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CHAPTER 1

A PRELIMINARY DISCUSSION

1. Introduction

It is generally admited that the investigations about minimal

surfaces started with Lagrange [l] in 1760. He considered surfaces
el

in R3 that were ¢raphics of ¢ =differentiable functions =z = f(x,y).

For such surfaces the area element is given by

1.1 M = 1+f2+1' dx A dy.
x

He studied the problem of determining a surface of this kind with the
least possible area among all surfaces that assume given values on the
boundary of an open set U of the plane (with compact closure and
smooth bou.ndary).

If = = 1'(x,y) represents a sclution For this problem, we
consider a l-parameter family of functions zt(x,y) = T(x,¥)+ tn{x,vy),
where n is a Cz-functiun that vanishes on the boundary of VU, and

we define

(1.2) Alt) = (1« (zt)i + (zt);“:)l/2 dxdy.
i

It follows that

0w o 172
2 .2 " . 2,2 2
A{t) = {(1+1x+1y) + ht(fxnx+tyﬂy) + % (nx+ny)} dxdy.

a



2 2.1/2

Set p = fx, q = 1 and w = (1+p“+q } « Derivation with respect

Y
to t of the above equation gives

A {0) = 2B n ;—l'ﬂy)dM-
0

Integrating by parts and observing that nlbﬁ = 0, we obtain
P 3
(1.3) AT (0) = -2 I3z &) + 3y oM ndM.

Since 2 = f(x,y) represents a solution for the problem, then 4(o0)
is a minimum for the function A(t) and hence 4’(0) = 0, This oc-
cura for any function 7 chosen under the only restriction that n

vanishes on the boundary of U. It follows that
22y L2
3x (w) + 3y (w) = 0.

By computing the indicated derivatives we obtain

(1.%) i‘xx(1+f§) -2 EE . fyy(l+fi) = 0.

This equation furnishes the necessary condition for onme to solve the
problem proposed by Lagrange, The solutions of the above equation
wore called "minimal surfaces", and they are given by real analytic
functions.

Lagrange observed that a linear function (whose graphic is a
plune) is clearly a solution for (1.4} and conjectured the existence
of solutions containing any given curve given as a graphic along the
boundary of U.

It was only in 1776 that Meusnier [1] gave a geometrical in-
terpretation for (1.4) as meaning that

k. +k
(1.5) Hae—1-2,0,

where kl and k2 stand for the principal curvatures introducod
earlier by Buler. Furthermore, Mousnier also tried to ind soulutions
for (1.4) endowed with special properties. For example, he determined

the solutions of (1.4) whose level curves were straight lines. He did

this as follows.

First he observed that when a curve is given implicitly by the
equation f(x,y) m ¢, its curvature can be computed by

2 - 2 .
(1.6) ko= (=f f0 4 20,00 ot )/ graa 1|7 .

£
Y Xy ¥y x

Thus, one may rewrite equation (1.4) as

(1.7) fyx * Tyy = k| grad 1'[3 .

If the level curves of f are straight lines, then k = O, and ¢

is a harmonic function; that is, f satisfies the equation

2. 2
(1.8) se = 2L, 28 o,
d3x oy

The only solutions for this equations whose level curves are straight

lines are given by

Y-YO

(1.9) T(x,y) = &4 arctg %,

+ B,

where A, B, x, and Y, @are constants, It is easily checked that
the graphic aof such functions is either a plane or a piece of a heli-
cold given by
X -« X_ ® u cos v
4]
(1.10) Y = ¥, =u senv

Z =B = Av,

P
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Meusnier also found the catenoid as the only minimal surface of revo-

3

jution in R7. (See next section.)

In 1813% Scherk [1] discovered another example of minimal sur-
face, by solving the equation {1.4) for functions of the type

f(x,y) = e(x) + n(y). In this case, equation (1.4) reduces to
2 . 2 P
(1+0 Z(¥)) e (x) + (1’ “(x)IW (y) = O,

which ia equivalent to

e L W)
1+g’ T {x) 14k’ “(¥)

(1.11)

Since x and y are independent variables, each side of this eyna-

tion is constant. If a 1is this constant value, one obtains
. 1 1
{1.12) a{x) = ;7 log cus ax, hix) = - < log cos ay,

and hence f{x,y) = é'log(cos ax / cos ay)}, The graphic of f is known
as Scherk's minimal surface,

Schork also tried, unsuccessfully, to determine all ruled mi-
nimal surfaces; that 1s, those minimal gurfaces which contain a
straight line through each one of its points., This problem was final-
1y solved by Catalan [1] in 1842, who proved that the helicoid is the

only ruled minimal surface in Rj.

The first general solution for the minimal surface equation
was given by Welerstrass [1] in 1866, which allowed the construction
of examples of minimal surfaces starting from the choice of two holo-
morphic functions, It is a direct consequence of this congtruction

that minimal surfaces have real analytic coordinate functions.

In the next two sections we recbtain the classical examples of

the catenoid and helicoild.

2. The Catenoid

The catenoid is a surface of revolution M in R3 obtained

by rotating the curve

a(x) = (x, a cosh (§-+ b)),

x € R, around the x-axis.

Fig. 1

Such a surface is minimal and complete. TIts Gauassian curvature is

2 2
K = -1/a” cosh (§-+ b) and its total curvature, g- KaM, dis =T,
M

{2.1) THEOREM. Any minimal surface of revelution in r7 is, up to_a

rigid motion, part of a catenoid or part of a plane.

Proof: By a rigid motion we may assume that the surface in R3 is
such that its rotation axis coincides with the x-axis. The surface
will then be generated by a curve a(t} = (x(t),y(t},0). If the

function x(t) dis constant, then the surface will be a piece of a
plane orthogonal to the x=axis. Otherwise, there exists a point ¢t

L]

such that x’ ﬁ 0 in a neighborhood of to' We may then represent

a by



(x, y(x.) s 0)

in a neighborhood of the point a(to). The part of the surface obtain-

ed by rotating this piece of curve can be parametrized by
X(x,v) = (x, y{x)cosv, y(x)sinv).
It is a simple computation to show that H = 0 is then eguivalent to

-YY’+l+y'2=0.

This equation can be integrated once by using the transformation

2
b dp dy dp

dy d = p 98 S titu-
a p, from which it results that ;;E - dy ax = P - Substitu

dx dy

tion of this in the above equation yields
\  dp 2
—y:pd—y+1+p u O,

which can be easily integrated to give that

¥ = a ./1+p2 .

A second integration now yields
arc cosh () = £ & b,
a a

Therefore,

Y = a cosh (% + b) .

Since minimal surfaces are real analytic, so is a., It follows that
the curve a must coincide everywhere with the graphic of the above

function y(x). Hence the theorem is proved.

Some extensions of the above result can be found in D.Blair [1],
J.L.M. Barbosa and M.,P, do Carmo [1], H. Mori [1] and M.P. do Carmo

and M. Dajczer [1],

3. The Helicoid
, . . 2 3
The helicoid can be described by the mappimng x: R™ + R pgiven
by

x(u,v} = (u cos av, u sin av, bv),

where a and b are nonzero constants. Geometrically, the helicoid
is generated by a helicoidal motion of R3 acting on a straight line
parallel to the rotation plane of the motion.
The helicoid is a complete minimal surface. lts Gaussian cur=
2 2

vature is K = -bz/(b2+a u and its total curvature is not finite.

The helicoid is also an example of a ruled surface; that isg,
of a surface described geometrically by a straight line sliding smooth-
ly along a curve, (For a precisgse definition see M.P. do Carmo [1],

Pp. 188-189),

(3.1) THEGREM. Any ruled minimal surface of R3 is, up to a rigid

motion, part of a helicoid or part of a plane.

Proof: If Mc RJ is a ruled surface,

then M can be parametrized locally

by //”
(3‘2) x(s,t) = a.(s) + tB(S)I '

where a(s) 1s a curve perpendicular

to the straight lines of M and p(s})

describes 4 unit length vector field ‘
along o pointing in the direction of

the straight line through a(s). we

mgy assume that s represents the

arc length of & and that @ and B Fig., 2

are analytic curves. A unit length normal vector field to «x is

e

iy -

¥
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given by

N = (a'xB + tB'xB)/V/E,

ped
where E = 1 + 2t(q’,8") + tzls']“. It is easy to verify that M is

a minimal surface if and only if

. u » 2,00 »
(3.3) (a’xB.a") + t(B'xB,a") + t({a’'xB,B") + t°(p'xB,8") = O.
Observing that the left hand side of this equation is a polynomial on
the variable +t, one obtains

(a} <U’.’xBrG”) =0,
(3.4) (v) (8'xB,a") + (a'XB-B') = 0 and
(c) (8'xp,8"} = 0.

From equation (a) it follows that g° must beleng to the plane
generated by af and #, But, sincs 0 d1s parametrized by arc

length, then q and a’ are perpendicular. Hence,

{3.5) a’ is parallel to B.

It follows that {(B'xB,a”") = 0 and so, equation (b) of (3.4) becomes

simply
(b1) {a’xp,8") = O.
From equation (b') and (c) one concludes that
(3.6) P” belongs, simultaneously, to the planes generated hy

¢’ and B, and by 8§’ and 8.

The intersection of thess two planes contains, at least, the subspace
generated by the vector f. If there exists a point where 87 is
not parallel to B then, in a neighborhood of this point, these two

planes coincide and g’ is parallel to B’. Since g and B are

real analytic {funections, this oceurs everywhere, Hence, we have that
(g xa’ l’ = p’'%x2’” + gxa” = 0. Thus, the plane generated hy B and a’
is constant, Therefore, g is a plane curve and the surface dos-~
cribed by x is a plane.

On the other hand, if g8° is parallel to £ everywhere and

’ r . . -
a and § are not parallel at one point, then this occurs in a

neighborhood of this peint, 1In this case we claim that

(3.7) the curvature and the torsion of a are constant,
In fact, since k = {(g",8), we have
dk

" ’ ’ L4 L
s = (@B = (' 8" = —(a",8') - (a',8") = O.
Tt is casy to see that =T = (a’'xB’,py and that

dT

t e = (@'x87.BY & (a"xB,8) + {a’'xB’,B) + (a'x8’,B') = O.

Hence, k and 7 are constants, It follows that, up to a rigid mo-

tion of R}, & can be parametrized by

a(s) = (A cos as, A sin as, bs),

whera A a® 4+ b° = 1. Since P is parallel to a’, B(s) =
=+ (cos as, sin as, 0), Tf we take u = A+ t and v = s, then

(3.2) becomes
x(u,v) = {u cos as, u sin as, bv),
Therefore, M is a piece of 2 helicoid. This proves the theorem,

Another proof can be found in M.P. do Carmoc [1] (p.197).
For an extension of the above result the reader is refored to

J.L.M. Barbosa, M. Dajczer and L.P.M. Jorge [1].



CHAPTER TII

THE WEIERSTRASS REPRESENTATION AND THE CLASSICAL

EXAMPLES

1., The Weierstrass representaticn

Let UC R2 be a simply connected open set and §: U -+ R3 be
an jmmersion of class CY (k 2 2) or real analytic. The mapping ¥

describes a parametric surface in Rj. If
(1.1) l¢,] = lv,| anda (k¥ = 0,

then ¥ 1is a conformal mapping (i.e., it preserves angles) which

induces in U the metric

(1.2) ds® m A% (au?iav?),
where )\ = |¥.| = [¥,|. Ve then say that (u,v} are isothermal pa-

rameters for the surface described by ¥.

(t.3) THEOREM (Existence of isothermal parameters). Let U be a

gimply connected open set and let ¥: U R3 be an immersion of class

Ck, k z 2 {or real analytic). Then, there exlsts a diffeomorphism

%t U~ U of class cX (or real analytic) such that § = Yep 1is a

conformal mapping.

A proof os this theorem may be found in Spivak [1], vol. 4.

Let M be a surface (i.e, a 2-dimensional manifold of class

3

Ck). Suppose M is connected and orientable and lot x: M -+ kK be
k

an immersion of class €, By the above theorem each point p e M

has a neighborhood in which isothermal parameters (u,v) are Jofined,

The metric induced on M by x will be represented, locally, in

terms of such parameters, by
- e
(1.4) dtl"3 n khldzle

where =z = usiv. Clearly, a change of coordinates of such parameters

is a conformal mapping.

Since M 1is orientable, we can restrict ourselves to a family
of isothermal parameters whose changes of coordinates preserve the
orientation of the plane. In terms of the variable =z = x+1iy, this
means that such changes of coordinates are holomorphic. A surface M
together with such a family of isothermal parameters is called a

Riemann surface.

We can extend the notion of holomorphic mapping to such sur=-
faces as follows: if M and M are Riemann surfaces, we say that
f: M+ M is holomorphic when every of its representation, in terms of

local isothermal parameters {in M and M), 4is a holomorphic func-

tion.,
In a Riemann surface we conaider, locally, the operators
[:] 1l .3 . 9 3 1 .3 0
(1.5) 3z2° 3 (ga - i s;ﬂ and 27 " E‘GSG + 4 av).

The definition of theae operators is such that, if f:1 M » ¢ is a

complex valued differentiable function, then

ar af ar af -
df a 3u du + v dv = 32 dz + gg-dz .
(1.6) The function f is holomorphic if and only if -g-i.—'. 0y if
z

%g = 0 we say that f 1s anti-holomorphic.

W T
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The expression of many entities in the atudy of surfaces are
simplified when considored in the context of Riemann surfaces. For

example, 1lhe Laplace operator hecomes

1 3 ) “fa
(l-?) ﬂ=;§(s~l?+'-a—;£)=?3;a_z-

Another oxample is the Gauwssian curvature of M  which ia then given

by
(1.8) K = -A log k-

3

For an immersion x = (xl,XQ,xj)a M+ R”, we define Ax as

the vector valued function (Ax],sz,ij). Then,
(1.9} bx = 2HW,

2
wiiere H is the mean curvature of the immersion and N: M + S°(1)

is dits Gauss mapping.

To prove thias equation, we first observe that Ax is normal

to M. In fact, il follows from (l.l) that
(xu,x") = (X ex) and {xu,xv) =0,

BBy derivation, we obtain

n
]
.

<xuu'xu> = (xuv'xv) and (xvu’xv) + (xu'xvv)
Hence,
,x“) - (xuv,xv§ - {xw,xv) = 0,

{(x  +x
un’ vy

Similarly, one shows that

22 Y = 0O,

X x
uu \Vad h's

13

and, from this, it comes that Ax is normal to M,
We recall that if N 1is the Gauss mapping of the immersion x,
anid Nu = ag K+ alzxv and Nv = oA, X 4+ azzxv y the mean curvature

is given hy
H= « =

Now, by using (1l.7) we obtain

2
A{Ax,N} = (Rt Xyt MY = =(x N = (X, Ny =

2 2 2 2
= -alllxul - a22|xv] E —(all+322)l = 2HA R

thus proving (1.9).
The proposition below is an immediate corollary of {1.9).
3

(1.10) PROPOSITION. A mapping x: M + R’ is a minimal immersion if

and only if x is harmonic.

2
.. 3x ag D 9x 1N
Define ¢ = 5. From (1.7) we got 35" T3z ® 7 Ax. Hence,
(1.11) ¢ is holomorphic if and only if x is harmonic.
Note that ¢ is a function defined locally on M with values in 03.
In fact, its image is contained in a quadric Q of c3 given by the
equation
2 2 2 3
(1.12) Zy + 2, + 2y = 0, (31'22'33) € C’ .

To see this we observe that if ¢ = (ol,az,wj), then

X 3x
1 Kk k
Gy =2 (au Tt v )

Hence,



14

ax. ® 3 ax, = 3 3x, ax
- T (—%¥y -2 § K __ky _
kel v k=1l au AV
=5

3
2 1 SXy
L%k {kfl )

= %-[lxulz - valz - ai<xu'xv)} = 0.

Therefore,

3 2
1.1 L ¢, = O,
(1.13) %k
Similarly, we obtain

3

2 2 2

(1.14%) 6] = £ jo,.17 = 22",

k=l
Thus

|¢| > 0.

Now, observe that we have a mapping ¢ defined, in terms of
isothermal parameters, in some neighberhood of each point of M. If
2 » X41y and W = r+is are isothermal parameters arcund some point
in M, then the change of coordinates w = w(z) is holomorphic with

= A& 0, It follows that @ = %2 is related to ¢ by

dx AaX dw Aw 7
® = 3z = 3wdz 3z %"

Thus, if we consider the vector valued differential forms o = ¢gdz

and g = de, we have

Iw

—dz-Edw:E.
dz

@ a gde = @

This means that we have a vector valued differential form a global-

ly defined on M, whose local expression is g = (ul,nz,a3), with
o'.k-¢kdz, 1l kg 3.

This, together with (1,10) and {1.11) prove the fallowing

15

1.15) PROPOSITION. Let x: M - H) be an immersion, Then a = gpdz
=B » ]

is a voctor valued holomorphic lorm on M if and only it x is a

minimal immersion, Moreover,

x=ae([za).

where the integral is taken along any path from a fixed point to 2

on M.

When the real part of the integral of & along any closed
path is zero, we say that &« has no real perieds. The nonexistence

z
of real periods for a dis easily seen to be equivalent to Re(( a)

be independent of the path on M,

(1.16) THEOREM {Wolerstrass representation). Lot ®qys @,y @, be

holemorphic differentials on M such that

{a) E u; = 0 (i.o., locally o = ¢ ds and I P, = 0);
(b) 2[uk|2 > 0 and

(c) each a, has no real periods on M,

Then, the mapping x: M -+ R3

defined by x = (xl,xz,xj), with

z
x = RG(S a,}, is a minimal immersion.

The conditions (c) of the theorem is necessary to guarantee

z
that Re(g’ “k) depends only on the final point %. Thus, each X,
Py
is well defined independently of the path from p te =z. It is

o

clear that ¢ = %E» is holomorphic and se¢ x is harmonic. Hence, x

is minimal. The condition (b) guarantees that x dis an immersion.

It is possible to give a simple description of all solutions
of the sguation ai + a: + a§ = 0 on M. For this, we suppose that

a, ] ia, - (1f @, = ia,, then a3 a 0 and the resulting minimal

i

Y

B
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surface is a plane.) Now we define a holomorphic form w and a mero-

morphic:funciion “ Ly

(1.17}) a

Locally, if uk = ﬁkdz., then @ a f dz, where f 1is a holomorphic

function and we have

= ¢l - i¢2i
(1.18) o
&= g 18, "
1 Z
In terms of g and w, the lorms 0.1, 4, and G'J can hoe reobtain-
ed as
1 2
al = 5 (l—g )uJ »
i 2
(1.19) g, =5 (1487w ,
C’.j = guw.

Therefore, the minimal immeraion x of the above theorem is given by

z z
1 2
x; = Re { ul) = Ra( 3 (1-g")w
z 2
(1.191) x, = Re ( ﬂ' ctz) = Re [ % (.1+g2)w

z z
xjaRe({ aj)sRey W .

1r LN is a point where g has a pole of order m, then, from
{1.1‘)) it is clear that w must have a zero of order exactly 2m at

z,» in order to have condition (b) satisfied and each a holomor=-

phic,

17

1,20 Convorseal suppose we have defined o M o meromorphic
] DE I
tfunction 4 and a helomorphic form w, whose zeroes coin-

cide with the poles of g, in such way that cach zero of order m

of  w correspends to a pole of order 2m ot v« Thon, the forms
a.l, cr.z attud a,], defined as above, are holomorphic an M, satisfy
o P ”
cc; + 0.2 + a'; = ¢ and

. 2 2 2 1 2.2 2
(1.21) l21¥laz]® = 2fo ¥ = 3 (1+16l®)” Jwl? > o,

Furthermore, if such forms (15 xx 3}, do not have real pe-

Sy
riods, then we may apply (1.19') to obtain a minimal immeraion

x: M+R3.

The equations (1.19') are called Weierstrass representation

formulas for minimal surfaces in HJ. This representation enables
us to describe a great number of examples of minimal surfaces. The
expression of the metric obtained "a posteriori" of such a reprosens

tation is
2
(1.22) ds® = %— |t‘]2 (1+]e|®) |dzi2 .

The meromorphic function g: M 4 € U {=} which appears in the
Woelerstrass representation of a minimal immersion x: M =+ Rj has an
important geometrical meaning. To sae this, let us obtain an expres-
sion for the Gauss mapping N: M - 52(1) in terms of the Weierstrass
Tepresentation for x. Locally, at each point of M, u,k = anclz de-

fine the functions ¢, and, from (1.19'}, we then get

X, X X = ~{Re ¢,» Ro ¢,, Re ¢3) A (Im ¢+ Im g, , Im ng) =

= {Im (3253, Im 93351. Im 0)1{-52) =

=5 101 (lal®) (2 Re gy 2 Im ok, £Re1)



18

It follows that

(2 Re g 2 Img ig[z-l

(1.23) ] Al ]
l+|g|2 1+|g]| lg| “+1

If fm: 52(1)-{(0,0,1)} + R?

is the stereographic projection,
then meN = (Re g, Im g} at every point of M, except at the peles
of g. If we identify R2 with the complex plane € and extend T

to a mapping t: 32(1) +¢c U {»} with n{(0,0,1)) ==, then

(1.24) TeN = g.

This means that the mapping g can be identified with the Gauss map-
ping of x. A direct computation using (1.8), (1.14) and (1.21},

yYields the following value for the Gaussian curvature of M:

4)g’ |

(1.25 K= -
) l£] (1+]e] D

Since g’ is holomorphic, we have the following corollary of (1.25):

(1.26) Either K = 0 or its zeroes are isolated.

In the next sections we will use the Welerstrass representa-
tion to reobtain the Helicoid, the Catsnoid and Scherkts surface.

We also reocbtain the surfaces of Enneper and Henneberg,

2. The Helicoid

Take M m €, g{z) = -ie” and w = e % dz, Observe that

neither g has poles nor w has zeroes in €. By (1.19)

19

(l-gz)w = cosh(z)dz,

=]
u
[N

i (1+g2)w = -i sinh(z)dz,

—
T
.
-
—
=]
1]
w|

aj = gw = =i dz,
Since c¢osh{z}, sinh(z} and multiplication by a constunt are holo-

morphic functions in €, we have that { ak = 0, for every closod

Y
path ¥ in € and k = 1,2,3. That is, the forms a, de noi have

periods. From (1,19') we ¢btain

x. = Re Y cosh(z)dz = Re(sinh(z)) = cos(v} sinh{u),
(2.2} x, = Re ( -i sinh(z)dz = Re{-i cosh{z)+i) = sin{v) sinh{u),
&}

z
= Re { -idz = Re(-1z) = v.
O

Fig. 3 = The Helicoid

W .
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Thus, x{u,v) = (cos{v) sinh{u), sin(v) sinh{u}, v) describes a mi

mal immersion. Making sinh{u) = L, +the immersion x{tL,v}) dis oxa

ly the helicoid described in the Section 3 of Chapter I.

3. The Catenoid

Take M = €, g(2) = - and @ = -e % dz. Observe that

has no poles and @ has no zeroes in €. From (1.19) we have

&, = sinh(z)dz ,
{3.1) o, = -i cosh(z)dz ,
U.jadz-
Since cosh(z). sinh(z) and multiplication by a constant are holo«

morphic functions in &, then E- a, = 0O, for each closed path Yy
Y

in ¢, k= 1,2,3. Hence, the forms o have no periods. From
(1.19') we obtain
z
x; = Re sinh{z)dz = Re{cosh(z)-1) = cos(v) cos(u) - 1,
‘0
2z
(3.2} X, = Re -1 cosh(z)dz a Re(-1 sinh(z)) = sin{v} cosh(n)
‘0
z
Xj = Re dz = Re(z) = U .

29

ni-

[

g

Fig. 4 - The Catenoid

Thus, x{u,v) = (cos(v} cosh(u), sin(v) cosh{u),u) - (1,0,0). This

is, up to a translation, the parametrization of the catenoid described

in Chapter I, Section 2, Such a parametrization wraps the plane ¢
around the catencid infiniltely many times.
Another way of obtaining the catencid is the following: take
2
M=¢-{0], g(z) =z and w = dz/=z". Then,
1 .1
@, = E—(;E - 1)d= ,
i 1
- = T — 1
\ (3.3) a, =5 (55 + 1)z,
' 1
mj = = dz .
L
' The forms Gl and g. do not have periods and aj has only a pu-

rely imaginary period. By using (1.191) we obtain
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u
x=——(l+ )+l|
1 2 uSevt
v 1
4 x, = - % (1 + Y
{(3.4) 2 z N
xy = %—103 (u2+v2) .

These eguaitions describe the cateneld, up to a translation. To see

this, set

p = % log(u?+v®) and @ = (arctg T) - ©.

4. Scherk's surface

Consider the unit disk D = {2z € €; |z| < 1}. Take M =D,

g{(z) =z and w = hdz/(l-zk). From (1,19) we obtain

2dz i i
R Tl s Sl el
a 2idz ( i _4i }dz
(4.1) 2= 2 =1 - Z-1 :
4z 2z 2z
o, = — 4z = ( - —x—)dz .
3 l-z z2+1 z =1

Clearly, a,, a, and & have no periods in D. From (1.19') we

3
get
z+i - ar (z+'1)
x, = Re (1 1o ;7 arg (73} »
z+1 Z+1
(4.2) x, = Re (1 1og ;:1) = -arg (;:1)
2 2
z +1 zZ7+1
x Re (log ) = log
3 " ( 22-1 22-1

23

It is easy to see that

2 -
z+i  Je|7-1 . i _E*Z

z=-1 lz‘iiz lz“iiz
and
s+ 1 - lz]2-1 z-Z
%=1 Iz-llz Iz-l|2
Since Iz]z—l <1 in D, we have that - 3711‘ x5 - %

zZ = xl+ix2 . It is also straightforward from the abovo expressions

that

2

2 2
cos x; =Jﬂzi and cos x, HL‘LZ-]-

z +1 z7 -1

which yield

cos X,
x4 = log (—Cm3 xl) ’
jm _m m
where (xl,xg) is restricted to (- ?n—g)(“ %n“'- -‘2—)-

Fig.' 5 = Scherk's surface

Thus the

e

R

s

-
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immersion x: D -» R3 describes a piece of the Scherk!'s minimal sur-
Irace mentioned in the rirst chapter. To obtain the whole surface we
consider g and w defined in M =¢ - {1,-1,i,-i}. tere the re-

sulting forms al and a2 have real perilods, Let then mn: M + M

be the universal covering of M and define

z
;k = Re S “*Gk » k = 1,2,3.

S5ince M 13 simply connected, the forms n¥*a have no periods and

k

~

so, the functions x 1 ﬁ + R are well defined, k = 1,2,3, The

K
image ;(ﬁ) can be obtained from the previous functions X if we
now allow X, = =-arg (Eil) and x, = =arg (z+1) to assume all pos-
1 z-1 2 z=1

3ible values under the only restriction that

cos x
2

—X— > 0,
cos 1

Fhis 1s equivalent to consider the entiregmpic of the real function

x, = log (cos xq/cos xl).

3

5. Enmeper's surface

The simpleat choice that one can make for M, g and Ww ia
to take M = C, g(z) =z and W = dz, It results a minimal immer-

sions x: € -+ Rj given by

u- 2 v3 2 2 2
{u o« =+ uv", =v + g4V, u -V Y,

(5.1) x(u,v) = = :

2

which describes the Emnepert's surface,

Fig., 6 = Enneperts surface

This is a complete minimal surface. ITts Gaussian curvature is

6
(5.2) Ka=-—2

B
(1+12| )

where =z = u+iv,

6. Henneberg's surface

Take M = ¢-{0}, g(z) = 2z and w = 2(1 --inﬂdz. We obtain
1=(_i5+1—2+1-z2)dz,
= Z

el
—£;-+ 1 - z%)dz ,
z z~

(6.1) a.,

15
]
.
—
[}
1

1
= 2(2 - -—x)dz .
)

2
I

Observe that Gqyr 0y and a4 have no periods in M. We then

obtain
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z 2.3 From (6.4) we conclude that x = (xl,xz,x3) can bo looked upon as a
l-z
&y = 325 4 mapping from the projuctive plane into Rj. Therefore, x(M) is a
1
Mdbius strip in R3.
z
i 1+z2 3 81 Unfortunately, x is not regular at every polint; inm fact,
a2=—L—J_L-T' 2
1 3z we have E|dk[ = 0 at the points #1 and +i, which are the only
z singular points of x, Since these represent two pairs of antipodal
2
2
Gj a A% =1 . points, we then have that x, considered as a mapping on the project-
z
1 ive plane, is singular at exactly two points.
Now, from (1.19'} we get Thus, x restricted to ¢ - [0,1,-1,i,=-1i represents a wmi-
»

3 nimal immersion which is not complete and whose image is a MBbius
x, = Re (E-Izlzz) /3|z]6 '
1 N
strip minus two points. Since g(z) = z, its Gauss mapping covers
2 :
(6.2) x, = ~Im (§+|z!2z)3/j|z|6 , each point of §%(1) just once, with exception of six points.

Therefore, its total curvature is 4m,
2
x, = Ro (z|2|%-8) /[=z}" ;

that is,

2

x, = {uj(l-u -v2)3-3uv2(1-u2-v2)(l+u2+v2)2}/3(u2+v2)3,

(6.3} X, = [juzv(l+u2+v2)2(1-u2-v2) - vj(l—uz-vz)J}/j(u2+v2)3

xy = [(1-u2-v2)2u2 - (l+u2+v2)v2}/(u2+v2)2‘
Now, let @(z) = (1-2°)/z and ¥(z) = (1+2%)/z. It is easy to

verify that
(6.4) ®(- 2 =9(z) and ¥ = (- D) = y(2).

since x, = %Re(m(z)j), x, = %Re 1(¥(=)?) ana x, = Ro{p(2)%),
we have that xk(—l/;) - xk(z), k= 1,2,3, If we identify M with
the unit sphere minua two points through the stereographic projection,

then =z and -1/2 correspond to antipodal points on the sphore.

ry
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CHAPTER I1Il

COMPLETE MINIMAL SURFACES WITH FINITE

TOTAL CURVATURE

Complete minimal surfacos

The examples of minimal surfaces considered so far (the cate-
jd, the helicoid, Scherk's surface and Enneper's surface), with the
1y exception of Henneberg's surface, are all complete in the induced
tric.

The seach for examples of complete minimal surfaces began with

ometrically simple examples. In 1915 S, Bernstein proved the fol-

wing

2 2 . ]
.1) THEOREM (Bernstein). If f: R + R 1s a C -differentiable

mction whose graphic is a minimal surface, then f 1is linear.

This result is a beautiful and non-trivial example of a global
ieorem in partial differential equations. Much work was deveoted in
sying to generalize it. The reader may obtain further information
yout the proof and generalizations of this theorem in Osserman (11,
ymbieri-Giorgi-Giusti [ 1] and do Carmo-Peng [13.

Even for the case eof surfaces in R3, this theorem was im-
roved, and stronger results were obtained. Feor this, 1t was neces-

iry to expresa the above result in a slightly different way, as fol-

W32

3

L.2) THEORFM. If M is a complete minimal surface in R~ whose

29

normals orm an acute angle with a fixed Jdirection, thenm M is a
LS X 2 ]

plano,

This formulaltion of Bernstein's Theorem was genceralized hy

R. Osserman [4] and luter by F. Xavier [1].

(1.3) THEOREM (F. Xavier). Let M bo a completse minimal surface in
3

¥
R and N: M » $7(1) be its Gauss mapping, It N(M) omits seven

or more points, then M 13 a plane.

Ossorman's result, as well as Xavier's result, makes use of
the Weierstrass representation and of a deep theorem in Complex Ana-
lysis, known as Koebe uniformization theorem. The formulation of

this thecorem that will be useful to us is the followings

(1.4) TIEOREM (Uniformization). Let M be a Riemann surface endowed

with a complete metric dsz. Let A represent any one of the fol=-

lowing surfaces: the unit sphere, or the complex plane €, aor the

unit disk D. Then, there exists a locally invertible conformal map-

ping F from A onto M,

3

of course, if x: M -+ R is a complete minimal immersion,

then, making use of the above theorem, we may consider the function
xoFs: 4 - RB, which will still be a complete minimal immersion in the
induced metric.

Since minimal immersions in R3 can not be compact (because
K < 0), A can never be a sphere. Hence, we may always restrict
ourselves to the cases A = ¢ or & = D, Thus, for x«F, we will
have a global Weierstrass representation on € or D,

One application of these observations is the proof of a gene-

ralization of Theorem (1.2), which can be restated as follows.



(1.5) THEOREM (Osserman [4]). If xt M = R} is a complote minimal

immersion, then the image of the Gauss mapping N of x is dense in

Sz(l), unless x(M) is a plane.

Proof: By the above observations we may assume that x: A - Hj,

where 4 2 € or A =D, If N(4) is not dense im 5°(1), there

exist P ¢ 32(1) and ¢, 1> ¢ » 0, such that

(N,P) < 1-g.

By changing coordinates in RB, we may assume that P = (0,0,l).

Consider the Welerstrass representation of the immersion. By using
the expression for N given in (II123) we conclude that |g{z)| x

£ A<w®, If A a@€, by Liouvillet's theorem, g 1is constant. Hence,
the Gauss mapping N 1s constant and x(M) describes a plane, If

4 = D, we can only conclude that £ has no poles, and so f has no
zeroes. Jf & 1is any curve in D starting at the origin and going

to the boundary of D, we have

1+A2
2

a [+

length(a) = ds a %

2
l£](1+]gl ") |az] < I£]]daz],

[+

We will show that there exists & of finite length, thus contradict-
ing the hypothesis of completeness of M., For this, consider the

function

x = [ £(g )ag .
0

Since f g O din D, w: D + € dis locally invertible. Let =z = G(w)
be a local inverse function for W in a small disk around w = 0.
Let R be the radiua of the largest disk where G «can be defined,
Clearly, R < = since the image of G lies in the disk jz| < 1.

Thus, there exists a point v, with |w0| = R such that G can

k3l

not be extended to a neighborhood of woe Set = [twO; 0 1t < 1}
and a-a G{L). The curve a so defined is divergont. In fact, it
it were not, there would exist a seyuence {tn] converging to 1
such that the corresponding sequence {zn] alonygy a would converge
to a point z, in D. By continuity, G(wo) = 2 .« But then, since
the function w is invertible at zZ G would be extendable to a

neighborhood of wo, a contradiction, Therefore, a 1s divergent,

on the other hand,

d d
IeC2) fael = | e [Sae = | [ 2%a -
a o 0 L

fdw| = R < = .

Thus, lenth(a) < = and so, with the induced metric, D is not com-
plote, a contradiction. This completesa the proof of Osserman's re-

sult,

The proof of Xavier's Theorem uses the results below,

(1.6) PROPOSITION. Let g: D +» €-{0,a}, (af0), bo a holomerphic

function. Set a a 1-1/k, where k is a natural number. Then

[&" (z}|Paxdy

Cie(=)[* + |e(=)f*®
D

< @
by
for any p, 0< p< 1,

»
(1.7) THEOREM (Yau [1]). Let M be a complete surface of infinite

voluwne, If u:r M+ ¢ is a non-negative function satisfying

A log u = 0 almost everywhere, then uP aM a =, for any poaitive
M

P«

Proposition (1.6) depends on classical results about complex
functiona on the disk. TIts procof can be found in Xavier [l]. Thearem

(1.7) is a particular case of a more general result proved by Yau [1]

(p. 661).

Ty
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The proof of Xavier's Lheorem starts as the prouf of Theorem
(L.5)., We may assume X3i & - Rj, where 8 =€ or & = D. When
A = € the function g of the Weierstrass representation will be a
meromerphic function g: € -+ € which, by the (3ma11) Picard theorem,
can omit at most 2 points of @, unlesa it is a constant. Since g
and N are essentially the same mapping, then N omits at most 3
points (of 52(1)), unless it is constant.

When A = D Picard's theorem can not be used. If
PlrssesPiaPy == are the points omlted by g:,éla ¢ U {=}, we de-

fine

ho= g /19 (g-py) (8-p,y) oo (e-p ) 1%

where f 1s the other holomorphic function associated with the
Weierstrass representation of x., The function h is also holomor=-
phic and, in particular, & 1og|h| a 0, almost everywhere on D

{g' can vanish at points of a discrete set). Thus, by Yau!s theorem

wa muat have
2
(1.8) {h|PaM a %— [h[p(1+|g|2) [£]2 dudv = = ,
D D

for any choice of p > 0. Now, let us estimate the value of [-|h|de

D
in a dlfferent way, We choose ¢, 1 > ¢ > 0O, sufficiently small,

so that the closed sets D, = (z € D; |g(z)-pi| < ¢}, 1 js k-1,

k-1
are disjoint. Define D =D - J D . Then,
j=1
k-1 ,
{1.9) [h|Pam = In|Pan + & In|Pam ,
D B J=l Jp
J

a 2 -2 ;
The function |g-pJ| p(l+|g|2) /lflpq Ig—pllap...lg-pklap is con-

tinuous in ])j and since DJ ia compact, it is bounded by a constant

Ce It follows that

n
P
(1.10) [n]® aM = ¢ AT quav «
D p, fe-p (*F
J 3 e
< C 2P Ig' lp dudv .
a 2=y P
D (‘g—Pj! +|g-pj| )

“ 2. 2
In D, the function |g—pk[(k-l)pa_h (1+|g|2) /lf'pq_2|g—pl|pa ces

Pa
eor le-p |

is continuous and will be hounded if q = 2/p and
(k-l)pu 2z 4., If, furthermore, it is possible to choose g and p

in such way that kpa = 5, then

p
1.11 p g’ dudv
{ } {n|® amMm < ¢ ‘l__l"EBE?W

. e
b i) k

2p|g'ip dudwv

a 2-a,P
5 (le=p | +lg-p, |77}

From (1.9), (1.10), {1.11} and making use of (1.6), we obtain

{1.12) WP aM < » ,
b
for any p satisfying 0 < p< 1, p 2 4/{(k-1)a and kpg = 5. This

contradicts (1.8).

To conclude the proof of the theorem let us examine more care-
fully the conditions about p which have led us to thils contradiction,
Since kpa = 5 and 0 < p< 1, then @ > 3/k. Since a < 1, then
k » 5. Hence, the first possible choice for k is k = 6, For this
value of k and for 1 > g > 5/6 it is possible to chovse p sa-
tisfying to 1 > p » 4/(k=-1)* and pa = 5/k = 5/6. For example,

a = 6/7 and p = 35/36. Thus, we obtain a contradiction for k+l = 7.

Therefore the theorem is proved.
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We ocugth to point out to the reader the existence ol complete

3

minimal surfaces in R whose Gauss mapping omits a set of k peints,
for any 0% kX £ k4. The Gauss mapping of Ennepert's surface omits one
single point, that of the catenoid omits two points, and that of

Scherk's surface omits four points, To these examples we may add the

examples below,

(1.12) cC.C. Chen's surface. This is obtained by considering M = €,

glz) = z + %— and w = z°dz, This surface is complete and N(M) =

= s%(1).

(1.13) K. Voss surfaces., Take M = € - {Pyreeespy}s &(z) s z ana
w = dz/(z-pl)...(z-pm). This is a minimal surface whose Gauss map-
ping omits m+l points. This surface is complete if m < 3. Observe

that Scherkt's surface is a particular case of a K. Voss surface,

It i3 a very interesting open question to determine if Xavier's
theorem 1s the best possible. On this direction are known the follow-

ing two results which will not be proved here.

(1.14) THEOREM (Osserman [5]). If M is a complete minimal surface

in R?  with finite total curvature that ia not a plane, then N(M)

omits at most three points.

{1.15) THEOREM (Gackstdtter [2]). If M is a complete abelian mi-
3

himal surface in R-” that is not a plane, then N(M) omits at most

four points,

A minimal surface i1s called abelian when it can be congtructed '
by using a compact Riemann surface ﬁ, a mercmorphic function
gt Mgy {#)} and a meromorphic form w as follows, One considers

the forms s Qs LEY defined in (II 1.19) and the open set

K

X 3 .
R={p€ M; 0O< I |aj(p)|z < ®}. Let M be the universal covar-
j=1

1= N
ing apace of R and 1m: M+ R be the corresponding covering mapping, .
One then dofines x: M + R- by x a (xl,xz,xs), where
z 4
x, = Re m*a 1< kx 3,

k’

Tt is straightforward to show that x describes a complete minimal

immersion in RB.

Theorem {1.14) and {1.15) are also proved in Chen and SimZes
[{1]. An open question is to know whether it is possible to prove o
these results by using similar ideas as the ones in the proof of

Xavierta theorem. It is not known whether Thoorem (1.14) is the best’

re

peossible, To answer this question one should either exhibit an
example of complete minimal surface with finite total curvature whose

Gauss mapping omits exactly 3 points, or improve that thecrem for

"two polntsn,

A deep question in the study of complete minimal surfaces in

R3 is the following:
(Catabi) Does there exist a bounded complete minimal surfaces B
in R ¢ ’

In 1980, Jorge and Xavier [1] exhibited a non-trivial example
of a completse minimal surface lying between two parallel planes in R3.
This example is constructed in the next chapter. They also proved in

(2], the following result:

(1.16) THEOREM. There are no bounded complete minimal surfaces in R

with bounded Gaussian curvdtura.

A proof for this theorem (indicated by J. Anchieta Delgado) is

obtained by using the following result:

ry
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{L.17) THEOREM (Omori [11). Let M be a complete surface with

Gaussian curvature bourdded from below, If s M » R is a functioen

bounded from above then, for each p € M and each € >» O, there

exists ¢ € M such that

1) f(a) = r(p)
ij) [grad fql < g and

1ii) 1Heass fq(V,V) < elv|2, for each V€ T M.

This theorem generalizes the well known result that any real
differentiable function defined in a compact surface attains a ma-
ximum, We will apply it to obtain {1.16}.

Suppose there exists a bounded minimal immersion x: M -+ R3
such that M, endowed wlth the induced metric, is complete and has

2
|K|] < ¢. Define a functlon f: M + R by f{p) = % |x(p)-x(p0)| ,

where po is a fixed point of M. A simple computation gives us
2 .
(1.18}) Heas rp(v.v) = |v|T & (13(v,V),x(p)-x_)

where II is the second fFundamental form of the immersion x,

X = x(p ) and V € TpM. By Omori's theorem there exlsi points
o o

PissessPpeses Such that: f(pm) z r(p), |erad fp | < 1/m and

m

Heas f_ (V,V) = i—|V}2, for each VvV din T M. It follows that
P m P

1 2
(II(V,V),x(pm)-—xo) < (F'I- - l)IVI < 0
and hence the mean curvature H of M satisfy
Hip YN Y x(p )%y < O,

Since such an inequality can not occur when H = 0, the prool is

complate,

37

Zs Complete minimal surlfaces with 'inite total curvature

The study of complete minimal surfaces with Tinite total cur-

vature begins with the following result:

(2.1) THEOREM {Osserman [5)). Let M be a complete surface in R
Lot p

whose Gaussian curvature satisfy

a) K< O

b) g [K|aM < =,
M

Then, there exists a compact surface ﬁ, a_ finite number of points

Pys-ssyp, ©of M and an isometry from M onto M - {pl""'pk}'

This is a deep result and its proof is not presented in these
notes. For the proof, see Dgsserman [1].

Complote minimal surfaces of HB

with finite total curvature
satisfy the hypotheses of the above theorem. Furthermore, after
identification of M and M - {pl,...,pk], the Gauss mapping

N: M 52(1), which is conformal, extends to a meromorphic function

- -

N: M+ S2(1). In fact, 1f any of the points were an essential

Py
singularity of N (N is identified with the function g of the
Weierstrass representation) then, by Picardts {great)} theorem, N
would assume all values of 52(1) infinitely many times, with at
most two exceptions. But this would imply that the total curvature
of M would be inlinite, which is contrary to hypothesis {b). Thus,
at each point pj N N has at most a pole; hence, it can be extend-
ed as a meramorphic function to M. We also have that the form w
extends as a moeromorphic Torm to ﬁ. Indeed, by changing coordinates

in Rj, we may assume that g has no poles at the points PreeeoesPy .

Since the metric of M is complete we have
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Iim ll.l)l = @.

Z+ .
Pj

Thus, the only singularities of w are poles and so w is a mero-
morphic form on ﬁ.

Meromorphic functions of a compact surface into 52(1) have
the property of assuming oach value the same (finite) number of times

(counting multipllcity). As a consequence, we have the result below.

. - i I
{2.2) PROPOSITION, Let M be a complete minimal surface in R~ with

finite total curvature. Then

[ IKIdM a =bmm,
M

where m is a nonnegative integer.

The above value of the total curvature is subject to restric-
tions originated from the topology of M, Such a statement is jus-

tified by the following

(2.3) THEOREM (Osserman [5]). Let ® be a compact surface and

xt M - {pl,,..,pk] - R3 be a complete minimal immersion with total

curvature -4mT. Then

2m z 2k ~ x(M),

where X(ﬁ) represents the Euler characteristic of M.

The procf of this theorem makes use of the following lemma,

which deals with the formas ai refered to in (II 1,16):

{2.4) LEMMA. Under the hypotheses of the previous theorem the form

a = (al,uz,aj) has a pole of order my = 2 at each p,.

39

Proof of thoe lemma: Around pJ' a; cun by represented by
a; = 0, (=)dz

with =z = 0 corresponding to p.. At =z = 0, wach o, has at most

a pole of order mij' Since M - {pl,...,pk} is complote in the

induced motric and this metric is given by

¥
ds” = %

bW

[, ()17 |de|®
i=1

in the neighborhood under censideration, then

tim T [g.(2)|® = =,
z20 i=l

Thus, mJ @ max [mlj'mzj'mjj] z 1. Observe that ru‘j is exactly the

urder of the pole of a at pJ.

Assume that mJ = 1. Then,

c.,
i - P
a.i(z) == v b+ L., i =1,2,3.
Since x; = Re {¢i(z)dz, it follows that x, - Re(ci log z) is also
well defined, and so, ¢; must be real, Taking inio account that

3 2 2
L di = O, then, E ¢ = 0, and so each c.
i=1l + *

is zero., Dut this

is a contradiction, since m‘j z 1. Therefore, the lemma is proved,

Proof of the theorem: Since the extension of g to M assumes sach

value of 82(1) exactly m times, counting multiplicities, then
(arter a change of coordinates of RB) we can suppose that g(pj) £ =
and 0, 1< jsg k. It follows from the previons lomma together with
(IT L.19) that the form w has a pole of order m oz 2 at P and
exactly 2m zeroces (counting multiplicities). By Riemamn's relation

we have

Ty
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number of poles of & - number of zeroes of W = X(M) Since ¢ Ls 1=-1 and locally invertible, i is a dirteomor-

phiism, We may then introduce conformal coordirates il M by using
L . P . . 1 obtain -1 . . . 2
‘¢f. Ahlfors and Sario [13, V.27A) Thus, we g ~. This is equivalent to consider M = § (1} = € U (=} and
u r e{z) = =.
(2.5) ¥(M) = £ m. - 2mz 2k - 2m,
J=1 J . at .
' 17" case: M is S7(1) minus one point. Wo may then assume that
lence, M = €. The form = is now given by f(z)dz, where f dis a ra-
-
2m > 2k = X(M), . tional function without poles in €. On the other hand, f £ 0 on

M (otherwise, the metric of M would be singular), Therefore, f
thus proving the theorem,
must be constant, and the surface obtained from the Woierstrass re-

tic f M is iven
Let us observe that the Euler characteristic o & presentation is the Enneper's surface.

Y
2
. ‘ 2™ case:r M ois 5°(1l) minus two points. We may then assume that
(2.6) w({M) = x(M) - k. 1
i M = €-{a}. The form w 1is given by r(z}dz, where f is a ra-

tional function with a pole at z = a if not the metric of M
[hus, we obtain the followlng P ( N [}

would not be complete). On the other hand, f £ 0 on M, otherwise

(2.7) COROLLARY (Chern-Osserman's inequality). Set M = M-{p,,...,p] : the metric of M would be singular. Thus, t(z) = ¢/{z-a)", where
. i
as in the previous theorem and let x: M -+ R3 be a complete minimal we may assume that a is real. By Lomma (2.4), we must have n = 2.

immersion with finite total curvature. Then, i Since any path going 10 ® mist have infinite tength, n=2 or n=7j.

Tho case of n=3 is discarded by observing that the periods of @

surface obtained from the Weierstrass representation is the catonuid.

i
!
K dM s 2n(X(M)-k). ' would be
M !
| :
The proposition below is now a consequence of the Chern-0sser- ' “1 = -ic, u2 =0T aj = 0
: | z-a | =e [z-a|=¢ | z=a|=¢
man inequality). 1
i
3 ' and the only possibility for a choice of ¢ would be o = o, which
{2.8) PROPOSITION. A complete minimal surface in R with finite
! is not possible., When n = 2, a similar computation of periods
total curvature =47 is the catencid or Enneper's surface.
! yvields -iacTm, 7Vaec and zero. Hence, we must have a = 0 and the
[
[
l

Prooft This is the case of m=l. This means that the function g

is meromorphic of order 1, hence 1t transforms ﬁ conformally onto
5 R (2.9) An end of an immersed surface is a part of the surface which
§°(1). Thus, ¥{M) = 2. It follows from Theorem (2.3) that k < 2.
2 is homeomorphic to a topological disk punctured at its center such
Therefore, we may choosa M as being S°(1) minus one or two points.
that every path on this disk which Jdiverges to ils center has infinite




length.

Let M be a compact surface, Prasesypy, & finite number of
points in M and x: M - {pl.....pk} + 7 a complete minimal immer-
sion, If Dc M is a neighborheoed containig pj y then the image
x(D-{pJ]) of D-[pjl by x 4is an end of x(ﬁ-{pl,...,pk]) which
is denoted by Ej' Thus, x(ﬁ-[pl,...,pk}) ia an immersed surface

3

in R with k ends.

The catenoid is an example of a complete minimal surface in R3
with two ends. By letting the catencid M intersect a sphere Sa(r)
centered at the origin and with radius r, the ends of the catenoid
are then given by the two connected componentes El and E2 of
M - Sz(r) which 1ie in the exterior of Sz(r). A3 we have seen the
catenoid is described by a mapping =x: ﬁ-{pl,pz} -+ R3 where M is
the unit sphere 32(1), and its Gauss mapping gt 52(1)-{pl,p2}4520)
extends conformally to 52(1). In this sense we say that the cate-

noid has a well defined normal vector at infinity on each end,

{a) {b) {c)

Fig, 7 - Profiles of the Catencid as an observer moves to infinity
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If Yr represents the intersection of the catonoid with the
sphere Sz(r), then Yr/r converges to a great circle in 52(1),
as r goes to infinity. Such a fact leads to the conclusion that
the catenoid viewed from infinity looks like two copies of a plane

passing through the origin with opposite orientations. (See Fig.7(c)).

Inspired in these facts, Jorge and Meeks [1] proved the follow-

ing

(2.10) THEOREM. Let M be a complete surface immersed in RS, aif-

feomorphic to M- {pl,...,pk}, where M 1is an orientable compact

surface such that the Gauss mapping extends continucusly to M. If

2
Y =Mn 8°(r), then Yr/r consists of closed curves Fl,...,Tk in

52(1) which converge ¢! to closed goodesics VY, ,...,Y, of 52(1),

with multiplicities Il""'Ik' as r goes to infinity,.

We will not present here the proof of this theorem; however,
we will make some remarks about it.

First of all, observe that the hypothesis that M is homeo-
morphic to a compact surface minus Kk points means that M has k
ends. Next, the condition about the Gauss mapping is equivalent to

say that M has well defined normal vector at infinity on aachrend.

Let Ej represent the end of M corresponding to pJ, that ia, EJ
is the image of a punctured neighborhood of pJ in ﬁ. The idea of
the theorem is that, as one "gets clouse" to p\j in ﬁ, then the

tangent plane to M at pJ "gets close" to the plane perpendicular
to pJ passing through the origin. To make sense this "closenesan
one considers the gquotient Y}/r and makes 1T grows to infinity,
Finally, it is a consgquence of this theorem that a complete minimal
surface in R3 with finite total curvature, viewed from infinity,
looks like k planes pPassing through the origin, Each one of such

planes corresponds to an end.
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The above theorem allows the following geomotrical interpretia=

tion of Chevrn-Ossermants ineyuality (2.7).

(2.11) THEOREM (Jorgo-Meeks [17). Let M be a complete minimal sur-

face immorsed in R3 with finite total curvature ~i4mm  and having

-

k ends (i.e. M is dilfeomorphic to M = [Pl"°”pk]' whore M is

compact)., Then,

k
2m = & 1. - x{M) 2 k = X(M),
j=1

where Ii is the multiplicity of the end Ej corrosponding to pj.

Equality hol:ds if and only it each emnd is embedded.

Proof: From the previous theorem, for each end Ej off M, we have

that

1‘1{ = -Il-: (Ej n Sa(r))

is a closed curve immersed in Sz(l) and

lim Ti = YJ .

T

2
where Y" is a closed geodesic in S°(1) with multiplicity 1i and

the convergenco is cl' Thus, Ij = 1 if and only ir T; is an

eimbedded closed curve for 1 sufficiently large. Morcover, since
tho convergence of T; to YJ is C, as 1 + @, the total curva-

ture of Fi converges to the total curvature of YJ, whtich is 2nI ..

J

Let Ilr be thoe bLall of R'} of radius v and center at the

vriging take M = % (M n “1)' By the previous Ltheorom, the plance
- - .

of vy and the tangent space Lo Ej at infinity coincide. Since

the convergence is Cl, a3 r poed to infinity the total geodesic

curvature ot Fﬂ sy das the boundary curve of Mr' convergos to the
total goodesic curvature 2!11J af YJ. That ia,
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(2.12) Lim ¢(rY) = 2n1
0

where C(ri) is the total geodesic curvature of TI'? |
r

Denoting by C(Mr) the total curvature of Mr and applying

Gauss-Bonnet's formula to Mr wa obtain

k .
(2.13) oM ) + _El c(ri}) = anx(M_ ) = 2nx(M).
J=

A T 4+ =™, this simplifies to

(z.14) 2rx{M) = c(M) + 2n ; b

jm1 47

Therefore,

k
(2.15) c(M) = 2r(x{M) - & 1,)-
i=1

Since C(M) = -4mm, one obtains

k
(2.16) Zm = T T - X(M) = k = X(M),
Jd=1
k
where we have used that Ij z 1. Finally, z Ij =k if and only
j=1

if Ij =1, for every J = 1,2,...,k; that is, the equality holds

if and only if each end E is embedded, j = 1,...,k., This proves

h|

the theorem,

(2.17} COROLLARY. Tho catenoid 1s +he only embedded minimal annulus

in R3 with finite total curvature.

Proof: From (2.15}, the total curvature of an embadded minimal an-
nulus in RJ with finite total curvature ls ='m. 1n fact, we have
k=2 and X(M) = 0, hence m = 1. We know that il the total cur-

vature is =T, them M is the catenoid or Ennepert's surface, There-
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tore, in this case, M is the catenoid, completing the proof,

An open guestion related to this subject is the following:

3

Which are the complete embedded minimal surfaces in R~ 7
Until guite recently, the plane, the helicoid and the catenoid
woere the only known examples, In his doctoral dissertation, C, Costa
(1], using elliptic functions, exhibited an example ol a complete mi-
nimal immersion of a torus minus three points in PE {(cfr. IV, 7).

Later, Hoffman and Meeks [ 1] proved that Costa's surface is one of a

large family of examples of embedded minimal surfaces.

By using Jorge and Meeks ideas one can prove the following

(2.18) PROPOSITION, A complete minimal surface immerscd in RJ with

finite total curvature and only one end which is embedded is a plane.

3

Proof: Suppose MC R is an immersed surface satiafying the hypo-

theses of the proposition. By (2.10), the closed curves

1 2
I a—(mMnsl),

converge, with multiplicity, to a closed geodesic Yy of Sz(l), as
r +«, Since the end of M is embedded, for r sufficientily large,
alao ?r iz embedded and the multiplicity is one, This implies that,
for r sufficiently large, the end of M is a graplic gver the plane

T of ¥. To prove thia write
MuHrUErl

2
where Er is the end of M given by the part of M exterlor to Sr

and Mr is the complement of Er in Mr . Since the Gauss mapping

of M has a limit as r + =, E projects injectively over the

r

plane 1. On the other hand, for r sufficiently large, Fr projects

orthogonally over a convex curve in the plane n off Y. The thecrem
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below due to Radd can then be appliod to guarantee Lhat also M is
r

a graphic over .

{7.19) THEOREM (Radd [1]). If a Jordan curve T o r3 admits an

injective orthogonal projection over a convex curve i a plane

o -
R™ ¢ R), then there exists a unigue compact minimal surfuace M

(=)

b
having T as boundary, which is a gruphic of' a real function on R™.

It follows that M is a graphic in R3

and since M is com-
plete, by Bernstein!s theorem, M is a plane, thus completing the
proofl,

We want to point out that Enneperts surface has finite total
curvature (-hﬂ) and only one end, but this does not contradicts the
above propousition because the end is not embedded.

We should remark that the hypothesis that M 1is orientuable
has been implicitly assumed in all the above statements, When M 1is
not orientable, we must pass to the oriented two-sheeted covering
space M’ of M., If n: M + M is the covering mapping and
x: M » RJ is a completo minimal immersion, then xem: M’ = R3 is
again a complete minimal immersion., We then can define the total

curvature GC(M) of M by

(2.20) K'am’ ,

MJ

c(M) =-;—

Let the Gauss mapping of M be defined as a function which associates
to each poinit of M its normal direction considered as a point in

the projective plane 92. Then, it 4is clear that
¢{M) a -21m ,

where m counts the number of times that the Gauss mapping of M

(*)

A simple proof of Radé's theorem can be found in Lawson [1].

Y

i

P

Y
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>

covers P, In fact, m is also the number of timos thal the Gauss
2 - B

mapping of  xeW covers $°(1). Observe that the Propesition (2,R)

implies the nonexistence of complete minimal immersions of nonorient-

3

able surfaces into K7 with C€(M) = -2n (since the catenoid and
Enneperts surfacoe are orientable)., A theorem of Meoks [4] also allows
us to conclude the nonexistence of minimal immersions with C(M) = ~im,
In the same paper ho exhibits an example of a Mdbius strip minimally
immersed in R'3 with total curvature ~6m; this will be described
in the next chapter.

The basic result in the study of complete minimal immersions

3

of nonorientable surfaces into R is the theorem below whose proof

is omitted,

(2.22) THEOREM (Meeks [4]). Let M be a nonorientable compact sure

face and x: ﬁ - {pl....,pk} -+ R3 & complete minimal immersion., If

the total curvature C(M} 4is finite, then

giﬁl = X(ﬁ) mod 2.

i

By using this theorem and some results obtained before, we

will prove the following

(2.23) THEOREM OF CLASSIFTICATION (Osserman-Jorge-Meeks). Let M he

3 with total curvature

greater than -8T7. Then, up to a projective transformation of Rj,

a_complete minimal surface immersed in R

M is the plane, the catenoid, Enneper's surface or Meecks minimal

MBbius strip.

Proof: From Proposition (2.8), the catenoid and Enneper's minimal

surface are the only orientable complete minimal surfaces immoersed

3

in R with total curvature -2r7. Consequently, there does not

oxist u nonorientahle complete minimal surface immersed in RJ with
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total curvature -2y,

We will show now that there does not exist a nonorientahble

complote minimal surface immersed in Rj with total curvature =hm.

Set M =M - {pl,...,pk} and let x: M = [p]""'pk} - R° be
a complete minimal immersion of a nonorientable surface with total
curvature -4nm, By the above theorem, the Euler churacteristic x(ﬁ)

-~

is even., Since M iy nhonorientable we have x(ﬁ) < 0. By apply-
ing the formula of Jorge-Meeks {(efr. (2.11)) to the orionted two-sheet-

ed covering M’ = M' . {pl,...,pzk}, of M, we obtain

(2.24) am 2 2k - X(M') = 4k - x(@’).

The equality occurs if and only if each end is embodded, Here m = 2,

because the total curvature of M’ is -85, Since %(¥) £ 0, alse

(M) £ 0 and we obtain
b= lkz -x(M') 2 0.

Hence, k = 1 and so x(ﬁ) = 0. Since the equality holds, the im-
mersed surface has only one end which is emhedded. Therofore, by
(2.18), the immersed surface ig a plane, thus contradicting the hypo-
thesis of nonorientability. This proves that does not axist such an

immersed surface in RJ with total curvature =41,

Consider now a complete minimal immersion x: ﬁ-{pl....,pk} *Rj
of a nonorientable surface, wlith total curvature -67, Again, the

formula of Jorge-Meeks applied to the oriented two-sheeted covaring

~

M of M yiolds
6 5 bk - x(ﬁ’)

Lecause now m = j, Hence,

3 - 2k 2 -x(M).
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Since the total curvature is =-6T, the previous theoruem implies that
either X(ﬁ) =1 with ks 2 or ¥{M) = =1 with Kk = 1. The last
alternative is not acceptable, because then the eyguality holds, hence
the surface has only omne end which is embedded and so it is a plane,
thus contradicting the nonorientability. It followa‘that M is a
projective plane and the immersed surface is a projective plane minus

k points, where either k = 1 or k = 2, To complete the proof we

use the fellowing

(2.25) PROPOSITION. There does not exist a complete minimal immersion

3

xs M+ R

with total curvature =6n, where M = 92 - [pl,pz].

Such a result excludes the case of k = 2., Therefore, we must
have x(ﬁ) 2= 1 and k = 1 and so the immersed surface is a project=
ive plane minus one point; that is, M is a complete MBbius atrip
minimally immersed in RB with total curvature =6m, This concludes

the proof.

The proof of above Proposition (2.25) is given in

Chapter V.,

CHAPTER 1V

RECENT EXAMPLES OF COMPLETE MINIMAL SURFACES

Jorge-Meoks! examples of complete minimal surfaces in RB, of'

genus zero with n ends, are presented in Section 1. These axamples

are immersed hut have embedded ends.

In Section 2, we construct Meeks and Maria Elisa Qliveirats
exampleos of complete minimal MBbius strips in R3 with tetal curva-
ture -2mT, m > j. By the classification theorem of the previocus
chapter, the example corresponding to i = 3 is the unique complete
minimal surface immersed in R3 with total curvature -6, Section

3 contains Oliveira's example of a nonorientable complete minimal sur-

face of genus one with two emds and total curvature -10m.

In Section 4 we describe Klotz-Sario's examples of minimal im=
mersions of surfaces with arbitrary genus and any number of ends.

Chen«GackstAtlior's example ot a complete minimal surface in R3
of genus two with one end and total curvature =121 is pregsented in

Section 5.

In Section 6, we exhibit another example of Chen-Gackstiitter,
namely, a complete minimal surface in R3 of genus one with one end

and total curvature 8.

Section 7 is concerned with the construction of Costa's exam~
ple of a complete minimal surface embedded in R3 with total curva-

ture ~121m, of genus cone with 3 ends, Two of such ends are of "ca-

tencid type'" and one is bounded. Costa has described this example in

v

e

T
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1482 in his Doctoral dissertalion at IMPA and has observed that it
has ombedded eonids. 1t was only recently that D.A., Holiman and W.H.
Mpooks proved that the whole surface is embodded. We present the cons-
truction ol this exampleo in two distinct ways, First, we do it by
Chen-Gackstitterts method, starting from a suitable hyperelliptic
Riemann surface. The socond construction (Costats method)} is done by
using the classical Welierstrass elliptic P-function on the plane.

Another Costals example is exhibiited in Section B. It is a
complete minimal surface of total curvature 201, jgenus one and two
ends, and its construction is accomplished by using the Weierstrasas
elliptic ¥ -function,

The last section presents Jorge-Xavier's example of a complete

minimal surface in R3 lying between two parallel planes.

l. Complete minimal surfaces of genus zero with n ends.

For each integer n z 1, Jorge and Meeks [ 1] comstructed an

3

example of a complete minimal surface in R with total curvature

~hnn, conformally equivalent to 52 - {pl,....pn+1}, whose ends are
embedded.,
Take M = $°(1) and identify M with € U {»] through the

stereographic projection, Given n z 1, set M = M- {z€ €; zn+l=

1]

anid defline

2", if oz o,
g(z) =4
-, ir z = @
{1.1)
dz
, if z g =
(zn+1_1)k
W
o s if 2 = =

53
For =z # o, we obtain the 1-forms
a 1- LG dz
) ]
1 2(Zn+1_l)ﬁ
ﬁ i 1+22“
(1.2 a, = T de ,
2(z =1}
zn
a, = ——————> dz ,
3 (zn+1“l)2

At z = ®» these forms vanish,.

We want to apply Theorem U] LIQ to obtain a minimal immersion

x = (xll123x3)= M > H3 J
where
F'4
xi 35 ai ’
and whose Gauss mapping is g. For this, we must show that ak have
noe real periods on M, Since the poles of o, are the (n+l)th roots

of unity, this is eyuivalent te prove that the functions

1_22n

2(z“+1~1)2

. 2n
(1.3) F,(z) = —5151§——lw

2(z" 117

F,(2)

Zn
F4(z) (2
have real residues at =z = 8, whan Bn+l =1,
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I) Cowputation of the residue of F, at =z = 8.

15t case: 0 a 1. Observe that 8 = £l occurs if and only ifr

8°™ = 1. Then

-3 -1
l_zzn = ezn_z2n = (3—4) T ezn J J .
Jj=1
1_ nel . onmd i
zn+l_l - Ln+ -8 +1 (Z-B) T B "
AL
and
2n FE
z Gzn-JzJ-l 11
1 1 j=1 S S .
Fi(e) = - 3 (mg) 7n N ) = -3 75 62
a8 z )
j=0
Now, if =z = @, we obtain
2n 2n=-j, Jj-1 2n 2n=-1
L 8 9 T e 2rnel
G (8) Jal Jml 2n @ L ..2n
1 * = . i 7 = ny 2 2
- 2 n+1}8 n+l) g
(B g2 (3 oem  (mee)® (a1
NLIY j=0

Hence, z = § 1s a pole of order one of Fl. Thus,
1 - £33
(1.4) Res F = -3 lim (—=n ) = 5 -
Zmzl z++1 (n+l) 2z {(n+1)
2" case: 6 £ 1., We may then rewrite F, as
1 1-22n
S 7 " n ot
- n-
2(z-8) (z @ JzJ)
j=0
1 e211
Observe that __-:—E_EE' is finite and nonzero. Hence,
{n+1)%s
a pole of order 2 of Fl' I+ followsa that
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2n
Res F, = 5 [ 1 1-2z =
z=l dz 2 n=j j b2
( L 8 z )
JjwO zad
n
2n n=j j=1
_— 2(1-z"")( £ j e Idm1
-2n =z

j=0 j=0 z=8
Thus,
an p2n-1  2(1-97") (2lnl) gn-1
{1.5) Res F, = - o - ™ =
Zm§ 2(n+1)%g 2(n+1)” 8
.. ne-l ) n(1_92n)en—l .
(n+l)2 2(n+1)293n
2n
n -1 18 n ]
= - ——r (28 + )
2(n+1)2 g”n+1 2(n+1)2 8
Since Bn+l = 1, Gn = B—l. Thus,
n n Re 8
Res Fy m ~ ——— (848) =
z=f T 2(n+1) (n+1)”
Therefore, the residues of F are all real.

1

= f.

II) Computation of the residue of F, at z

The computation is done following the same lines., We will

consider also two cases: @ = +i,

Res F, = in/(n+1)2; and 8 # ti, which are poles of order two

Z=t1

with Res F, = n(Im e)/(n+1)2. Therefore, in both cases, the residues

z=l

which are poles of order one with

Py

P

Y

g
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of F2 are real.

II1) Computation of the residue of F3 al =z = 8.

Ohsorve that

F K4 1 d (k,}_. )
q = —_——5 Sl S R o= -
g} (zn+l_ 1) n+l dz &"+]-l
Thus,
1
(1.6} Ros F, = 0, for each 8 that satisfies 8 ' = 1.

v=8 3
From I, II and IIT we conclude that the a, have no real periods on
M. Now we will show that M with the induced metric is complete.

The metric on M is given by

2

n
1+|z

|z"+l—1|? Jz

ds |dZ| .

We have to show that if ¥ is a divergent path on M (that

is, if ¥ 1is a path on € +that has one of the roots ol unity as an

end point), then

2
n
1+ | = |dz|—¢°

| z11+_T._1|2 h

V2 L(Y) =

Y

In fact, consider such a ¥yi EO,L) + M parametrized by arc

1 + relu. Then 1lim r = 0 and
a-L

1
length and write Y(s)n+ =

(n+1) |¥|™ = |r* +ira’ | = {r'].

For s sufficiently close to L, |y| 1is close to 1 and

(n+1)fy|™ £ A.  Then,

57
L L
(1.7) L(v) = Gote, ﬂ%—z o+ r zds =
) A r a v
&}
.o 42 —dr
1 T A FE
r

Finally, the total curvature C(M) of M is =Wmn. This is
2
a simple consequence of the fact that g(z) = z" covers s°(1) n
times. On the other hand, we know from Thoorem {IIT 2.11) that, if M

has n+l ends, then

c(M) = 27(x(M)-(n+1))

occurs if and only if each end of M is embedded, 1In our example
X{M) = 2-(n+l1). Hence the above equality is satisfied and the n+l

ends of M are embedded.

Swmnarizing, we have proved the following

(1.8) THEOREM. For each integer n z 1 there axists a complote

3

surface minimally immersed in R with total curvature -4Tn, con-

}+ whose ends are embedded.

]
f all i 1 s 5% - “es
ormally equivalent to § [pl, Py

Its Weierstrass reprosentation is given by (1.1).

OBSERVATIONS, 1) For each n »r 1, the example just constructed is
invariant by a rotation through the angle 27/(n+l1) arcund the

Z=AX1S .

2) We know that for n = 1 the above example is the cateneid,
which is embedded, For n » 1 the examples obLtained have embedded

ends, but they are not embedded.

The pictures in the next page show one of the above examples

with i1hree ends.



2. Complete minimal MBbius strips.

In this section we present examples of complete MBbius strips
in RJ, with total curvature -2Tm, for any odd integer m = R
These examples have boen obtained by Meeks 1] (case m=3) and 0li-

; veira [1] (cases m > 3), Take M = €-{0}, and define g:M + € y (=}

ALY
VAN

2/ [ ] AN

and w by

— : zm-lzt_i' z;‘l
S l g(z)=
} « . Z = 1
[ (2.1)
2
| we 4 g‘i dz ,

where m is an odd integer greater than or equal to three. By using

i
f (IT 1.19) we obtain
I
|
\
1

u
LSH

m+1
z

[Lﬁ:ili - zm*3(z+l)2]dz ,

| 1 -1)2 - 2
(2.2) a, = -5 iﬁ:fl_ + 2" 3(z+l) dz ,

2
uiz—l

3 2

dz .

It is straightforward to verify that ql' a2 and a3 do not have
real periods thus giving rise to a minimal immersion X: M -+ Rj. The

[ induced metric on M is

2
(2.3) ds =-;%? (IZI;+1 + |z[m-3|z+li2)|dz|.
z

Fig. 8 If ¥y is a divergent path in ﬁ, it is easy to verify that

Two views of a Jorge-Meeks surface

Y

s PR

-



L{y) = ds = @ ;

e
Thus, in the induced moetric, M is complete. Furihermore, {n Cex-

tends to a meromorphic mapping

051

c Uy {=} »cu (=]

that covors each point of ¢ | {#]}] m times., As a congoquence, the

total curvature of M is =lmrm.

bt
When we identify s (1) with ¢ Uy {=] tho antipodal mapping

corresponds to the transtormation I{z) = —l/E. Tho projectivoe space

]

P~  mway then be idontifled with the guotient of ¢ U {=] by the equi-

valonce retation "z ~ w 40 and only iff w = 1('.4)". Let
-
nm: € U [-n} -+ P~ DbLe the canonical projection that takes each point
X . 2 ;
into its equivalence class. It is easy to see that P~ - ﬂ(zo) is

»
a MBbius strip fer any choice of Z . Set M= P~ - n(0}. We aro
going to show that the immersion X Moo R) can be factored out by

3

13 that is, there exists an immersion x: M -+ R such that X = xerw.

Fer this teo happen it is necessary and sufficient that
(:2.0) (1(2)) = %(=),

for cach 2 in ¢€-{0} = ﬂ-l(M). Ir G.j(z) = cpj(z.)d'z., it follows

i S S—
from (2.2) that 05.1(1(7.)) =z mj(z). As a consequonce, wie have
T*a . = & hence

J it

61

(2.5} ?J(J(y)) = Re a, = Rof @, + a.} =
7y L J.(zo)
A Va
= . + Re 1%, = =
wJ i w‘ + Re O‘.j
10 '1.0

Since ¥ (z) = X (I(1(= F 2)) = % (- =
ince x\i(l) xJ(I(_[(z))) = Wi+ xk_'(".l(z.)) = 2w‘j + xJ.{z), W= 0.
Hence, ;j(I(z)) = §j(z), for all » and | = 1,2,3. Thus, (2.4)

iz true. Therefure, Lhe mapping x: M -+ RJ is well doefined.

Since m: M 4+ M is the oriented two-sheeted covering rfor M,
we may define a metric in M in such way that 0 becomes a local
isometry. The mapping x is then an isometric minimal immersion,
Since M is complete, so is M, and this completes the example,
Observe that x dofines a complete minimal immersion of the MBbius
ctri int 3 : 2 R .
strip into R-7; but, since M & P - m(0), the immersion has one

end, The total curvature of M musi be half of that of M. There-

fore, the tolal curvature of M is =2nm.

In Chapter V we will prove that for m = 7} this example is
the unique complete M8bius strip minimally immersed in RJ with to-

tal curvature -6m  (efr. Proposition 1.34 of that chapter).
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3+ A nonorientable complete minimal surface of genus one with two

ends and total curvature -10m

In this section we presont the example obtained by Maria Elisa
G.G. Oliveira [l] of a nonorientable complete minimal surface of genus

one with two ends and total curvature =101,

Take M w €-{0,1,-1}, g1 M 4+ ¢ U {*} and w defined by

3, 2 .2 Y )

E_éleﬁ_l , 2 & 1/me
b Tz =1

g{z) =
L . 22 = l/b2 »
(3.1)
2 2 2
W o= ;(b 2 il) L dz ,
z (21} (z+1)

where b is & real constant., Making use of (1z 1.1%}, we obtain

1 (bz 2 1)2 26(2 b ) " Pl(z) ,
1 2 z (z-l)u(z+1) zz(z.-l)u(zq-l)i‘L
1 (b3 2-1) +z 6,2 -b ) Po(2)

(3-2) G2 - s dg =

z (a -1) (z+l) 22(2_1)4(z+l)ﬁ

P4(z)

izj(z2 bz(b z —]) dz =
27 (2-1)*(z+1) "

z (z-l) (4+1)H47

d=,

The constant b is to be determined in such a way that the Forms aJ
have no real periods. The computation of the periods can be done by

using Cauchyts integral formula, We obtain

63

) P (z)dz o
(3.3) , 22(z~1)'(z+1)* = i P (0)

for any small closed curve Yo around  z = 0. To examine whal hap-

pens around 2 = 1, we take derivatives of fJ(z) = PJ(Z)/ZZ(z+l)u

to obtain
A 1 s M - Fl - =
1J(1) = IE—(PJ(I) - 12 PJ(l) + 57 PJ(L) - 105 P(1)).

0t course, for a small curve Y around 2 = 1, we have

1

P (A)dz ami (1)

(3.“) (z 1) (£+l) 3t

It is a straightforward computation to show that lﬂ(l) = fg(l)
2

and that
(3.5) (1) = == (6b*460b2-210) .
1 32

One ftinda

With this choice of the forms g

Now, we determine b by solving the egquation f;(l)
1t m2 and aj

b o= -5+ 2/15,

have no peoriods and give rise to a minimal immersion X: M -+ Rj_
It is not fecessary to verify the existence of real periods arcund
L = =1,

We just have to observe that, ir I(z) = -1/2 and o, =
J

= Gj(z)dz, then, for the above choice of b, we have

b
(3.6) ? (1(%)) =2 2 (2) .
J J
Since I is a conformal diffeomorphiam, a smull curve Yl around
Z = 1 will be transformed into a small curve Y2 = I(Yl) around

zZ = -1 and

P

B8

T

-
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fa

=1
I
&*

The induced metric on

D> o» 2
1 [P |
(3.7) s = (J—Z_Z_I_ !
VeI '

4 -—1,[ |A -—1[

}

If Y dis a divergent path in M, it is easy to veo

L{y) =

-

armd then, in the induced metric, M s camplete.

extends to a meroemorphic function

g ¢ U (=] =+ ¢ U {=]

which covers each point of € U {=] five times, A&

of" this, the total curvature of M i —-2r .

Taking intoe account (’}.6) and deoing the same

(2.5) of the previous section, we conclude that

T(1(2)) = %(2).

Therefere, X can be factored uvul by 1; that is,

3

inmoersion x: M + R such that x = xem, where 1

sion tfrom the sphere into the real projective

M= e" m{0,1}. The details are the same as those
section, Since n: M + M is the two-sheeted cover
may define tho metric in M in such a way that
isometry. The mapping x i3 then an isometric min
Since M is complete, thoen M is also complete,

delines a minimal immersion with f'our ends. Hence,

o2 o2
I P A ¥ I
* TR

)fclzl -

ril'y that

Furthermore,

s a l'fO]l.‘i(}l]llE?)lC(!

argument as in

there exists an
is the canonical
!
spice P arnd
in ithe previous
ing for M, wo
becomes a locul

imal immersion,

Ohserve that X

X have just two
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ends . The tolal curvature off M must be half of the tobal curviatiiee
o' M3 therefore, il is -10m, Observe that M can be considored

P . ¥ - - . -
as a Mdhlus ﬁl,(‘LI\ mimis one point.

= Completlc minimad immersions of surfaces of arbitrury genus with

ity nunibey of ernds,

In this section we are going to prove a theorem due to Klota

and Sario [1].

(.1} THEOREM. There exists a complote minimal immersion x: M -+ R-

~

o' a surface of genus €y Ma M - Epl""'pk}' where M is a_ com=

pPact surface such that:

a) X(ﬁ) =2 and k > 1, or

=
—
Es
—
=¥
~—
L}

{(2-2¢) < 2 and Kk 2 4.

The proof of this theorem is based on the simple idea that, if
Y Mn d R3 is a complete minimal immersion and m: M -+ Mo is a co-
vering lor Mo’ then Yom: M o RJ is also a complete minimal imme r-
sion. Klotz and Sario have started withh a complete minimnl immersion
Y from M= 52(1) - {pl’p2'p3} inta RA and have shown that it ig
possible to cover Mo by a surface M = {pl,...,pk], umter eithor
one of the conditlions (a) or (b) above. The jmmersions x = Yol  so0
obtained are complete, minimal and their domains may liave a very cobis
plicated topology, but they all huve Lho same image, This justilies
the effort in trying to obtain geomotrically Jdistincl examples of

3

complote minimal surfaces in R with arbitrary topological type,
as, for example, was «lone by Jorge, Moecks and Oliviora, In any case,
this thooroem leaves opert quastions aboul the oxistence of cuomple be

minimal lmmersions x: M - I{'j whore M = r71 - {pl,...,]}k} with
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x(M) « 2 and k = 1,2 and 3.
e
Once and for all, in this section, set M = s*(1) - {pl,pzﬂh}
and let Y3 M0 -+ R3 be the complete minimal immersion described in

Section 1 of this chapter, where Py Py and p are the cubic roots

3

of unity, The proof of the thecrem dependa on the following two lem-

mas.

(4.2) LEMMA., For any integer k 2 3 there exists a covering projec=-

tion 13 Sz(l) - [ql,....ak] -+ Mo.

Procof: To prove this lemma, take k-2 coupies of Mo and cut all of

Open each copy of M

them aleng a path @ connecting Py to Py o

along the slit a. The cleoesure of each one of them contains, now,

two copies of the path a. Call one of them g and the other one

1
L P Identify the polnts of ul of the j-copy with the peints of a,
of the {j+l)-copy, 1 s Jj« k-3; then, identify the points of @, of

the (k-2)-copy with the pointa of a, of’ the firet copy. The sur-

face M

2
. 90 constructed is conformally equivalent to S ﬁ)-[qlp.qqk}.

For the reader to see easily this fact, imagine 52(1) open along
the slit, as a rectangle with sides identified as indicated in the

following picture:

Py *P3 P2

oy

Fig. 9
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Et is then clear that Mk' vbitained frum the identitication of k-2
copies of this rectangle, as described above, will be topologically

a rectangle with sides identified as indicated in the picture below.

4,
*p
o, 3
%
1]
a4 P3
dg
-p
d
] ! 2 P
2
-
da
p
a, 3
Fig. 10

Observe that, besides Py and P, there is one missing point on

each copy used in the construction of Mk' Hence, it is obvious that

Mk is a sphere minus k points. The desired covering projection
m: Mk -+ MO is the mapping which carries each point of Mk to the

point of M0 that has given origin to it.

{(4.3) LEMMA. For any integers g€>0 and n z 2{g+l), there is a

govering M: M = {q ,+ss,q,} M with ¥(M) = 2-2g and either

k = 2{n-g-1) or k = 2(n-g-1) + 1.

Proot': Given integers g > 0 and n 2z 2(g+l), congsider two copies
of M = 52(1) - {pl,--..pn]. cut 52(1) along simple curves ay
connecting p2i-1 to Py 1< i< g+1, in such way that ai and
aj . 1#Aj, have no common points, Each copy must be open along the

alitsa Gi + The closure of each one contains two coples of each path

e

e

5

-
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;o Call one of them and the other one Qo Each copy of
i

RES] 2
y after the slit, will be, Lopologically, the surtace of the

1

ricture below; that is, a sphere minuns  (g+l) disks and n-{2;+2)

woints,

g2 Pagea
Fig. 11

low, we identify the points ol T,y of the first copy with the points

4 a., of the second copy and the points of u.iz of the first copy
iz

/ith the points of o, ol the second copy., This is oequivalent to
L

1

dontily the boundaries of the corresponding missing disks of the

:wo copies, The resulting surface, M ia, topologically, a sphere

gk’

dth ¢ handles from which k = 2{n-2g-2) + 2g + 2 = 2{n=g=1) points

iave heen removed, The covering projection i Mgk -+ Mu is Lhe map-

ring which carries each point of M to the point of MO that has

gk

7iven origen to il.,

1]

el
I wo had started with Mn =5 (l) - [pl,...,pn} arnd
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“1
Mn+1 = 5 (L) - [1’1_"”’prl’pn+1_}’ and followed the same reasoning,
we woulid had ended with a covering m: Mgrk -+ Mo s where Mf"k would
have ¢ handles and k = 2(n-g-1) + 1 points removed. This proves

the Temma.

Proof ol the theorem: We first observe that the simplest covering

obtained by this procoedure is T: Ml’l -+ MO . Lot us tuke g+l copios
of Mlh' As baefore, cut each one of them along two curves a4 and ]
cormmecting respectively p1 to p, and p,} to pi.‘l s and open iLhe

siurfaces alonyg the slits, The closure of each one of them contains,
Nnow, twe copies of the path g and two copies of the path B, ©alil

thiem u.l, a, B] and 8, . Each one of the s1il copy of M is

14

now, topologically, two rectangles conmuected by a tube, as in the

picture bolow.

P

Fige 12

We now past these g+l  ikdentical surlices along the slits by identi-
fication of' the points of ul and Bl al’ Lhe jecopy with, respect-

ively, the points of a., and B, ot tho (\i+])-copy, 1< ,j=< 47,
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Fig. 13

and the points of a, and Bl of the last one with the a, and 32
of the first one. The resulting surface, Mgh' consiats of two
spheres comnectad by g+1 tubes from which four points were removed,

namely,a sphere with g handles minus four points.

Fig. 14

71

If, in the ahove construction, we had pasted g slit copios

of M14 and one copy of Mlk » k2 4, we would had obtained g sur-

face Mgk' k =z 4, which would be topelogically a sphero with e

handles with k points removed. This proves the thuoram,

5« A complete minimal surface of gerus two with one end and total

I

curvature =127,

The example that will be described in this section was discovers
ed by Chen and GackstHtter {1}, Let # be a Riemamnn surface whoere

the functien w(z)}, given by
2 2 2 2 .2
(5.1) w (z) = z(z -a )(z ~b°),

is well defined. We will assume that a and D are real constants,
with b > a » 0, The surface M is obtained by cutting the sphere t
[ V] {w] along 3 curves comnecting =b to -a, O to a and b to
#*, and then by pasting two copies of this slit sphere along the slits,
as way done in the last section. The resulting surface M is then a

sphere with two handles.

=] ==
b b
a a
(1] Q 3
- ] -8 |
b -b

Fig. 15
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Take M =M - [®), g: M+ ¢y {=] dofined hy

B w(z)/(zz-ag) and

e =)

('/.'?-a:")«lz/w( ‘1.) »

=
i

where B is a constant. A way of studying a function F(z,w(z))

(or a 1-rform T = F(z,w(z)):lz) aroundl a branch puint 7, ol the ‘ Fig. 16

Tunction w i3 to consider a new parameter §, given Ly EE = el

and to study the function F(E 2+ZO' w(§ 2+7‘0)) ((”_ the 1-form to construct 1':1. The next picture indicates how tho clurves
F = b‘(§:3+zo, w(g 2+'1-0)).'-’§11§)- 1t ia then easy bto verify Lhadl, at tho I Y'} and Yh lie in M.

points z = a aml 2 = -a, v has poles of order one amd  w  has

zeroes of order two, and that =2 = 0, 2z = b and =z = -b are regular

points ol the l-form w. 1t follows from (5.2) that

] 2 ,

. 4 =i 2 w '

ap =3 (g =87 e, >
a

il el
i T —aT 2 w
(5.9) R R e e ‘ < >

Z =a

Such forms have no real periods. The existence of real periods should

be searched among the cycles that generate the fundamental gsroup ol M,
Fige 17

i
The surface M has fumdamenial group pgenerated by four homotopy l

Since a. is an exact form we have

3

classes. We may choose one curve in each one of these classes as in-

dicated in the picture below, where the dark lines and Lhe light lines f
| (5.5) a, = 0, 1 g ks h,
stand for the frajectories on different copies of the slit plane used
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To copute [- T 12 jg 2, 1z k< 4, it is conveniont to
Y

k
compute firsi the values of (‘ f dz  and {— (1/t)de, for

. Tk Yk
L= w/(zz-ud). We obtain
a a N
felz = xszabz)dx _ ( x(x“-bz)dx and
Y, o Jx(xﬁ-az)(xz-bz) o ~/x(xZ-a?y (x2-1?)
(5.6) . .. . o
(x"-a")dx (x7-a")dx
1/f)dz = - ,
“1( /t)d o Yx(xT-a®)(x%-b?) o ~fx(x2-a2}{x2-b7)

where the minus signs, in the second integrals, comes from the orien.

tation of the curve and from the chosen branch of the square root.

Thus,
a
2_,2
£ dz w =2 x(bf-x")dx = -2 F, ,
v Jx(x2-a%) (x2-67)
1
(-7 : 2 2
(a“=-x")dx
(1/f)dz = -2 = <2 G, .
Y o Jx(x2-a%) (x%-b7) 1
1
In a similar way we cobtain
g £ dz = -24F, , ( (1/f)az = 2iG ,
Y2 Yo
{5.8) £fdza=2F,, (1/f)dz = 2 6, ,
Y3 Y3

fdz = 2i F, , {L/f}dz = -2iG,

2 L
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whoere

¥ x[hz-xg)dx

Jx(x%-aTy (n2-xT)

(xg—dz)dx

Va(x22a?y (67257

and G, =

ra

Observe that Fl, Fz' Gl and G2 are positive constunts which depond

only on a and b. The table below gives the values of [— a. .
J
Yk

Y=v, Y=Y, Yy Y=Y,
2. , 2. 2 . 2
a, -G, +B"F, 1(G1+B 11) G,~BF, -J,(GE+B F.)
Y
(5.9) -
. 2 2 2, a2
(“2 -i{G +B°F ) -G +B7F) 1{G,+B"F ) G,-0°F,

Thus, in order that real periods do not exist, we must hava

(5.10) G, = B2F1 and G, = BF

or, equivalently,

(5.11) G, = B°F

{5.12) F.G, = G,F

For fixed a and b, we may choose B in such way that (5.11)

occursa, Let us then fix a a1 and try to find b » ! such that

(5.12) is verified, That is, we must find L » 1 such that

1 b
x(hz—xz)dx

( (1-x%)dx ) ( .
o Vx(x7-1) (x2-b2) L Mx(x21} (62-x7)

oy W

EL

¥

F
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1 b - : € e
-( e (%% ux (Fa1)ax s e (( Ve = W) ( / (o) (reen) feox )

= e — ) . .l L+g +2 L+g - 2
NETpy Y VAR (e (brevx)Cive=x) .
1 0
Q (5.1%) | .
_ T/ £=x
From now on, we write tor short LHS (RIS) for lel't hand side > (5 f-'f+c Tre—x == x
0 0

(7"ig;]|t Taarie) si_elo).

Changing the parameter x For x+1 in the Integrals Crom i

1
KD e b e (§ JERERS) [Ty /( TR i)
N 2 1+e PRy

(5.14) TE i
1 =1 - ( ) o
x l-x {1+x)(Bb+1+x) / bolox N . . G.l0)
R e R S A 1 < le ST c %
8] Q ] e+x x lx( - (x).
9]

(5‘13) 1 =1 ©
( ‘/ ‘(L,L:{li‘wl X)_ J —x— dx) ( JTT’:‘;‘%—](:’E"‘—) J Brl:: lb) Nut,
4]

(5.17) / Lo, [(se)(erx)

2 1+g-x
Now, if T + », wo have e ¢

1 h-1 for each 0 x< 1 and ¢ > O sufficiently small. On the othoer
LIS of 5 |~ % — /batex
] I'J) (J h(h 1) /_}.;C_JE dx)( ab Tx Il9 hanet,
Q 0

(5.14) (5.18) ‘/h . /ggg_u,

1 h=1 !

S f 1=
ks o > L{l-1) 1-x (lx) (—‘— Polox .
{5.17) I x 2b ®

for b sufficiently large. Using (5.14}, (5.15), (5.16), (5.17) and

‘ (5.13) we conclude that there exist values of b 'or which the LHS
0 4 :
of {5.173) becomes larger than, and values for which it becomes smale

b o= 1+¢, ler than, the RUS of (5.13). Hence, there exist bo > 1 such that

U the olher hand, i b is eclose te 1, say,

the LHYS and the RHS of (5.1:5} are equal. Therefore, it is possible
€ > 0, then

to choose a, b and B for which {5.11) and {(5.12) are verified.
For suvch choices, the l-lorms al, a,, and g, do not have real

3
JI

perivds and cun be used to define a minimal surface xt M + R

Since g and @ have poles at @, we easily conctude that M is



78

complete in the induced metric.
The function g is meromorphic and can be extended Lo M.
. 2
1ts image covers three times each peoint of § (1). Hence, the total

curvature of M dis =12m, Finally, Jorge-Meeks formula (]II 2.11)

tell us that

6 a2 I = x(M),

where I is the multiplicity of the only end of M. Since X(M) = =3,

then I = 3. This concludes the example.

6. A complete minimal surface of genus one with one end and total

curvature -87,

The next example to be described is also due to Chen and
Gackstditter [1] and its construction follows the sume methed used in

For this reason, details are omitted. Let M
“(z)n

wz(z) = z(zz-aa),

the previous section.

be the Riemann surface where the function given by

(6.1}

is a posilive real

¢ u (=)

and then by

ig well defined. We are going to assume that a

constant, The surface M is obtained by cutting the sphere

along two curves connecting =-a to O and a to =,

pasting two copies of this slit sphere along the slits, as was done
The resulting surface "

in Section 5. is a torus and hence, has

genus one,

- »
2 a
[+ 0
-a -8

Fig. 18

Take M = M - {=],

(6.2

where B is a constant,

a pole of order one and w

and 2z = -a

{6.3) a,

which we want net to have real periods.,

It is

are regular points

g M+ C U [w}
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g(z) = B w(z)/z ,

w = z dz/w(z) ,

defined by

easy to verify that, at 2 = 0 g has

has a zero of order two, and that =z = a

-%(i—ﬁ

]
rat-
—
| &
+
=]

of the form w.

E)dzl

w
;)dz ’

From (6.,2) we obtain

The existence of real periods

must be searched among the cycles that generate the fundamental group

of M,

classes of homotopy.

The fundamental group of the surtace M

is generated by two

We may choose one curve in each one of them as

indicated in the picture below, where the dark lines and the light

lines stand for the trajectories on different copies of the slit

(6.3)

plane used to construct ﬁ.

Fig.

Since

19

a

3

is exact,

wa have

FIE SR

N

e

e
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(6.5) a., = U, i€ ks 2,

Considor the positive real constants F and G delined by

i a
2 n
. xdx - !ak-x ) dx
[TYNH F = —— arid G o=
( ) J;c(n‘?-x“) ./;(a‘"-x‘-)
Q 0

The computation of the periods of “J along Yk is straipghtforward

and the result is presented in the following table:

\"=Yl y=\(2
{ a, —F+D7G =i(FeB7G)
(6.7) N |
[ a, -i(F+B ) F-B"G
Y

Thus, the nonexistence of real periods ocecurs when B = s/m. For
such a choice, the forms cr,l, a, and a.,} can be used to detfine a
minimal surface x: M 4 R‘i. Since ¢ and w have poles at ©, we
can conclude that M, in the induced metric, is complete.

”
The Tunction ¢ is meromorphic and can be extetdded Lo M,

2 p i
Its image covers two times each point of S5“(1). Hence, Lhe total i

curvalture of M 1ig «Hr. Dy Jorge-Moeks formula (III :1.],1), we have '
i

}‘=I"X(M)9

where T ds the multiplicity of the only end of M. Since X{M)=-1, !

then I = 3. This concluwdes the exuample.
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T« A _complete minimal surface of genus one with three emds and

The fellowing example was first described by Costa [1], whe
constructed it by making use ol the classicatl Weierstrass P ffunc-
tion. MNowevesr, it is possible to exhibid such an example as an appli-
cation of the mothod used in the previons two sectiens. 1In what fol-

lows we are oing to introduce this exami:l1e by making both consiruc-

1ions,

First construction: Let i'a be the Riemann surface where the

function w(z), given by

5o
”-a",) ,

(7.1) w = a2z

is well defined. We assume that o  represents a positive reul cons-
tant. As we have seen in the pPrevious soction, the surface § his
Jenus one,

Take M = M - [a,-a,=}, g2 M+ €U [=}] detined by

e(z) = n/w
{7.2)
W = v rlz/w '
where I is a real constant., It{ is a8y to verifly that g has 3
poles of order one, precisely at 2z = 0, 2 = a and z = —a, aul
has a zero of order three at 2 = . On the other hand, w  has a

double zoro at 2 = 0 and a unigue double pole at 2 = @,

From (7.2) we ohtain

1 o= B
ay = F (;i— - ,}")d‘{, »
w-
. i
(7',3) 0.2 =% (; + — ,
a =
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which we want not to have real periods., The existence of real periuds
must be searched among the cycles thatl generate the fundamentul group
off M, These are the ones that generate the fundamental group of M

and the ones around the poles of al, a2 and a. + The cycles may bo

3

chosen as indicated in the picture below, where the dark lines and the

(7.4)

Fig. 20

light lines stand for the trajectories on different copies of the slit
plane used to construct ﬁ. The curves ﬁl, Bz and 53 makey one
turn around the points =-a, a and ®, Tespectively, and the curves

Y and Y generate the homotopy of ﬁ.

1 2

Observe that, on both expressions of a and o wo have

2 »
only odd powers of w. Since each Bk is the sum of two circles

(one on each leaf) it is clear that

(7.5) a; = g, = 0, 1x ks 3.

Y Yy

On the other hand, 1t iz easy to conclude, by using residues, that

E%%i , if 1% ks 2
B dz
(7-6) a.3 - ?::2— -]
L By
o , if k= 3.
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Consider the positive reval constants

a .a

(7.7) F = —xdx __ and G = dx

Jx(aé-xz) (uz-xE)Jx(az-x“).

A simple computation of the periods of aj alonys Yl and Y,

furnishes data for the following table:

Y=Yy Y=Y,
2
(’“1 -F+B°G -i(F+B26)
¥
(7.8) {-az -i(F+B"G) F-B%G
Y
g a, -hmBi -4THi
Y

Thus, for the nonexistence of real periods, we must have B = JE7T.
With this choice the forms “1' az and u3 can be used to define a
minimal surface x: M Rj. Since g has poles at z a a and
z2 = ~a, and W has a unique pole at =z = ®, we can conclude that
M, in the induced metric, is complete.

The function g is meromorphic and extends to ﬁ. Its image

covers three times each point of 52(1). Thus, M has total curva-

ture =121, By Jorge-Meeks formula {III 2.11) we have

3
6a T I_-%(M).
k=l

Since X(M) = -3, then I, =I,n= I, = 1. Therefore, each end of M

is embedded.

Recently, D, Hoffman and W. Meeks [1] proved that this axample

is embedded.

EL]

ry

s
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Seeond construction: Let M = €/L represent the Lorus obtain-

@il as the yuoiient space oif the complex plane € by the lattice
. = {m+ni; m,m € £}. Represent by m the canonical projoction trom

€ onto Icl, and by P: € s+ C U {ﬂ} thie Weieorstrass function assc-

ciatod to the lattice L. The function P is doubly pericdic in the
sense that P(z+w) =P (w), for any w ¢ L and any 2z € €. Hence,

A A N ]
P  gives rise to a function £: M+ ¢ U (=} defined hy Poym =g,

The function P ia given by

1 1 T
(7.9 P(2) =— + B (romn) 2 - (moni)? .

2 (m,n)ce? d

(m,n)£(0,0)
It satisfies the dilfterential equation
2 2 2

(7.10) T = wpTat)e
where a > 0 and
(7.11) a=r{1/2) a #£(i/2) and °({L1+i)/2) = O.

It 1s important to observe that P is also doubly periodic
- " .
and gives rise to a new function P’ : M » € U {=}. If we write

weaef’ ani =z =@, Ethen we oblain from (7.10)
2 ot 2
(7.12) wS oa hu(z-a”) .

This is, up to constant factor, the equation {7-1) used in the first
construction, The table bolow summarizes the relevant inflormations

about © and ¢ at the points ©, 1/2, i/2 and {(1+i)/2; the

z o] 1/2 i/2 (_1:1)/::
(7.12) g 2 a -a o~
pf 3 ()l Ol ()'l
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superscripts indicate the orders of the poles, or the order of the
Zeruves, according te the case. 1t will Lie relevant in this cons-
truction to know ithe values of the integrals of P along the cycles

that penecrate the undamental group of the turus ﬁ. One can show

[

that if B(t) = L+ib  and Y(t.) = brit, with v - 2 " 4 and

T

Og t £ 1, then

Fle)de = Pz - %—)dz = Pz - i,)dz = an
8 a B
(7.13)
P(z)dzs = ’/ Pz - ‘]:T dz = Pz - ,_i,)dz = im.
Y Y Y

The so0 called "addition theorem" for the function f {Siogel

[1] pp. B0=82) states that

P! (2,) 0" (,)]°
(7.14) P(zl+zg) = -&- [7’ ""i _‘_;(ﬁ——] —P(zl) - P(zz) .

By using (7.1.4) anl (7.10) one can conclude that

Plz - 3) - a= 2/ (2)-a),

(7.15) P(x - 3) o a = 2/ (e)va),
Plo - ) - e

The last fact that will be necessary to know about the Function
P for the constrietion of the example, is its Laurent development in

powewy series arcund =z = 0, which is given by

had -
an

(7.106) P{z) = z-2 + T hnz .

n=1

All properties of the function P  mentioned above are clas—
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sical, and can be found in Siegel [1], Neville [1] or Farkas [1].

1 i 1+i
Set p; = w(0), py = "(5)’ Py = n(g) and p, = ﬂ(—E— .

Take M = H = [pl,p2,p3], g1 M+ ¢ U {»] defined by

g(n(z)) = a/f'(2) ,

(7.17) U (g = Pl2)dz ,

where A 1is a real constant, From (7.12) it follows that the zerces

and poles of g and w occur at p‘j N 1 g } g 4, as indicated in

the following tables

Pl p2 P3 Pu
1 1 1

(7.18) g 03 - - " .
w | =? o?

By using (7.2) and {(7.10) we obtain

<]
]
N
—
'l
]
n
—
=9
1
-

po|

(F+» —4 yaz ,

(7.19) a, = 4(F2-a?)

AP’

aQ, @8 ————— dz
3 u(eRa?)

which must not have real periods in M, For this to happen 1t sul-

fices that the following conditions hold:

a) for each 1z k < 3, 1z j= 3, Ras(ak)p is a real

number;

b) if ﬁ and ? are generators for the fundamental group of M,

then [ ay and [ a.k are purely imaginary, 1 g k < 7.

) ¥
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The verification of these conditions are simplilied al'ter we

rewrite each a, in w proper lorm. For this, obsorve that

and make use of {7.15) to obtain

§ 1 1 1 i
7.0 o7 o m = g Plz - 5) - e(e - 3) - 2a) .
( ) P (w)-a”  hal (e 2 ( 2) ‘
Thus,
@y = 300(2) - A (f(e - ) e - 3 - sa)jan |
1 = l6a3 2 2
(7.21) a, = 2 Ie(2) + 12;3 (P(z = 1) - Pz - ) - 2a)luc ,

1 P'iz! [l &
aj 8a (P z)=a _ Mz +a.)dz -

Since ¢ and are doubly periodic, it suffices to make the

computations of the residues of ak at the pointas 2z = %, 2 = %
and 2z = 0, which are in the inverse image ot the points p2, p3

and P;s rTespectively, Since the only pole of P 1is =z = 0, where

its residue is zero {according to (7.16)),

(7.22) Res(ml)z = Rea(az)7 = 0, for any 2z € €.

Let Y be a circle of sufficiently small radius ¢ > 0

< ’ around

z = 1/2, Since f is holemorphic in a neighborhood of 2z = 1/2,

we may take w = p(z) along Y. and then

A dw A
lim a, = z— lim o o= g 2%in ,
€0 3 8a c-0 w-a 8a

#(v,)

where n is an integer greater than or equal to two. Thus,

e

i

s
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(7.21) Res(aj) = .t
S=

ol =

This arpgument may be repoatoed when oz o= i./f!, amnil we obtain

"
(7.24) Hes(a,) | = -—%;—,

where m is an integer. By using (T.I_O) ws cobtain

o L 3 1
- =+ I 2nhnz'Jl+
P’ () i nsl (z
e = + ll(z) ’
P (z)ta = 2ne2 2
ltaz" + E b =

n=1

with £ and h  holewmorphiec and l‘(G) = -2, 1t Follews thad

(7.29) Res(aj)' =0 .
vn=0

Let 8 amd ¥ be the curves used in ('T..l'j). Observe that é = 1ef
and ? = TeY are generators for the fundamental group ol M. Using

(7.13) we now obtain

P
1 - 1 A
a, =3 Lo A 3 (-n+m-2a) = 3 (= 4-—2-2) s
~ 16a Ra
8
1 i imezai) o L 2 )
€, = 5 fim = {in-im=2ai) = 5 (nm +— a) .
-~ Ba
3
T an analogous way,
2
A
a = - ‘1-;- (” + ) L
. 2 = Ba
B
(7.27) ] A2
0'.‘3 = —E- (T‘F - . 3) -
Y s

B89

On the other hand, if w_ # 0 is a
0

]

real number, then

2 () de . .
ﬁ_)_(_«(’j/_lﬁ = 10;:([’(I1l+1)-w0) - ‘Lu.l:(P(l;_L)-wo) .

Since is periodic, P(bi+l) = P(bi) and this intepgral is zero.

Thereloro,

,—"'_‘\
=]
(W)
0

{7.28)
e

Hy analogous roason,

(7.29) _ag =
Y

Tle reosults oblained Trom (7

2

bl
cheosing A such that A" = Ba™n,

periods, Thus, they can be used to

3 )
xt M+ R7, Since '] and 3
Pln I2s t,)

.22) to (7.29) show that, hy

the forms a, have no real

define a minimal immersion

are poles of g or w, then

M, in the induced metric, is complete, Tt is easy to verity that

£ covers each point ot € U {ﬂl} three times; hence, the total

curvature off M is =121, Making use ot the Jocge-Mocks Cormula,

as we dJdid before, we can alse conclude thal each one of the three

ends olt M is embedded.

Observe that, at Py g has one zoro of order three while

w has one pole of order two. Thus, a, = aw Is a well defined

' W
form at ry and the coordinate xj = Re [ 33 of the immersion x
has a tinite limit when w converges to pl . This moans that the
ol ot x(M), corresponding to w = By approaches asymptotically

a plane., Since g(p,) = {;(pj) z »

and g(pL) = (), then the throo
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ends are parallel in R~”.
The following is the picture of a compact piece of Costals
example included in Hoffman-Meeks [1]; it is reproduced here wilh

the permisdion of the authors,

Fig. 21

Costats surface®*

8. A complete minimal surface of genus one with two ends and

total curvature -20m.

In this section we introduce another example of Costa., This
is a complete minimal surface in R3 with total curvature ~20m, of
genus one with two ends, We are going to use the Weierstrass P-func-
tion associated to the lattice L = [m+in; m,n € £}, whose properties

has been pointed out in the previgus section,

Set M w ¢/L, m: €@ + M the canonical projection, q; = m{a),

The computer graphic of this picture was devised by J,T. Hoffman,

¢

1+i
)

1 i .
ap = {4 ay =1(5)s oy, =n(3), M=H - fapsa,ls g Mo ¢y (o)

det'inced by

e(n(e)) = a/e(z)e (2),
(8.1)

', 2
wn(z) = (P (=) dz ,
where A

is a real constant., ¥From (7.12) it follows that the zeroges

and poles of g and W occur at dp P qJ and Gy s as ilndicated

in the following table:

- 9 a, 4q qy,
(8.2) . o3 o3 wl wl .
w = o2 02 o2

By using (8.1) above and (7.10) ol the previous section, we obtain

2
1 2 A
ay = 5 (47 - uafe LAy,
2
i 2 A
(8.3) &, = 3 (W7 - bap 4 A5)az ,
a Ap‘dz
3°F '

which we want to have no real Periods in M. For this to happen it

suffices that the following conditions hold in ﬁ:

a) for each 1x k< 3, 1xjg« 2, Res(ak)q. is a real number;

J

are cycles that generate the fundamental

b) if § and ¥

group of ﬁ, then g ay and Y. ak are purecly imaginary,

] Y
1 kg 3.

The verification of these conditions are simplified after we rewrite

each a in a proper form. For this, we start by taking derivatives

k

W

e

-

FTE oI
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on both sides of (7.10)} Lo ebtain
& :
(8.0} PYow OPT - Pal

Making use of {(7.10) and (8.4) above, it folluws thit

. o
(8.%) ') =10 2 < e
Thus,

3 1 ’ 6 2
(3.(1) v = 10 (PP') + 1B apP .

Substitution of this inte the eoxpression of «a in {8.3) vields

1
2
1 . 2 A

(R.T) @, =5 (@e') = ha'P)dm - 292 de .

2 ;
Making use of (T.l"r) to reaplace the value ol ,I/P ’ wa obtain

Y 2 .
(8.8) a = % (Ep') - baip)az - A PP - Bhyae .

2a

Tt follows now from (R.4) above that

>
. 2 . >
(8.9) a, = 1) ((Pe) - haP)az - A (7 (= - 151+ 2aT)an .
12a
In a similar way, one shows that
i ry 2 i.A2 » 1+1i i
(R.10) a, = 5 ((PR7) =~ ha Pldz + N ©" (e - ——df) + 2a")dw .

12a
It iz not nwocessary to make any change in the expression of “'3 .

Tt is now a straighforward computation, makiug use of (7.1H)

and (7.16), te show that
(®.11}) Ros(q ) = 0, 1< j< 2, ls kg 2.
J7q,

By using (7..1.6) in the exprossion of u.,J , we conclude that
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2 .
a, = Al- =+ F(#))de  around =z = 0, where I is holomorplic.
Thereforo,
B.12 s (0. = —DA.
( ) Haq(uj)q]
To compute the residuc of q,j at q,, we first use (7-15) to rewrite
o as
3
(8.113) @y = - -‘5—, e (e) P= - l—z}—)dz .

By making use of the Laurent power series development of §#  around

%z = 0, observing that the first term of the power series development

of f‘(z) arovnd =z = ‘1,4; is P" (—l-zhl—)(z. - l.zi)’ and observing that
(8.1) above yields p° (1—211-) = -2&12|I wo obtain
(8. T."I) a, =

Z2A
;—Trlr + ll(z) dw
P
2

where h(2z) is a holomorphic function defined in a neighborhood of

z = {1+i)/2., Thus,

8.15 Res{a. = 2A .
(8.15) (ay),,

It is sufficient to compute the periods of a, along the
curves B = n(ﬂ) and {, = TT(Y), whore @ and ¥ are tho curves

used in (7.13). Since p and @7 are doubty periodic with respect

to the same lattice, then

el
W2 -
g u,l dz = — a1 - T
- 2 Ha
8
4y 2 a?
( q. de = - —a i -— i ,
l e
n a
b
(ﬂ.]()) y o»p I
a, dz = —ami + 5 1,
3 - 5 6
y oo 2
[ @, de = ~an Ao
2 ] G
31

=¥
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Finally,

(8'17) 9 _P z dz = A(log P(B(l)) - log P(B(O)) =0,

Ry,
&, = A 2
-

where the last equality comes froum the periodicity of £ and the

fact that (1) - p(0) = 1. In an analogous way, we obtalin

(8.18) a. =0 .

Thus, if we take A" = am, the forms ) 1< ks 3, do not

2 24 4
5
have real periods. Therefore, they can be used te define a minimal

immersion xi M -+ Rj. Since w has one pole in 9, and gdm has

a pole at 4, 1t follows that M, in the induced metric, is com-
plete. Since g3 ¥ R [ Y| {n} is mercomorphic and g assume the wvalue
zero with order five, then g covers each point of ¢ U {=] five

times. Therefore the total curvature of M is =20m. This concludes

the example,

9. A complete minimal surface between two parallel planes,

This example is due to Jorge and Xavier [1]. consider

MaDa{z€c¢; |2 <1], g1 D+ ¢y {»} defined by

g(z) = ef(z)
(9.1)

w = e_f(z)dz N

where f 15 a function whose construction is described below.

Let D

n be a seguence of concentric disks such that the

closure of Dn is contained in the interior of D, and |J b =D,

+1

Let Kn be the compact set obtained by taking an annulus contained

in D -D
n

sl and deleting from it a small piece (as indicated in
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the picture below) which contains the intorsection ot p 1
n+

positive x axis, if n is even, or with the nogative x

with the
axis, if

n is odd. We want IJ--Kn tu be commected,.

Nel

n+2

Fig. 22

Take open disjoint sets Un such that Un > Kn and chioose real

constants €,» 1l s n<®; now define h: U u, +e¢ by n(z) = °,
bl .
or z € Un

It is a consequence of Rungets theorem (cfr. Rudin [1]) that

there exists a holomorphic function f: D - € such that, for each n,

I£(z)-c | < 1 in K.o.

That is the function f that we are going to use in (9.1) to detfine

§ amd w, With this choice, we will show that g dand w give rise,

through the Weierstrass formulas, to a minimal immersion 3

x: D : R
which induces on D a complete metric and whose tmage lies betweon

two parallel planes. o

First observe that ay = dz and hence, x_ = Re(z}.

3

is contained in the

Since

lz] <1, -1< Re(z) < 1. Therefore, x(D)

=

py

F

B

Y
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region boundod by the planes x, = 1 and X = -1l

3 3

To show that M dis coemplete in the indnced metric, il suf-

fices to show that any divergent path in D has infinile length in

the metric

i}

ds =

1

'] '
.

el)? | az]®

+

7

2

T.et y: [a,\:) 4+ D he a Jdivergent path in D parametrized by the

Euclidean arc length in the

disk. Since % (!.i'l + |r'¥) z 1 then,
if y has intinite Euclidean length (b ==}, )
™ ©
L{Y) = % (Itl'i + leldat = dt = =,
a a

If ¥ has finite Euclidean

number of Kn with n even, or it cuts all but a finite numbor of

Kn with n odd. Suppuse

.3
n

Then we have

i{y) =

length, then y cuts all but a tinite

the first case occurs., Set

[t € [a,b); Y(t) € K } -

Observe that, on .Tn, we have

.
jel = le |

Thus,

b
L 4 lgl)at = lelat =
2 el
a
z |g!=lt .
>N
n over Jh
=-c c (& o =1
n n -1 n n
= |u [ z =] = e .
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¢ —1 o~
1.{y) = z e M dl oz z roe M R
>N >N "
n even ._1n n cvel
whaoera T, is Lhe width of Kll . Henece, il is enowgh to choose cach
c -1
©nh in sueh way that e n grows sufficiently fast. One can, for
¢ ~1
example, take e, = -log L. In this case, r, o = e—] amnd the
series
¢ =1
b r']l Q n diverges.
n>N
n evean

The other case is treated similarly, aml this completes the example.



CHAPTER V

NONEXISTENCE OF CERTAIN MINIMAL SURFACES

We have exhibited, aleng this notes, a great variety of exam-
pPles of complete minimal surfaces in R3. We are going to dedicate
this chapter to the proof of two theorems concerned with the nonexis-
tence of certain types of minimal surfaces. The first, due to Jorge-

Meeks [1], is the following:

(1.1) THEGREM. The only complete finite total curvature minimal em=-

beddings of s? - fpyrecasp,} in RB, for s k< 5, are the plane

(kal) and the catenoid (ka2)}. The cases k = 3,k oar 5 do not occur.

Proof: Let M be minimally embedded in Rj and confeormally diffeo-
morphic "to S2 minus k points. By Theorem (III 2.10) the total cur-

vature of M 1is given by
(1.2) C(M) = =lm(k-1).

2
Since the Gauss mapping g 1is a meromorphic function on S y  then it

is given by a quotient of two polynomials

(1.2) g =3
and
(1.4) k-1 = maxf{deg P, deg Q}.
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The fact that g is meromorphic means, cseometrically, that the Gauss
mapping N: Sz - {pl,...,pk} -+ Sz(l) extends to SZ. It is now a
direct consequence of (III 2.10) that N(pl)’°"'N(pk) must be parallel;
otherwise M would not be embeddoed. After a change of coordinates

3

in R and M, we may assume that

(1.5) el{pys-eeyn,}) = (1,-1)

and that deg Q < deg P. Let aJ, 1 £ js= to y be the elements of

{pl....,pk} such that g(aJ) =1, and b , lszsms ¢t Le the

1'
elements of {Pisveiesp,} such that g(b ) = -1, Then,

(1.6} deg(P) = k-1 and k = Tttt .

Let Yr + © > 0, be the intersection of M with a sphere of radius
r centered at the origin, and set Xr = % Yr +« By Thoorem {IB:&IO),
for large r, XP = [Yi,...,yi} consists of k closed curves embed-
ded in 52(1) (which converge to a unique great circlo in Sz(l)
perpendicular to N(pj))' Consequently, if C. 1is a solid cylinder
of radius = having as axis the straight line generated by (1,0,0),
then M divides Cr into two comnnected open sets. Furthermore,

Mn acr is the union of k disjoint closed curves, Since M is
oriented, the consecutive curves of M N BCP have opposite orienta-

tions. Consequently,

t =t if k is even, and
o 1

{1.7)
|t°-t1| = 1 if k dis odd,.

In the last case, {exchanging z by -z, if necessary) we may

always assume that

(1.8) t,*l = t,, when k is odd.

Ty

w$

EE
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The function 1 in the Weivrstrass representation off M musti have
poles at a4 arnd hm , which musti have order two according to (III24),
and zeroes at the points whore g has poles. Furthermore, the order
of such zerves must be two timos the order of the corresponding poles.
Thus,

to

by
(l.‘_)) (z-a‘_])2 HL (z-hm)z .

n
]
e
\
—
japp—

From this, we obtain

@, = (PQ—Qz)dzferz-aj)zrﬂz-hm)z,
(1.10) a, = i(p2+q2)dz/éﬂtz-aj)ETkz_bm)z.
a, = rqQ dz/n(z-aj):}”(z-—bm)z .

From (1.3) above it follows that P(aj) = Q(aJ) and P(hm) = -Q(hm).

Thus,

m .
P-Q = Gﬂ(z-aj) 1,
(1.11)

n
P+q = U(z-1) "

where m, 2 1, m =1, G(aJ) % 0, U(bm) A 0, l[(aj) A0 and

”(bm) ?‘ o, for 1 j< to s 1l £ mx 't:1 . Since the degree of @
is k-1, we have that P-Q and P+Q have k-1 zeroces. Therefore,

(r.12) dee(a) + EmJ. = deg{H) + In_ = k-1.

Substitution of (1.11) into (1.10} gives
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-

m

- n
1 . 2
a, =3 G”H(T..—il..]) J TT( ’L—‘J"l) " dr,
. 2m -2 Mn -2
G (z-a ]) ] Hzﬂ( z-l)m) "
1.13 &, =7 o + - m z
(1-13) I TP [omn )
m i
2 2m -2 o n_ -
1 8 T 2w ) A BT z-1 ) m
= J ne
gj = = + dz .

A H-(z—hm)"Z T 7.-;1.J)2

Since each of such a [orm does not have real periods, il lollows that

s2m . =2 2n -2

@THzma ) d HT(z=b ) ™
] dz and PO L .

W(z—lam)z U(z—u.j):"

(1.14)

do not have real periods. We will need the fFollowing

n P
m -
(1.15) LEMMA, 1f [ (z-cj) Jag /7 11 (z—dm)d, with ¢, £ d_ for
=1 mn=1

each j and m does not have periods, then

for each i = 1,2,444,0,

Proof of the lemma: TIf the given torms have no periods, then they

are cxact and hence, for each i = 1,...,n, we have

T (Z-nJ)mJ
1l J=1
dz 3] .
T (emd )"~

m=1
m# 1 vmd
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n mJ
(d.-c.)
(Ed-c._rd.-d)'
i m

P 2 J=1 7i 73 m=1l
11' (di'dm) g i

m=1

mﬁi

This proves the lemma,

Let us return to the proof of the theorem. Observe thuat
[ ej
G = cJT(z-AJ) V' and  H = cﬂj(z-gj) i

A straighforward computation of the periods of {1.14) using the

above lemma gives

] b omo- ty
(1.16) z E_JK_ + £ E_%;_ = I E—%B— N r = 1....,tl ’
r j=1 r j m=l r m

] tl nm-l L 1
(1.17) T + I —p—=a L —o—, 82 l,eaa,t .
a -BJ mml a& bm J=1 s aj e

ks

If k€ {3,4,5}, then, by {(1.7) and (1.8), we have that t, or
is equal to 2. If t_w 2 then, from (1.12) we obtain

t

+ I
J=

{1.18) Te =t ~-13=1,

(nJ-l) =k -1 -t o

J 1

Then, one of the two assertions hold:

(i) ‘JQ a 1 and ‘J = 0 for all J # i, » and n, = 1 for
all jj;
(11) ny; =2 and n, =1 forall | # Jg s and € = ¢ for
O
all j.

Thus, the equations (1.17} above are of the type

103
1 1 11
- a, -4, 4 “3'” - a,-a '
or
1 1 1 L
= P a b, S Ia ¢
apthy oAy Apmby oAy
These equalitios lead us to a contradiction. Thuw, tu # 2, Analo=-

gously, we have t, A 2. Therefore, ty =1 and t =0 or 1,
and so k¢ [3,4,5}. If k a 1,2, then M is a plune (k=1) or

the cateneid (k=t), as we have seen in (1IT 2.23).

The second theorem that we are going to prove is due to Meoks

{4) and is stated as follows:

(1.19) THEOREM, If M is diffeomorphic to a projoctive plane minusg

two points, it does noi exist a complete minimal immersion x: M - RJ

with total curvature 6.

o3
“~

Proof: Sset M =P" - [p ,p;}. Let m: M= 52(1)-[q1,~q1,q2,~q2] + M
be its oriented two-sheeted covering, If xi M -+ R3 is a complete
minimal immersion, so does the map X = xen. Lot g: Sz(l) + 52(1)
be its Gauss mapping extended to 32(1). We nmay choose suitable co-
ordinates in M such that two of ity four ends corresgpond to =z = 0
and % = a, where a ias positive real! number. Furthermore, we may
assume that the order of branching of ¢ at % = 0 is greater than
or equal to its order ot branching at =z = a. The other two ends of
M will be at z = w and z = -1/a. This is a consequence of the

next lemma,

Observe that the transformation I: € U {=} =+ ¢ y {=}, &given
by I(2) = «1/Z, corresponds to the antipodal mapping of Sz(l).
A necessary and sufficient condition for tlie immersion X to be
factored as X = xem, whore x: UcC P - RB, is that X(I(=z})} = %(«),

for each =z din U = “_I(U). If X is a minimal immersion, this

e

-

g

i



104

Last vondition is oquivalent to two coenditions aboud o oand g, as

stalblished Ln {he leomma below,

(l L20) LEMMA, Lot U fo}] - RJ he a ,rn,il!,ii'?u.]:__l!i_""“‘r‘fiU”‘i.l_]_l_‘J

t amd g be the functions associated to x by the Weierstoass re-

Q_t:_ﬂ_.ﬁl_ﬁé{l:iﬁ.f_tﬁl. Then, ;(I(z)) = ;(/) Tor all zooin i and only

if the following occurs:

a) g{1(2)) = I{s{z)) for vach =z in U, auwl

b) £{z) = ~T(1(+)) / (z&(=))".

Proof of the lemma: If x(I(z)) = %(») and w = I(x), then

3% 8 A% dl
#le) = 55 = 55 *(1(2)) = 3= 5~

= Loa(r(e)).
2
Using (II 1.18), we obtain

€(1(7)) = 8, (1(2))-16,(1(2)) = 3 (8, (2)116,(~) =

o

s ()-iog(a) (o (2)-1as(x))

5 (og ()1 ,(2)) =

and

8.,(1(2)) ANOI
D) =5 GO, 00 27 e e, ()

e = I{(2)).

gl

on the othor hand, if 1 and ¢ satisfly (a) arnd (l)), thoen it dis
easy 1o show that

o(2) = =5 #(1(2)) -

1 _—
Z
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1t tollows that, it w = 1I{z) = -I/‘—{:‘_.,

(1.:21) a, = d(n)de = J(T)d\:' = E; .

llance,

i{p) ip) -1}

¥(1{p}) = Re a,dz = He a,ds + Re a dx =
P, P, I(po)
p
= v+ Ro B, = v, * x(p).
Pa

Now, x{(p) - X{1(T{p))) = v  + x(1{e)) 2v o+ %(p). Thercfore,

v =0 and X(I(p)) = X{p), thus completing tho proot of the lemma.
Let us now Teturn toe the prool of the theorem. We know that

, z=®, z=4a and 2z = -1/a correspond to the ends of M.

We may rotate Sz(l) in such way tLthat {'.(0) =0, It Follows from

the previous lemma that g(=) = and that a(=1/a) = -1/e(a).

Furthermore, our choices were such that tho branching order of g ot

z=00 is greater than or equal to the branching order of g at  z=a.

We are (oing to mike use of the forms

2
(1.22 8 = % r g° de, B, = fodz and B,j = i dz .

These are related to the form a = (ml,a:,u,') = ¢(#)1z considered

above, by

(1.27) a, =B,"By a., = i(82+61) amd  a., = B‘j .

“

In tho sequel we will need the following

(1.204) LEMMA., If 81 or B, las a wero residue at 4 = 0, then

both B‘ and f, are exact. It B,} has o wero residue al 2z = O

ithen B is exanrt,

3
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Prool of the lemma: Assume that Res(al) = 0, Then,
A

4]
R a = Reasla, = Res(-ia. .
o3 1)z-0 ( £)z=0 = d’z:O
Since al and a2 do not have real residues at =z = O, then
(1.25) Res(al)z=o = Res(az)z=0 = nes(az)zno s 0.

It is now a consequence of (1,21) above that Res(al} = Res(a.,)
Zmw ~ =

= 0. From (1.,23), we then conclude that Res(ﬁl) = Roes(B.) =0,
Zam a1

Set A . = Resafa.} y J = 1,2, We know that each A is
J + Z=a J
purely imaginary. Let Y be a closed curve that is the boundary of
a domain D containing =z = 0 and z = a, positively oriented asy

the boundary of M-D and invariant by I, By using (1.25) we obtains

(1.26) A

o
n

Lo

[

J J J
Y 1(Y) ¥ ¥
where we have made use of (1.21) for the third equality. Hence, Aj
is real. Since Aj is purely imaginary,

(1.27) Aj=0.

It is now a consequence of (1.21) that

(1.28) Res(a )

a 0.
3 zaI{a)

Hence @, and a, are exact and, conseguently, Bl and 92 are
also exact. An analogous and even simpler argument can be applied to

the case of 33 y thus completing the proof of the lemma,

Returning to the proof of the theorem we are going to consider

the various alternatives for the functions f and g.

107

Cause 13 ¢ has w Zero or order ) oat v o= 0,
Since the total curvature of x is =o0m, then the total cur-
- . 2 .
vature of x is <-1211, and so ¢ couvers S (l) three times.
Hence, gl(z) = az?. Since g(1(#)) = T(el(«)), then |a| = 1. After

3

a rotatiomn of ;(ﬁ) around the z-axis of R~, we may assume that
g(z) = 23,

For M to be complete, f must have poles at 0, a and -1/a  or
order at least two {ccording to TII 2.4) and must satisly (b} of

Lemma {1.20) above. Thus,

£(4) = b2 (2-a)?(eed)?

where b is some purely imaginary constant. For this choice, obaerve

that B, bhas residue zero at =z = O. Then, by Lemuma (1.24) g, and

Bz are exact. On the other hand, a direct computation shows that

Res(ﬂz) = 2b(a-1/a). Therefore, a = 1. But then, Res(B.,} =
2wy " =]

= 3b/4. This is a contradiction with the fact that B, 1is exact.

Case 21 £ has a zerc of order 2 at 2z = O.

Then, g(z) = zgh(z). Since g covers each point of 52(1)
three times, then h has exactly one zero and one pole and, by con-

dition (a) of (1.z20),
2 -
&(z) = c2"(z+1/b)(z-b},
where ¢ = |b|. If a = b, then
2
)

£(z) = d/z°(z+l/a

1

ﬂz are exact. However, Res(Bz) 0 ~2a3d a 0, which is impossille,
o=

where d is purely imaginary, Since Res(al) = 0, then B and
z=0

oy

Y

s

re
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Hence a # b oand we obéain
r(z) = «i(z—h):"/zz('.’.-u)2(1+'l_/u):3 .

Apain, we hiave Res(Bl) = 0 and, consequently, Bl and B,
Z={) o
exact. Applying Lemma (1.15) to B, = % t(z)dz, wilh a, =0,

il
obtain a g 1 and h = a/(1-a"). The same lemma appliecd to B,

with d, = a, yields

i
ﬂ'j + A
a=h = —F5—
z2a+ 1

Using the value of b  already detlermined we have

a :lj+u
A =y B e
2 2
1-a da +1

4

This equation is equivalent to a + a‘a + 1 = 0, which has ne real

solution, Thus, we have arrived again to a contradiction,

Caso Iz g has a zero of order one at oz =z O

A similar analysis to the one in Case 2 guarantecs that

e(z) = cz(z+l/1-))(z+1/g)

(2-b)}(z=-t) '

whore ¢ = |hi,l. It a = b, then

£(2) = d(z~t) /2" (ae1/a)" .

Since Rcs(ﬁl) = 0, the forms @, and @, are exact. Applying
z=0

T.omma (t.]”)) to B, with Lli = 0 yields = —l/u and, hence,

has depree one, lusicad of degree three. This contradiction guaran-

teos that a # b, Tn a similar way we conclude that a ;! t. Thus,

(‘3('1.-1)) i( z-t):3 .
£ (z-a) " (zel/a)”

r{z)

aro
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where

(1.29) d = —an” /|

2
bt .

Since R(as(BL) = {0, Bl and 8., are exact. Application of
L= -

QO
Lemmia (1,15} te B, with d,
2 i

equal to 0, a and -1/.'1, yields

1 1 l-a
1s + ? = = '
2
('L '}ﬂ) a=b a=t 2a”y
. = e »
|a-bi [a-t!®  alea
Aabel | atel _ alsl
|ab+1|2 |ut+l|2 a” i

1 b = hl+_il)2 and t = 1:.“_+:i.t2 y then,

of the equalions (],.3()) vields

A stwly of the imaginary

b, -t
T I O
bl + ]12 1;1 + 1'2
b -t
(1.31) —— = T
(a-—bl) + bl (a-—t.l)’ £ by
ab,, -at,,
o = S = R .
{Leab }" « a™n (1+at )" + a”t]
Tt fullows that
a - 21_)1 _ a - 2tl
== L]
l)2 t2
{(1.32)
= .
1 + ;.db] B i_+ k.sl,l
al;,) - dLZ *

ihe

part



Thus,

(a-zhl)(1+Zatl) = (a-Etl)(l+2abl),
I'rom which we obtain
2
a”™(t;=b)) = b -t .

Therefore, t, = bl. Substitution of this equality in (1.732) above

give us b2 = -tz, and so
(1.33) t = b.

It followa from (1.29) that d = -d and so d is purely imaginary.

On the other hand, since 83 = fgdz has no real periods, and

Res(ﬂj) = c¢cd, then c¢d must be real, Since ¢ is real, then d
Z=

]
is real. Thus d = ¢, what is not possible.

Since all possibilities for g are covered by the cases 1, 2
and 3, and in each case we have arrived to a contradiction, we have
proved the theorem.

It is clear that Lemmas (1.20)} and (1.24%) above can be applied

3

to any immersion from the MBbius strip into R-. For example, they

can be used to prove the following

(1.3%) PROPOSITION, There exist a unique complete minimal immersion
3

of the MBbius strip into R with total curvature -67.

By unique we mean: unigue up to reparametrization of the

3

MObius strip and up to rigid motion of R”. One such example was ex-
hibited in (IV 2). Set M = el - {p,}] and let x: M -+ R? represent
another complete minimal immersion of the MBbius strip with total

curvature -6T, Let m: M = 82(1) - {4,-q} * M be the oriented two-

sheeted covering of M, The mapping X = xeW 4is alsoe minimal and

11

complete, Let f,g: Sz(l) + 52(1) represent the functions assoctiai=-
ed to X by the Welierstrass representation. From Lomma (1.20) we
have that g({I{z)) = I{z(«)). By a rotation of X(M) in R’ we may
assume that g has a zoro at one ol the ends of ﬁ and a pole at.
the other one. Changing the coordinates of ﬁ, we may also assumg
that g(0) = 0 and g(®) = w. Since the total curvature of x is
-6, 4 covers 32(1) three times, Let us now examine the various

possibilities for g.

Case 1; & has one zero of order 3 at =z = O,
In this case g{z) = azl, Since e(1{z)) = 1(s{=)), |a| = 1.
After a rotation of X{M) arocund the z-axis in RJ, we may assume
that
a(e) = 2.
Since M is complete, f nust have a pole at =z = G, whose order

must be at least two (according to (III 2.4)) and must also satisfy

(b) of Lemma (1.20). Thus,

f(z) = d/zl* '

where d dis purely imaginary. It follows that Gj = fg dz has a
nonzero real period around 2z = 0. Therefore, this case can not
0Cgur,

Case 2: & has one zero of order two at z = 0.

In this case g(z} = zzh(z), with h(0) £ 0, Since g
covers each point of 52(1) three times, then h must have exactly

one zero and one poele. Furthermore, by (a) of (1.20), we have

g(z) = cz°(z+1/3)/(a-a),

where ¢ = |a| # 0. By a rotation of X(M) around the z-axis in R-,

K t

.

Y
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Comay assume tht a is oa positive real namber,  Sinee M is com- TL tollows thal at+th = O arut dc(ah+1/ul)) = 0. This last equality
oty 1 wus L hiave o pole alt z = 0, urthermore, 1 mus L hve Baolids only QF d = 0 o e = 9, Lhitt can nol oceier.
re ol ordoirr two ail voo= iy and mmst o salisly (h) ol Lemm: (I..’.’U). Thus, the proposition is proved.

TN

r{z) = d(-/.—fl):')/z“ ,

lere 4 is purely imaginary. A simple computation shows that
':a(a,i) o = d(l—a"). Since (:l.,j has no real periods, then a = 1,
L=

e functions 1 and ¢ above glve rise to the example already

chibited in {IV 2).

wse 3 ¢ has ene zero ol order one at =z = 0,

In this case we obLtain

() oq Lzrl a){z+e1/B
£ ' z=a}{a-b '

wre |c¢| = |ab]|. The function f must have zeroes of orler two at
=a and z="b and a pole at 2 = 0. From Lemma (1.20), it fol-

>wa that
. g 2,4
1(z) = d{z-a) " (z-v)" /2",

2.2

- a2 -
here d = =-dc“/a3 b . Observe ihat, since M has only two ends, then

1.26) can be applied with Y(t) = elt, 0 tx 2, to obtain
es(p j) = 0, 1 £ j< 3. A direct computation of the residues
3=

0

ivo

- - - 22a - -
RUS(B]) uztl(ai-b)/u b = - al{a+h),
A

(8]

E: ~d{a+by,
Roa(B,) = -{asw)

d(:(ab +-’_'l'-;-— (a+|J) + (é+-|;)).

ROS(BJ}Zno ab
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