same line before the RTI, the IRQ line goes low again or stays
) 4— 4—SP
///// / SP //é l low, but the interrupt will only be serviced afier the RTI, because the I-bit will be up
PC low ow
— — — PC high] during the complete service time.
PC high 1g
U low cc <—— new SP
U high
Y low
- - E=0
Y high _ . .
miin save interrupt main
X low program Tregisiers service progam

X high CPU <= —>¢ [Lb* >

set I-bit
DP P
———— flag
ACCB IRQ ’
ACCA

cc «f4—— new SP

E=1

When 'RTI' is executed, CC is pulled first and therefore the CPU will know, i
ali registers have to be recovered or only the PC in the case of the FIRQ,

oy ™

iy W

M6R09 Charactenistics: Intermupts

M6EROY Charactenistics: [ntermupts

Case study
NAM COUNT

In the following, we give an example of using the IRQ with a PIA on the ROSY "
station. We assume, that a push-button has been connected to CA1 and that we like to * ‘This program uses a push-button connected to CAl of the PIA at address
. o . . _ * $EFO08 to count pulses via interrupts. If a maximum count is reached, an
see the high-to-low transition. Whenever the bution is pressed, we increment a _ ‘ - .
* cvent flag is set for the main program, which will print a message.
counter. If the counter reaches a predefined maximum value, the main program is *
informed by setting a flag and a message is printed. LIB MONCALLS include ROSY definitions
*
EOT QU 4
The general strategy 1s as follows: P1A EQU $EFOR define base address
ORA FQU PIA
CRA FQU PIA+L
Main program: *
1. define the interrupt vector * reserve variables needed
*
2. initialize the hardware
CNT RMB 1 counter
3. enable the IRQ EVENT RMB | event flag
4. wait for flag and do other things MAXCNT EQU 100 define max count
*
* Main program starts here
Interrupt service: _ *
1. determine interrupt source Start EQu *
) _ CLR CNT init all stuff
2. clear interrupt flag and increment counter CLR EV
3. if count=max, set flag and clear counter [LEAX PUSHB,PCR vector for push-button
4. retun from interrupt DB #3 vector code for IRQ
MON VL:CTOR set vector in ROSY
15TB any error?
BNE WRONG yes, in deed
DA #5 ninalize PIA

STA CRA set access ORA and int. enable

M6809 Characteristics: Interrupts

ANDCC #SEF

Main loop stants here

M6809 Churacteristics: Interrupts

now enable IRQs

MAINLP EQU * PUSHRE
TST EVENT any event?
BEQ NONE no !
LEAX MAXMSG,PCR send message
MON PRINT
CLR EVENT reset flag
* *
NONE EQU * FOUND
here we can do other things
BRA MAINLP
*
MAXMSG FCC /Maximum count reached/
FCB EOT
* NEXT
WRONG EQU * Error handling
MON ERROR P OUT
MON RETURN give up if error *

Interrupt service routine

EQU
LDA
BMI
LDB
MON
BRA

EQU
LDA
LDA
INCA
CMPA
BLO
CLRA
INC
EQU
STA
RTI

END

*

CRA
FOUND
#14
ERROR
P_OUT

ORA

CNT

#MAXCNT
NEXT

EVENT

CNT

was it PIA ?

yes

send error message
"Undefined [RQ"

clear CRA-7 flag

increment count

maximum reached ?
not yet
reset cnt, set flag

save new count
That's all folks !

