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1 Survey of the main theorems

1.1 Introduction

In recent years there has heen great progress in the theory of properly em-
bedded periodic minimal surfaces in R®. In this period there has been a
simultancous and balanced development of global thecretical results with
the construction of rich collections of examples satisfying the hypotheses of
the new theorems. Also, in this period, some of these special surfaces have
been rediscovered by physical scientists, who have used them to model the
geometry of liquid crystals and surface interfaces in microemulsions of block
copolymers (see [2] and Section 10 of [44]).

This paper is based on my lectures at the geometry conference at Luminy
in July 1989. It will cover the main theoretical results in this subject as well
as the related technical tools that are used in proving the main theorems.
A majority of the new theorems and examples can be found in the work
of Callahan-Hoffrnan-Meeks [6, 7|, Frohman [16], Frohman-Meeks [18, 19],
Hoffman-Mecks [27, 31], Hass-Piits-Rubenstein [23], Karcher [37, 39, 40],
Karcher-Pitts [41], Meeks [44] and Meeks-Rosenberg [49, 50, 51}. Except for
one new theorem, which will be explained in the next paragraph, the material
in the present paper can be found in the above papers.

The only really new result that appears in this paper is Theorem 5.2 in
Section 5.2. This theorem states that a properly embedded minimal surface
in T xR, T a flat two-torus, can have only a finite number of ends. The
main application of this result is to give a slight improvement of the finite
total curvature theorem of Meeks and Rosenberg for doubly-periodic minimal

surfaces.

1.2 The finite total curvature theorem of Meeks and
Rosenberg and applications

In this section | shall discuss a surprising relationship between the topology of
a property embedded periodic minimal surface in R* and its global geometry.
We shall call & minimal surface periodic if it is connected and invariant under
a discrete group G of isometries that acts freely on R®. We will analyze these
surfaces by studying their quotient surfaces in R*/G.

Recall that a surface has finite topologyif it is homeomorphic to a closed

surface with a finite number of points removed. The main theorem in [49] is:

Theorem 1.1 A properly embedded minimal surface in a complete nonsim-
ply connected flat three-manifold has finite total curvature if and only if it
has finite topology.

When the flat manifold is R? the existence of the helicoid {which has
finite topology and infinite total curvature) demonstrates that the condition
that N be nonsimply connected is a necessary one. Theorem 1.1 has impor-
tant topological and analytical consequences. One topological consequence
is that a properly embedded orientable minimal surface of finite topology in
an orientable flat nonsimply connected three-manifold always has an even
number of ends or it is a plane (see Theorom 8 in {49]).

A theorem of Huber [34] states that a complete Riemannian surface with
nonpositive Gaussian curvalure whose total curviture is finite must be con-

formally diffeomorphic to a closed Riemann surface punctured in a finite

number of points. Meeks and Rosenberg [49] proved that a complete mini-

mal surface of finite total curvature in a flat three-manifold can be described
in terms of meromorphic data on its conformal compactification. They went
on to exploit these analytic conditions to prove the following uniqueness the-

OTelm.



Theorem 1.2 The plane and the helicoid are the only properly embedded

simply connected minimal surfaces in R® with infinite symmetry group.

Earlier in {51] Meeks and Rosenberg proved Theorem 1.1 in the case where
the flat three-manifold N was isometric to the product T x R where T is some
flat torus. In fact they proved that a properly embedded minimal surface
M in T x R has finite total curvature C(M) = 2xx(M). It follows from
the classification of flat three-manifolds that a flat, noncompact, nonsimply-
connected three-manifold is finitely covered by T x R or by R*/ Sy where Sy is
the right hand screw motion obtained by rotation around the positive z3-axis
by # followed by a nontrivial translation along the zj-axis. Thus, to prove
Theorem 1.1, it remained to consider only the case where the manifold V is
isometric to R*/S, for some 4, 0 < ¢ < n. However, the proof of Theorem 1.1
in [49] does not actually depend on the previous theorem in the special case
of TxR.

In Section 5 we shall prove that a properly embedded minimal surface
M C T xR has a finite number of ends even when it has infinite topological
type. This result together with Theorem 1.1 shows that such an A has finite
total curvature if and only if it has finite genus.

We now describe the geometry of the annular ends of M C T x R. Sup-
pose A C T xR is a properly embedded minimal annulus with one compact
boundary component and A finite total curvature. In this case 4 is asymp-
totic to a flat annulus in T x R. This asymptotic behavior of A has important
topological and geomeirical consequences for a properly embedded minimal
surface of finite genus in T? x R, which we now describe. We begin with the

following definition.

Definition 1.1 T x R has ¢ commensurable lattice if T x R = R*/A and

A conlains two linearly independent vectors of equal length.

Theorem 1.3 Suppose M C T x R is a properly embedded minimal surface
of finite topological lype thal is not flat. Then:

1. If M is orientable, then M separates T x R. In this case the number of
top ends of M, as well as the number of boltom ends of M, is even, In

particular, M has af least four ends.

o

If M is nonorientable, then the number of top ends, as well as the
bottom ends, is odd. In particular, whether M is orientable or nonori-

entable, the number of ends of M is even.

3. The top ends of M are parcllel to the bottom ends of M if and only if
the subgroup of Hy(T x R) generated by the loops on the ends of M is
eyclic. If the ends of M are parullel, then the number of top ends of
M equals the number of botiom ends. In particular, by part 1, if M is
orientable and has parallel ends, then the number of ends is a multiple

of four,

4. If the ends of M are not parallel, then they are vortical and T x R has

a commensurable lattice.

The next theorem gives necessary conditions for a given doubly-periodic
wminimal surface to have nonparallel ends, which by part 4 of Theorem 1.3

forces the ambient space to have a commensurable lattice.

Theorem 1.4 Suppose M C T x R 1s a properly embedded minimal surface
of finite topological type that is not flat. Then the lop ends of M are not
parallel to the bottom ends of M if 1, 2 or 8 holds:

1. M is orientable and the number of ends is not a mulliple of four.

2. M is a planar domain.

s

e

o



3. 2 (A1) is odd.

Mecks and Rosenberg [51] also study the rigidity of donbly-periodic min-

imal surfaces.

Theorem 1.5 (Rigidity Theorem) Suppose fi M -+ R® iz o connected
properly embedded doubly-perindic minirmal surface. If F: M — H* is gnother
isomelric minimal immersion of M, then F = Jo f where I is an isomelry of
1. In particular, intrinsic isomeiries of a properly embedded doubly-periodic

B . . - 3
minimal surface exiend lo isometries of .

Theorem 1.5 fails to hold for singly-periodic minimal surfaces in fi? since
it fails to hold for the lheticoid. llowever, under the assumption that the

quotient surface has finite topology, the last statement of Theorem 1.5 can

be gencralized. Mare precisely,

Theorem 1.8 ([44]) Let M be a conncected, properly embedded, minimal
surface in R?, invarian! under an infinite diserete group G of isomciries of
H3. If M/( has finite lopology, then every isomelry of M extends to an

isometry of 2.

Meeks and Rosenberg, [49] also gave the following classification of the
asymptotic geometry of the annular ends of the surfaces described in Theo-
rem 1.1. As shown by work in |6, 7, 38, 41], every 7/ S, has many examples

wilh each possible end type.

Theorem 1.T An annular end of a properly embedded minimal surface of
finite topology in R*/ S, is esymplotic to a plane, a flat vertical annulus, or
to an end of a helicoid (with horizontal limil tangent plane). If ¢ is nonzero
and the end is asymptotic to a plane, then the plane is horizontal. If 8 is

irrational, then the end is nol asymplolic to a flat vertical annulus.

The tolal curvature of minimal surfaces of finite topolory in N = HY/S,
can be computed in terms of the winding numbers of its annular ends, Sup-
pose A is the image of a proper embedding of the punctured disk B* in N.
Let v be the geodesic representing the image of the za-axis in N. After re-
moving a compact neighborhood of 4, we may assume that A is disjoint
from the e-tubular neighborhood T of ¢ with boundary torus T, The torus
is ohtained as a quotient by 5p of the flat cylinder ¢ of distance ¢ from the
ry-axis, A basis for m (A7) is obtained from the quoticnt « of the oriented
circle ¢ M R? and the quotient f of the oriented right handed helical arc of
least-length on C joining a point p with Se(p). The boundary curve of A is
homotopic in N — 4 to a unigue element of m(#T). Suppose §A is homo-
topic to na + mA. The winding number of the end of A is then defined to
be 127 -n 4 m- 8. I M is a complete embedded minimal surface of finite
total curvature in R3/S,, then define the total winding number of M to be
tie sum of the winding numbers of the ends of Af. We let W{Al) denote the

total winding number of M.

Theorem 1.8 ([49]) If M is a properly embedded minimal surface of finite
topological lype in R*/8;, then the total curvature of M is

C(M) =2x( (M) - WA
When the ends are asymptotic to flat verticel annuli, this formuly yiclds
(M) = 2z3(M). When there are k planar ends, C{M) = 2r{r (M) - k).
1.3 Existence and global properties of singly periodic
minimal surfaces with more than one end

In the special case of Theorem 1.8 where the lifted surface in R3 has an infinite
number of ends, Callakan, Ioffinan and Meeks [6] proved earlier that M has

finite total curvature, it has k plarar ends and C(A) = 2=( (M) - k).



The first examples of periodic minimal surfaces in B? with an infinjte
number of ends were found by Riemann. Riemann [69) classified all minimal
surfaces that can be expressed as a union of round circles in parallel planes.
He proved that there exists a one-parameter family M,, t € (0,00), of singly-
periodic minimal surfaces with the following property: Up to rigid motion
and homothety, every minimal surface expressible as a union of circles in
parzllel planes is either a subset of some M, or a subset of the catencid. It
is immediate that M, are planar domains (homeomorphic to a subset of the
plane) with an infinite number of annular ends and two limit ends. Callalan,

Hoffman and Meeks have been able to generalize these fascinating surfaces

(7).

Theorem 1.9 For every positive integer k there ezists a properly embedded

minimal surface My, with the following properties:
1. M, has an infinite number of annular ends.

2. M, is invariant under the group of translations T generated by T: & s
& +(0,0,2).

3. M,/T has genus 2k + 1 and two ends.

4. The symmetry group of My/T has order 8(k + 1).

5. Reflection in the plane {z3 =n+ }},n € 1, is a symmelry of M,.
6. My/T has finite total curvature —{ir(2k + 2).

7. All the ends of M, are flat; they are asymplotic to the planes

ca=n,nel.

8 Mun{zy = n},n € Z, consists of k + 1 equally spaced straight lines
meeling at (0,0, n).

9. Mini{zy=c}, cg Z is a simple closed curve.

10. The subgroup R of the symmetry group of M, consisting of rolalions
aboul the y-azis has order k-1 and is generate] by rotalion by2nf(k +

1).

11. My is symmelric under reflection through the k + 1 vertical planes con-

taining the z3-azis and bisecting the lines of property 8.

12. The full symmetry group of M, is generaled by T, R, one of the reflec-
tions in 5., rotation aboul one of the lines in 8., and reflection through

one of the planes in 11,

Recently, Callahan, Hoffman and Meeks [6] have developed a theory
to deal with existence and global properties of propesly embedded singly-
periodic minimil surfaces with an infinite number of ends. In particular they
prove that every N = R*/S,, 8y a screw motion, admits for every odd pos-
itive integer k greater than I, a properly embedded minimal surface M.(6)
of genus k with two ends, each end asymptotic to a haorizontal plane in N,
The examples M,{6) are constructed by “twisting” the examples M, in The-
orent 1.9 by an angle & around the z3-axis.

Callahan, Hoffman and Meeks also study the global geometry of periodic
winimal surfaces with an infizite number of ends. Before stating their main
structure theorem, we recall the definition in [6] of a limit tangent plane.
Suppose M is a propetly embedded minimal surface in R* and ¥ is a properly
embedded noncompact orientable minimal surface of finite total curvature,
contained in the closure of one of the con.ponents of R* -- 3{, and such that
0% is compact and contained in M. Since £ is embedded and has finite
total curvature, il has a finite number of planar and catenoid iype ends

that are disjoint and parallel; the ends of £ have the same limit tangent

10
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plane at infinity. This tangent plane passing through the origin is called a
{imit tangent planc of M. When M has more than one end, it is shown in
Theorem 5 of [G] that M has a limit tangent plane and this plane is unique,
llence, when M has more than one end, we can speak of the limit tangent
plane of M.

Theorem 1.10 (Structure Theorem [8]) Suppose M is a properly em-
bedded minimal surfuce in W with infinite symmetry group and more than
one end. Then cither M is a catenoid or else M possesses the following

properties:

1. Sym(M) contains an infinite, cyclic subgroup T of finite indez, gener.

ated by a serew motion T

2. There erists a plane P, parallel to the imil langent plane of M, whose

intersection with M consists of a finite number of simple closed curves.

3. If the screw motion T has nontrivial rotational part, the limit tangent

plane of M is orthogonal lo the azis of T'.

Remark 1.1 [t should be pointed out that if T is a pure translation, the
plane P in property 2 of the thecorcmn is not necessarily orthogonal to the
direction of T. For erample, the aris of T in Ricmann’s example is nof

orthoyonal to the assoctated plane.
An immediate consequence of part 1 of the above structure theorem 1s:

Corollary 1.1 A doubly-periodic minimal surface in R* has one end.

11

1.4 Thetopological uniqueness of complete one-ended
minimal surfaces and Heegaard surface in R3

Frohman and Meeks {19] proved two fundamental theorems on the topological
uniqueness of certain surfaces in R2. The first of these theorems, which will
depend on the second theorem, shows that a properly embedded minimal

surface in R® with one end is unknotted. Mote precisely,

Thearem 1.11 Two properly embedded one-ended minimal surfaces in R

of the same genus are ambiently tsotopic.

Earlier Meeks [47] proved Theorern 1.11 in the case of finite genus. In
this case the only known examples are the plane and the helicoid. However,
the collection of properly embedded minimal surfaces of infinite genus and
one end is extremely rich. In fact, except for the one-periodic examples of
Riemann [69] (also see {7] for a description and computer graphics image
of one of these surfaces) and the recent one-periodic examples of Callahan,
Hoflinan, and Meeks [6, 7], all known examples of infinite genus properly
embedded minimal surfaces in R® have one end. One reason for this is that
most classical examples of these surfaces are doubly-periodic (i.e., they are
invariant under translation in at least two independent directions) and in
this case, Corollary 1.1 given above implies that the surface has one end and
infinite genus when it is not a plane. Their result and ‘Theorem 1.11 have

the following corollary.

Corollary 1.2 Any twe properly embedded nonplanar minimal surfaces in
R? that are invariand under af least two linecarly independent translations are

ambiently isotopic.

Fssential in understanding the uniqueness theorems in this paper is the
concept of a Heegaard surface in a noncompact three manifold, which gen-

eralizes the usual notion of a Heegaard surface A in a closed 3-manifold

]’1



N3 Recall that M is called a Heegaard surface if it separates N3 into two
genus-g handlebodies where g is the genus of M. (A handlebody of genus
g is also frequently referred to in the literature as a solid g-holed torus, a
g-holed doughnut or a pretzel.) Every closed three-manifold N® contains a
Heegaard surface and so it can be constructed by glueing two handlebodies
together along their boundary (see {24] for details).

Noncompact three-manifolds such as R? fail to have compact Heegaard
surfaces. However, there is a natural notion of Heegaard surface for these
manifolds where the surface is allowed to be noncompact. We say that a
properly embedded, one-ended surface M is a Heegaard surface in R? if the
closures of each of the two components of R*— M are one-ended handlebodies.
This definition of course depends on the definition of a one-ended handlebody
which we now give. A one-ended handlebody of genus g, 0 < g < o0, is a
three-manifold with boundary that is diffeomorphic to the submanifold of R?
obtained by attaching, in a proper manner, g trivial 1-handles to the closed
lower halfspace H in R*, When g = oo, this attaching of handles on H can
be performed on neighborhoods of the integer points on the z-axis contained

in 3H to obtain a one-periodic Heegaard surface in R® (see Figure 1).

PO rIrrrryrYys
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Figure 1:

13

The second main theorem of Frohman and Meeks is

Theorem 1.12 Heegaard surfaces of the same genus in RB® are ambiently
isotopic. Equivalently, given two diffeomorphic Heegaard surfaces in R®, there

exists a diffeomorphism of R® that takes one surface to the other surface,

Frohman and Meeks prove that a properly embedded one-ended minimal
surface in R® is a Heegaard surface. This result, together with Theotem 1.12,
proves Theorem 1.11.

We now wish to put Theorems 1.11 and 1.12 in historical perspective.
First Waldhausen [82] proved the topological uniqueness of Heegaard surfaces
in the unit three-sphere 5* ¢ R*. Later Lawson [43], using an argument
of Frankel [14], proved that two closed minimal surfaces of genus g in 52
are Heegaard surfaces and hence isotopic by Waldhausen’s theorem. He
was able to prove this same result whenever $* was endowed with a metric
of positive Ricci curvature. Mecks [47] generalized Lawson’s argnment to
the nonnegative Ricci curvature case. Finally, Meeks, Simon and Yau [52]
proved that two diffeomorphic closed minimal surfaces in §? endowed with
a metric of nonnegalive scalar curvature are isotopic in $*. Meeks [47] also
proved some related topological nniqueness theorems for compact minimal
surfaces with boundary in R®. More recently, Meeks and You [54] have
proven a topological uniqueness result for properly embedded surfaces that
is closely related to Theerem 1.11. Their main theorem states that two
[ roper diffeomorphic minimal surfaces in R* of finite topology are ambiently

isotopic.

14
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2 Related conjectures and unsolved prob-
lems

We first discuss some related questions for properly embedded minimal sur-

faces in R? of finite Lopology.

Question 2.1 Is the helicoid the only properly embedded rinimal surface in
R® with finite topology but infinile total curvature?

Question 2.2 What are the possible topological types for properly embedded

minimal surfaces in B¢

The collection of properly embedded minimal surfaces of finite topology
in B? is very rich as demonstrated by the work in (5, 9, 28, 30, 32, 33, 64].
As Question 2.1 suggests, all of the new examples have finite total curvature.
The finite total curvature property of a complete minimal sutface f: Af —» R?
has deep analytic and conformal consequences. In particular it follows from
the work of Osserman [64, 66| that M is conformally diffeomorphic to a closed
Riemann surface M punctured a finite number of points and the coordinates
of f(A) can be recovered analytically from a meromorphic 1-form on M and
a meromorphic function §: M — C U {o0}. Hete, g is the extension to *
of the stereographic projection of the Gauss map of f(M). (See Section 3.6
for this representation.) When f(M) is an erubedded surface, this analytic
representation of f implies each end of f(Af) is asymplotic to a catenoid end
or to a plane [77].

To understand Question 2.1, it is necessary to understand the geometry
of annular ends' of a properly embedded minimal surface in H*. When Af
has finite topology, all of its ends are annular. It was conjectured by Hoffinan

and Meeks that:

'An annular end of a sutface M is a proper differentiable embedding of the punctured
disk D* = {z e C |0 < |:] < 1} into M.

Conjecture 2.1 Suppose M ¢ R’ is a properly embedded minimal surface

with at least 2 ends. Then every annular end of Ml has finile total curvature.

It would follow from Conjecture 2.1 that a properly embedded minimal
surface with at least two ends and with finite topology has finite total cur-
vature. Recently Hoffman and Meeks [27] proved that a properly embedded
minimal surface in R* can have at most two ends with infinite total curva-
ture. Thus, to prove Conjecture 2.1, it remains to prove that the remaining
two ends alse have finite total curvaiure.

A more specific question related to Question 2.1 and Conjecture 2.1 is

the following:

Question 2.3 Suppose M is a properly embedded minimal surface of genus
zero. Is M a plane, a catenoid, the helicoid or is il one of Riemann's one-

periodic ezamples?
For periodic minimal surfaces we conjecture

Conjecture 2.2 Question 2.9 has an affirmative answer when the minimal

surfece has an infinite symmetry group.

Now consider a properly embedded minimal planar domain Af in T x R.
It follows from: the discussion following the statement of Theorem 1.2 that
A7 has a finite number of ends and hence has finite total curvature. Part 4
of Theorem 1.3 gives still further informatjon on M; namely, the ends of M

are vertical and the lattice of T is commensurable. For even n, n > 4, one

" cant choose appropriate sublattices L, of the lattice for a Scherk’s douhly-

periodic minimal surface § C R? 5o that §/L, isa properly embedded genus
0 minimal sutlace with n ends in R*/L, = T, x R. Mecks and Rosenberg

[51] proved that a properly embedded minimal surface Af of genus O and 4

16



ends in T x R Lifts to a Scherk surface and F. Wei (personal communication)
has shown the similar result when Af has 6 ends. These results motivate the

following

Conjecture 2.3 A properly embedded minimal surface of genus 0 in T x R
lifts to a Scherk surface in R,

The rigidity results for periodic minimal surfaces given in Theorems 1.5

and 1.6 almost certainly can be improved. We conjecture

Conjecture 2.4 If f: M — R® is a properly embedded, nonsimply connected,
minimal surface, then any other isometric minimal immersion of M in R® is

congruent to f.

Conjecture 2.5 The symmeiry group of a properly embedded minimal sur-

Jace in R? is equal to its isometry group.

We note that Conjecture 2.4 was proved in the special case M has more
than one end [8].

For the upcoming discussion it is important to have a precise definition
of an end of a noncompact surface. Intuitively, the ends of a noncompact
surface can be thought as the number of different ways to travel to infinity
on the surface. More precisely, an end of surface M is a set of equivalence
classes of proper arcs on the surface that describe the different ways to travel

to infinity. We now recall the definition of these equivalence classes.

Definition 2.1 Consider two proper arcs a,,a;: {00} — M. Then a, is
equivalent to az, wrillen &y = a3, if there ezists an ezhaustion My C Al C

. of M by smooth compact subdomains, such that for cvery i the noncom-
pact components of ay — Int( M) and a3 — Inl( M;) are contained in the same

component of M — Int(M,). The relation = is an equivalence relalion and

17

we denole by @ the equivalence class of a and we calli@ the end associated

to the proper atc a.

With the above definition of end, it is easy to check that a closed surface
punciured in n points has n ends, one corresponding to each removed point.
It follows that R? has one end and the cylinder has two ends. However, in the
general case, the structure of the ends of a noncompact surface can be much
mare complicated as occurs, for instance, in a surface obtained by removing
a Cantor set from a closed surface.

In order to work with the ends of a surface, it 1s useful to make some

further definitions.

Definition 2.2 A smooth proper subdomain & of M with 8E compact is said

to be an end-representative for an end & of M if a N L is noncompact.

Note that whether T is an end-representative of & does not depend on
the choice of representative in @.

On the basis of the topological uniqueness results for properly embedded
minimal surfaces discussed in Section 1.4 (see [19] and [54]), one might be
tempted to conjecture that two properly embedded diffeomorphic minimal
surfaces in R? are isotopic. We strongly believe this conjecture to be false
but a related conjecture to be true (see Conjecture 2.8 below). In order to
understand the statement this related conjecture we first state an ordering
theorem for the ends of a properly embedded minimal surface in R®. The
proof of the ordering theorem uses the existence and uniqueness of a limit
tangent plane for these surfaces as proved in [6]. A more precise statement

of the following theorem appears in Theorem 1.1 in [18].

Theorem 2.1 {Ordering Theorem) Suppose M is a properly embedded

minimal surface in R® with more than one end and whose limil tangent plane

18
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is the (ry,z3)-planc. Then the ends of M are naturally ordered by their

“height” over the (xy,r;)-plane.

Frohman and Meeks make three fundamental conjectures concerning the

topology of properly embedded minimnal surfaces with more than one end.

Conjecture 2.8 Suppose M, and M, sa:isfy the hypotheses of M in Theo-
rem 2.1 and F:R® — R is a diffeomorphism such that F(M,) = M,. Then
F preserves or reverses the natural ordering of the ends of My end My, In
perticular, if M salisfies the hypotheses of Theorem 2.1 and F:R® — R® is
a diffeornorphism such that F(M) = M, then F preserves or reverses the
ordering of the ends of M.

Conjecture 2.7 The ordering of ends given in Theorem 2.1 is almost a well-
ordering in the sense that it is equivalent lo the ordering on a closed subset
S of the inlerval [0,1] with SN {0, 1) discrete.

Conjecture 2.8 Suppose M, and M; are lwo properly embedded minimal
surfaces with more than one end and horizonial limil tangent plane. A nec-
essary and sufficient condition for M, lo be isotopic to My is for there to
ezist a diffeomorphism f: My — M, that preserves or reverses the ordering

of the ends of these surfaces induced by their minimal embeddings.

Tt is important to note that Conjecture 2.7 implies that a properly em-
bedded minimal surface in H* can have at most two limit ends and the total
number of ends of the surface is countable. In particular, the validity of Con.
Jecture 2.7 would show that the surface obtained by taking € — {0,1} and
removing a closed discrete subset of points with limit points at 0,1, and x
can not, properly minimally embed in H?.

A necessary and sufficient condition for a propetly immersed niiniimal
annulus in R® with compact boundary to have finite total curvature is for it

to have quadratic area growth. More generally,
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Definition 2.3 An end & of a surface M in R* is said o have quadratic
arca growth if @ has an end-representative E such that the area of E in balls

of radius R is lcss than ¢cH? + K for some constants ¢ and K.

With this definition we can state the outstanding fundamental conjecture
concerning the asymptotic geometry of properly embedded minimal surfaces

in H® with more than one end that generalizes Conjecture 2.1 and 2.7,

Conjecture 2.9 Suppose M is a properly embedded minimal surfuce in R®
with more than one end and horizontu! limit langent plane and suppose @ is
an end of M. A necessary and sufficient condition for@ to not have quadratic
area growth is that it be @ limit end of M and it be a highest or lowest end
of M with respect to the the ordering given by the Ordering Theorem.

3 Technical tools

3.1 Schoen’s curvature estimates and global theorems
concerning stable minimal surfaces

Recall that a minimal surface is stable if for every compact subdomain A and
every nontrivial variation fixing #A, the second derivative of area is positive.
In [76] Schoen derived curvature estimates for stable minimal surfaces in
Hiemannian three-manifolds in termns of the distance to the boundary. These
curvature estimates play an important role in the proof of many of the main
theorems described in Section 1. In the case the ambient manifold is flat, as

is our case, Schoen’s curvature estimates can be described by

Theorem 3.1 There ecrists a universal constant ¢ > 0 such i?’le following

holds. Suppose M is a stable orientable minimal surface in a flat orientable

three-manifold. Let d:Int{ M} -» R be the intrinsic distance function to the
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boundary of M and K:Int(AM[) — R be the Gaussian curvelure, Then
¢
K(p)| € ——.
Kl < 5o
An immediate corollary to Theorem 3.1 is that a complete, stable, ori-

entable, minimal surface in a flat three-manifold is totally geodesic. This
result was proved eatlier and independently by do Carmo and Peng [L0] and
by Fischer-Colbrie and Schoen [13] in a more general setting. Fischer-Colbrie

(12| generalized her earlier work with Schoen to prove

Theorem 3.2 Suppose M is a compleie orientable mininal surface in a flat
orientable three-manifold. Then the indez of M with respect lo the Jacobi
operator (or stability operator) on M is finite if and only if M has finile

total curvature.

Since a complete minimal surface M of fiuite index is stable after removing
a compact subset of M, the above theorem follows from the next thevrem

(see [12] and [54].

Theorem 3.3 Suppose M is a stable minimal surface with smooth compact
boundary in a flat orientable three-manifold. If M is complete as a met-
ric space in the induced intrinsic distance function, then M has finile total

curvalure,

3.2 Existence of least-area surfaces

In the classical Plateau problem one considers a smooth simple closed curve
7 in R® and asks: Does v bound a map of a disk of least area? This problem
was solved independently by Douglas and Rado. For the Douglas’ solution
one produces a map of the unit disk in C that minimizes energy and bounds

7; such an energy minimizing map is conformal and least-area. Meeks and
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Yau [55, 6] gave the following natural condition for the Douglas solution be
etbedded: The Douglas solution is one-lo-one when ~ is extrernal, i.e., the
least-area disk is embedded when 4 lies on the boundary of its convex hull.
This result is a consequence of a more general result that holds in certain
Ricmannian three-manifolds with boundary and wses the generahization, due
Lo Morrey {57}, that if 7y is a simple closed curve in a homogenously regular
Ricmannian n-manifold N and 7 is homotopically trivial in N, then - is the
boundary of a least-energy map of the unit disk (and hence a least-area disk}).
This solution to Plateau’s problem is called the Morrey solution. Based on
Morrey's work and the proof of Dehn’s lemma in three-manifold theory [24],
Meeks and Yau generalized their embeddedness theorem for extremal ¥ in
H*® to more general Riemannian three-manifolds. Before stating their result

we describe the notion of a good barrier.

Definition 3.1 Suppose N is a compact Riemannian three-manifold that
embeds in the interior of another Riemannian three-manifold. Suppose that
ON is geodesically convex or 8N admits a triangulation by smooth two-
simplices with inlerior angles less than or equal to w and such that the mean
curvature of these {wo-simplices with respect to the oufward pointing normal
is nonnegative. If 3N satisfies these conditions, it is said to be a good barrier

for solving Plateau-type problems in N.

Theorem 3.4 ([55, 68]) Suppose N is a compact Riemannian three-manifold
and N is a good barrier for solving Plateau type problems in N. If v is a

sitiple closed curve in ON that is homotopically trivial in N, then:
1. v is the boundary of a least-energy map f: D — N

2. Every least-encrgy map f: I} — N with f(0D}) = 5 is onc-fo-one and

is e smooth immersion on Int( D).
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3. f is as reqular as v and f is an immersion on D if v is (7.

4. If fu, f2: D — N are two least-energy maps, then
[t DN f2(Int{ DY) +# O implies that fy and f; differ by a conformal

reparamelrization of 1).

Suppose N is orientable and satisfies the hypotheses of Theorem 3.4 and
T is a smooth collection of pairwise disjoint simple closed curves in 8N and
I' is the boundary of an orientable two-chain in N, then geomelric measure
theory shows that I' is boundary of 2 smooth embedded least-area compact
surface where least-area means least-area with respect to all orientable two-
chains with boundary I'. Sitnilarly, if T is a Z;-boundary, it is the boundary
of a smooth embedded least-area compact surface. See [81] for these resulis.
If T' is the boundary of a map of a orientable surface into ¥ of genus k,
then T is the boundary of an embedded surface of genus at most & that is
least-area in its homotopy class, This follows from a theorem of D). Gabai
{20] that shows I' is the boundary of an incompzressible embedded surface ¥
of smallest genus and a theorem of Freedman, Hass and Scott [15] that states
there is a least-area embedded surface & with 8% = T whose inclusion map
induces the same map on fundamental groups as . The existence part of
the Freedman-Hass-Scott depends on the existence tesults Sachs-Uhlembeck
[72] or Schoen-Yau (78] .

We now describe one final minimization method that is also useful. When
T is the boundary of an embedded surface £ in N, one can minimize area
in the isotopy class of ¥ to obtain a stable minimal surface of possibly less
genus, This last minimization procedure can be found in [52] and is based

on the earlier work of [1].
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3.3 The barrier construction of Meeks-Yau and ex-
cellent exhaustions of surfaces

In this section we will be studying the geometry and topology of the closure
of the components of the complement of properly embedded minimal surfaces
in complete flat three-manifolds. These manifolds with boundary are almost-

complete in the following sense.

Definition 3.2 A Riemannian n-manifold with boundary is called almost-
complete if it is complete as a metric space with respect to the natural distance
function induced from the infimum the lengths of curves joining pairs of points

in the manifold.

Recall that a noncompact surface & in a Riemannian manifold N has least
arca if for any smooth compact subdomain A C I, A is a surface of least

arca in ¥ with boundary JA. The following lemmma and its proof appear in
[18].

Lemma 3.1 Suppose N is a connected, orientable, almost-complete RHieman-
nian three-menifold with more than one boundary component. If N has non-
negative mean curvature with respect to the outward pointing normal, then
N conlains a properly emledded, orientable, stable minimal surface. When

H,(N,7;) =0, this surface can be chosen o be least arca.

Proof. The main idea in the preoof of this lemma is taken from the proof of
a similar result in [52].

Suppose & and J; are two components of dM. Choose an arc § in N
that joius a point p € & with a point of &. Let &) © 5, C ... be a smooth

compact exhaustion of &, with p ¢ £, Theorem 1 in [56]) {together with

the general regnlarity theary of area-minimizing currents in {22] and [81])
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states that 6%, is the boundary of a least-area surface E; in N such that
¥, is homologous to fl,- with Z;-coefficients. Note that I; is orientable since
;U E; is a boundary in N,

Since the surface E; is area-minimizing in its relative homology class in
the interior of N, for any ball B C Int(¥), a simple replacement argument
using portions of @B shows that Area(B N L} < LArea(8B). Similarly, if B
is a smooth ball of geodesic radius ¢ centered at & point in 8N, then Area( BN
%) € Area(@B). These estimates show that the family {E;} has uniform
local area bounds. These area bounds are sufficient for applying the standard
compactness and regularity theorems [81] of geometric measure theory that
state that a subsequence ; of these surfaces converges smoothly on compact
subsets of N to a properly embedded stable sutface A, If Hy{N,Z;) = 0, then
E; is area minimizing and hence A is area minimizing. (The property that a
limit of area-minimizing surfaces is itself area-minimizing is well known and is
proved in a similar context in the last paragraph of the proof of Theorem 3.1
in {54].) Note that each of the sutfa:\cesl Z, has odd intersection number with
the arc § end so AN& £ @, which implies A is nonempty. This completes
the proof of the lemma. a

Definition 3.3 A smooth compact exhaeustion M; C My C -+ of M is
called good if for all i, each component of M — Iut{ M.} is noncompact and

has one boundary curve. It is called excellent if it is good and for all i, each

component of M — Int( M;) has either one end or an infinite number of ends.
The following lemma appears in [18]; it’s proof is straightforward.
Lemma 3.2 A noncompaci surface M has an ezcellent erhaustion.

The Jollowing is essentially contained in {54]. Its’ proof is facilitated by

the above lemma.
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Theorem 3.5 Suppose M is a properly embedded orientable mintmal surface
in a complete flat orientable three-manifold N with H(N,Z) = 0 and M is
not lolally geodesic. Then M separetes N into lwo components Ny, N;. If

M has more than one end, then,

1. There is a simple closed curve v on M that seperates M into two non-

compact components, each of which is unstable.
2. The curve 4 is not a Z3-boundary in Ny or in IV;.

8. If v is not homologous 1o zero mod 2 in N;, then v is boundary of a
noncompact properly embedded least-area surface & in N; with ZNM =

~+ and L has finile total curvature.

Proof. Choose an excellent exhaustion M; € M; C -+ of M where M,
is unstable. Since M — M, that has infinite total curvature, there exists a
compouent E of M — M, has infinite total curvature. Since E has infinite
total curvature it is unstable. Hence ¥ = OF separates M into two unstable
components M* and M-, By Corollary 3.1 in the next section, a properly
ewnbedded, ortentable, nontotally geodesic minimal surface in N separates
N into two components Ny, Nz, Since Hi(N,7;) = 0, elementary algebraic
topology implies 4 can not be homologous to zero mod 2 in both N, and N;.

It remains to show the existence of the least-area sutface L. Choose
a compact exhaustion By C F3 C --- of E and suppose v is not a Z;-
boundary in N;. Let I, be a least-area surface in N, with dE; = 3E;. Since
H3(N,,2;) = 6, £, separates N; and hence E; is orientable. The argument
in the proof of Lemma 3.1 shows that a subsequence of the T; converge to
a least-area orientable surface & C N, with 8% = 4. Since T is stable and
M* and M- are unstable, the maximum principle jmplies ¥ N M = 4. By
Theorem 3.3, X has finite total curvature, which completes the proof of the

theorem. 0
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3.4 The Strong Halfspace Theorem and the Convex
Hull Thecrem

Jorge and Xavier [36] answered the following question of Calabi: Clan a comn-
plete nonplanar minimal surface in B be contained in a halfspacc? They
proved thal there is such an example and, in fact, there is such an example
inaslab. Later, Rosenberg and Toubiana [70] proved that there exists a com-
plete minimally immersed annulus in R?, contained in an open slab, such that
the mapping into the open slab is proper. In R™*' 1 > 3, the n-dimensional
SO(n)-invariant catenoid is a properly embedded minimal hypersurface in
R"*!, contained in a slab. These results Jed to the general belief that there
existed properly immersed minimal surfaces in R? that were contained in a
halfspace. However in 1984 Meeks and Hoflman proved that a monplanar
properly immersed minimal surface in K cannot be contained in a hallspace.
Earlier work ol Meeks, Simon and Yau [52] showed that this result had the

following stronger consequence (see [31]):

Theorem 3.8 (Strong Halfspace Theorem) Two properly immersed min-

tmal surfaces must infersect urless they are paralic! planes. In pariicular, a

properly tmmersed minimal surface canno! lie in a halfspace.

Proof. We first show how to reduce the theorem to the special case of the
Halfspace Theorem: A properly immersed connecled minimal surface in H?
that is contained in a halfspace must be a plane.

Suppose for the moment that A, and AM; ate two properly embedded
disjoint minimal surfaces and neither M, or A; is a plane. Then M, U M,
separates R? into exactly three components where the closure N of one of
these components kas boundary M; U Afy. By Lemma 3.1, & contains a
properly embedded orientable stable minimal surface which must be a plane

by the results in [i0] or [13]. This implies M, and M, are contained in a
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halfspace. If A, and M; ate immersed and not embedded, there is a unique
component of H* — M, L) M; whose geodesic closure N contains portions of
both My and Af; inits boundary and 3N is a good barrier (see Definition 3.2
and note that we can relax the condition that ¥ be compact since R? is
homogenously regular). Since 8N is a good barrier, the proof of Lemma 3.1
works in this case to show that N contains a plane, which completes the
reduction to the case of the Halfspace Theorem.

We now give a proof of the Halfspace Theorem that is a slight variation
of the proof given in [31]. Without loss of generality we may assume that
Al is in the upper halfspace N determined by the (x,,z:)-plane R? = 9N,
dist(M,ON) =0 and M NN =D.

Let D, be the disk of radius ¢ in ? cenlered at the otigin. Suppose
dist{ Dy, dN) > ¢ and choose £ < ;. Let y denote the ciccle of height € over
dD;. The curves v U 8D, bound a stable cateuoid € with C; NN = 8D,
Furthermore it is clear that for ¢ close to 1, 4 U @12, is also the boundary
of a stable catenoid €, and the family ', varies continuously with ¢t. The
maximum principle shows that the interiors of the one-parameter family of
stable catenocids € are always disjoint from 9N for £ > 1 and for as Jong
as () is defined in N. It is clear that €, is defined for all ¢ > 1 and C,,
lies above 'y, when #; > {;. Since the "y are calenoids, they converge to a

noncompact totally geodesic surface C of height £ with 8¢ = +.
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Figure 2:

Let E be the flat disk with 8 E = . Then CyU E U D, bounds a compact
region X C N. Clearly, the regions R; coaverge to a slab of width ¢ that is
isometrically embedded in ¥ and one of its boundary planes is M. Hence, the

distance from M to 8NN is positive, a contradiction of our earlier assumption
that M N AN = 0 and dist(M,8N) = 0. 8

An immediate consequence of ihe Strong Halfspace Theorem is that a
nontotally geodesic embedded periodic minimal surface in R? is connected.

The following corollary is an immediate consequence of this observation.

Corollary 3.1 If M is a properly embedded, nontotally geodesic minimal
surface in a complete flat three-manifold N, then the induced map m(M) —

m(N) is onto. In particular, if M and N are both orientable, M separaies
N.

I follows from the Halfspace Theorem that the convex hull of a properly
immersed minimal surface in R? is a plane or it is R®, When the properly
immersed minimal surface is allowed to have compact boundary, the convex

hull of the surface is still rather special.
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Theorem 3.7 (Convex Hull Theorem [31]) Suppose M is a properly im-
mersed noncompact minimal hypersurface in R™ and 0M is compaet. Then
the convex hull H(M) is one of the following:

1. H(M) is a plane;

2. M(M) is a slab;

3. H(M) is a halfspace;
4. H(M) is R".

When n = 3, M intersecls each boundary component of H{M}).

3.5 Maximum principles at infinity

The usual maximum principle for minimal hypersurfaces implies rather eas-
ily that the distance between two proper disjoint minimal hypersurfaces
M, M; C R" can not obtain its minimum value at a pair (py,p;) € In¥{M,;) %
Int{ M;) uanless they are parallel hyperplanes. On the other hand, it may be
that dist{ M, M) is never obtained by a pair (p1,p:) € My X Mz as occurs
for example on the three-dimensional SO(3) invaziant “catenocid” C* in R*
whose convex hull is a slab and whose distance from the boundary of the slab
is zero. This behavior of course is not possible for properly immersed mini-
mal surfaces in R? as seen by the Strong Halfspace Theorem (Theorem 3.6).
Thus, one can view the Strong Halfspace Theorem as an example of a maxi-
mum principle at infinity. Rosenberg and Meeks [50] have given the following
useful generalization of the Strong Halfspace Theorent. (See [8] and [42] for

sowe less general versions of this theorem.)

Theorem 3.8 (Strong Maximum Principle at Infinity) Suppose M,

and M; are two disjoint properly immersed minimal surfaces with compact
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boundary in a complete flat three-manifold N. If My = dM; = B, then M,
and M, are flat. OQtherwise,

dist( My, My) = min{dist( My, 8M), dist( My, 8M,)}.

We briefly sketch the proof of the above maximum principle in the case
N = R*. Suppose it fails for two properly immersed minimal surfaces M, and
M, with compact boundary. 1f A, = GM; = , then the Strong Halfspace
Theoremn implies M, and M, are parallel planes, and so we may assume
that GM; # B. Since the minimum distance between M, and M, occurs
at infinity there exist pairs {(pi,qi) € M, x M; such thai dist(M,, M) =
lim; o |pi — qi]- Note that a subsequeace of the vectors {v; = p; — ¢}
converge 1o a vector v and the translated surface M, = M, + v is disjoint
from M, and dist( M, M,) = 0. Thus, to derive a contradiction we need anly
prove the special case where dist(My, M;) = 0.

Assume now that dist{ My, Mz) = 0. Then using M, U M, as a barrier,
we obtain (by a modification of the proof of Lemma 3.1) disjoint stable
orientable properly embedded minimal surfaces ¥ and £; in B? - (M, U 35;)
and with compact boundary that separate M, from M, in the sense that any
short arc that is far from the origin and joins a point of M; to a point of
My must intersecl £y and Y. Since X, and E; have finite total curvature
(Theorem 3.3), the ends of By and ¥; are asymptotic to planes or catenuvids
that are graphs. This reduces the problem to the special case of graphs where

one easily obtains a contradiction (see [50] for details}.

3.6 The Weicrstrass representation for periodic min-
imal surfaces of finite total curvature

In a series of papers Osserman [64, 65] proved many of the basic theorems

concerning complete orientable minimal surfaces f: M — H* with finite total
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curvature. Among other things, he showed that M is confermally diffeomor-
phic to a closed Riemann surface M punctured in a finite number of points,
the stereographic projection g: M — C U {o0} of the Gauss map is a mero-
morphic function that extends to a meromorphic function 7 M — CU {oc},
and, after a translation of a point py € M to the origin, there exists a holo-
ntorphic one-form 7 on M (that extends meromorphically to M) so that the

coordiuate functions of f can he expressed by

fir) = Re [* (1=, (14 i 20)] 0.

The above representation of M in the above formula is called the Weierstrass
representation of M.

Let G be a discrete group of translations of R? and M is a complete min-
imal surface in R® that is invatiant under translation by G in an orientation
preserving manner. Suppose the quotient surface f: M = M/G — R*/C
has finite total curvature. Then A is conformally diffeomorphic to a closed
Riemann surface (Huber's Theorem [34]), the steoreographic projection of
the Gauss map is well defined and, as in the case of 7, one has an analytic
representation of f as given in the above forinula.,

When M is a properly embedded minimal surface in R? invariant under
a serew motion symmetry §g, 0 < 8 < 2r, the Gauss map M = A[/Sy is
not well defined in R?/Ss. Since the Gauss map for A is not defined, it is
more dillicult to analyze the analytic and geometric behavior of M, especially
when this surface has finite total curvature. Still, when M has finite lotal
curvature, M is conformally diffcomorphic to a elosed Riemann surface AT
punctured in a finite sumber of points. In particular the ends of M are annuh
of finite total curvature. We now describe how Osserman’s resulls aud the
Weierstrass representation generalize for such M. This discassion is taken

from Section 3 in [49].
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Let A be a finite total curvature minimal annulus embedded in N =
R*/S,, where 0 < 8 < 2. We will derive meromorphic data on the disk that
parametrizes A, and describes its aymptotic behavior at infinity.

We take 55 to be a translation along the z;-axis followed by rotation by
8 about the rj-axis. Since A has finite total curvature, A is conformally the
punctured disk D*. We no longer have a single valued Gauss map gon A; gis
a multi-valued meromorphic map on D* whase values differ by multiplication
by A™, A = e***?. To see this, let E be a connected lifting of A, slit along a
radial segment (say 8 = 0), to R®. The Gaussian image of the normal vector
to E at p € F and the image of the normal vector to E at Sy(p), differ by
rotation about the z;-axis by 4. Hence, the stereographic projections of these
vectors on the sphere, differ by rotation by # in C, i.e., by multiplication by
A = enif,

Lifting g to the Riemann universal covering surface of D*, we have a
well defined meromorphic map g, on the half plane H = {z < 0}, satisfying
§(z + 2rmi) = A™g(z), for z € H. Then g = g(exp~1).

We wish to show that A has a limiting tangent plane at 00, Le., g extends
continuously to 0 (even though g is multi-valued). This will follow from the
fact that the area of the spherical image of g (i.e. a single valued branch of

g on the slit punctured disk D’) is finite (see Theorem 3.9 below).

Theorem 3.9 Let g be a mulli-valued meromorphic mapon D', g = gexp™!),

with §(z + 27 i) = Ag(z), for z ¢ H, and some A, |A| = 1. If Area(g( D))
is finite, then g eztends continuously to 0.

Now we shall use Theorem 3.9 to obtain a Weierstrass representation on
the disk D, for finite total curvature annuli 4 in N = R*/Ss. By Theorem 3.9,
the multi-valued g extends continuocusly to 0 and since the limiting value is

fixed by multiplication by A and A # 1, the limiting value is 0 or oo; so
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we can assume g{0) = 0. Write A = ¢*™* with 0 < ¢ < 1. Since glz +
2mi) = Ag(z), the map z7°g(z) is indeed single valued on D*. Furthermore,
z'7%¢(z) is bounded in a neighborhood of 0, hence g(z) = 2* *h(z) where
h is holomorphic in & neighborhood of 0. Hence, dg/g is a well defined
meromorphic one-form on D*, and 0 is & removable singularity. The multi-
valued g on D), is obtained from this form by g(z) = exp(f dg/g).

Notice that the third coordinate function X; is well defined on M. Define
the holomorphic one-form n = dX; + 1 * dX3. A straightforward and similar
argument proves that 5 extends meromorphically at 0.

We take as Weierstrass data on A the pair (dg/g, n); these forms are
meromorphic at the puncture and A is obtained from this data by the formula

g =exp([fdg/g),
X(z)=Rej (g-l—-l—, ig— %, 2) "
g g
In particular, we have:

Theorem 8.10 Let M be a complete finite total curvature minimal surface
in R¥/8y. Then there ezists a conformal compactification M of M, and
meromorphic forms (dg/g, n) on M, such that M is parametrized by

1 .
X(Z)=R8[(g+;,ig~3,2)n

e s ([ 5)
where g = exp -—.
d g

Remark 3.1 H. Karcher has given many new ezamples of such M with this
data [38].
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3.7 The sum of finite total curvature minimal sur-
faces

Let My, M; be finite total curvature complete nonplanar minimal surfaces
in R% with Gauss maps gi, g1- Let pryooo Py @1y.eny @ be the punctures
of My, M;, and ¥1,, M, the compactificd Riemann surfaces, If one fixes a
unit vector z € 5%, one can add (in R?) all points on M, and M, having 2 as
normal. As z varies over a domain in §2, this yields a minimal surface in i

(or a point). More precisely, one has the following [T1].

Theorem 3.11 For some subset W of 1{PiseyPa) Ugafqry.. o, qm), the
set

J‘J] + Arfg = {Ezngl(x];r + Eyeg;l(z)y l zE (Sz - W)}

15 a proper minimal surface in R®, or o point. In general My + My has branch

points.

Since M, + M; can be paramatrized by the sphere punctured at a finite
number of points (the normal to M, + A, at ﬂregl_l(t)z + Eveg;l(l)y is 1),
the total curvature of My + M, is —4x (or zero).

We denote by 5: 57 - W — M, + M, the natural conformal parametriza-
tion of M, + M; (or constant map, if M, + M; is a point). Ore can just as
well define this sum for unoriented normal lines. The result is a proper inin-
imal surface parametrized by the projective plane P? punctured in a finite
number of points [71]. Hence its total curvature is —27 or 0. Again denote
by §: 1'% — W — M, 4 A, the natural parameirization.

Since T x H is an abelian group under addition and the Gauss majyr is
invariant under translation. The sum M, +M; is well defined in T xR for non-
planar complete minimal surfaces My, M, C T x R of finite total curvalure,

The orientable sum has total curvature —4x (or0) and the nonoricntable sun

lias {otal curvature —2x (or 0), and we denote again the natural parametriza-
tion by g. Similarly, one could define for M, M in 5! x R? or 17 the sumn
M, + M; and 3g-

Definition 3.4 We define M @ M = M+ M

Note that M @ M makes sense in T x R,5'xR? or T3, and equals the
sel of points thai can be expressed as the sum of points on A with the same
normal vector. We also denote the natural parametrization by §. In [51]

Meeks and Rosenberg prove

Theorem 3.12 Let F: M —+ T x R be a connected properly immersed mini-

mal surface with finite (nonzero) total curvature. Then:

1. If M has parallel flat ends, then g is constant (flal means each end
converges to a flat cylinder).

2. If M is embedded and has nonparallel ends, then g is a Scherk’s surface

(orientable or nonorientable ).

Corollary 3.2 Suppose M is a properly embedded minimal surface of finite
topology in T x R.

L If T xR has a incommensurable lattice, then § is constant.

2 If M is an embedded minimal surface of genus one with four parallel
ends, then after a translation of A {so that a zero of Gaussian curva-
ture occurs at the origin) M is invariant under {he isometry p— —p.
Afler this translation, the order 2 points in the group { RE/A) x R are
the zeros of the Gaussian curvature of M. (e consider the identity
element to have order 2.} In this case M separates T x R into fwo

components that are isomelric.
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Theorem 3.12 as well as the definition of the sum surface M @ M for
minimal surfaces of finite total curvature, was motivated by earlier work of
Meeks [45} on minimal surfaces in a flat three torus T®. Meeks proved that
the sum map § for a closed minimal surface M C T? was constant and used
this result to prove that when M had genus 3, then it disconnected T? into
isometric pieces (see Section 4.1), The sum map is also useful for studying
surfaces of finite tolal curvature in R*/G where G is an infinite cyclic group
of translations. In particular, the sum map plays a fundamential role in the
proof of Theorem 1.7, which characterizes the asymptotic behavior of these

surfaces.

4 Triply-periodic minimal surfaces

4.1 The geometry of hyperelliptic minimal surfaces
and Abel’s Theorem

Many of the more intricate and beautiful examples of minimal surfaces in H®
have the additional property of being preserved by a group of three linearly
independent translations. During the middle of the nineteenth century, a
thorough investigation of triply-periodic minimal surfaces was carried out by
Schwarz [79]. By extending Plateau’s construction to polygonal curves and
then extending them by repeated reflection across the line boundaries, he
found an effective method for generating surfaces invariant under a lattice
L of translations. The resulting quolient surfaces in R*/L gave the firsi
examples of compact minimal surfaces in flat three-tori.

We will call 2 closed Riemann surface M periodic if it conformally mini-
mally iminerses in a flat three-torus T2, By lifting to the universal cover of
T3, these periodic surfaces become the proper triply-periodic minimal sur-

faces in R°.
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The compactness of a minimal surface M in T3 gives rise to restrictions
on the conformal type of M. Frequenily, these conformal restrictions give
nontrivial geometric information about the lifted minimal surface in H?. For

these reasons, we consider the following fundamental questions:

1. Which compact Riemann surfaces are periodic?

2. How does the conformal structure of a periodic surface influence its

geometry?

In this section, we study the geometry and conformal structure of these
periodic surfaces. The geometric tools of this investigation are the Gauss map
and the Gauss-Bonnet Theorem., Note that the Gauss map of an orientable
minimal surface in a flat three-torus is well defined. Some of the results in

this section were found independently by Nagano and Smyth [59, 60, 62].

Theorem 4.1 (Gauss-Bonnet Theorem) If f: M, — T° is a minimal
surface of genus g, then the Gauss map G: My — 5% represents M; as ¢ (g-1)

conformal branched cover of 5%,

Proof. Recall that the Gauss map G: M — §? for a minimal surface in A°*
is holomorphic. Similarly, when f: M, — T% = R*/L is a minimal surface, &
is also holomorphic, and hence, exhibits M as a couformal branched cover of
§?. The usual Gauss-Bounet Theorem states that the degree of G is g — 1,
where g is the genus of M. a

Straightforward applications of the Gauss-Bonnet Theorem give rise to

the following restrictions on the topological and conformal type of minimal

surfaces in T3,
Corollary 4.1 A surface of genus two is never periodic.

38

Ty W

ry

apy W



Proof. If a surface of genus 2 was periodic, then, by the Gauss-Bonnet The-
orem, the Gauss map would represent the surface as 2 one-sheeted branched

cover of 5%, But any one-sheeted cover of §7 is again §2, ]

Corollary 4.2 A periodic surface of genus three is hyperelliptic.

Proof. By definition, 2 Riemann surface is hyperelliptic if it can be repre-
sented as a two-slhectrd covering of $2. In the case of genus three, the Gauss

map provides this representation. u

Corollary 4.3 If f: M, — T? is a minimal surface of genus g, then M has

4(g - 1) zeros of Gauss curvature, counted with multiplicitics.

Proof. Since the Gauss map 7: M, — $* has degree g 1, the Ricmann-
Hurwitz formula implies there are 4(g — 1) branch points counted with mul-
tiplicity. Since we can identify the zeros of Gauss curvature with the branch

points, the corollary now follows, ]
The rest of this section is devoted to the study of minimal immntersions of

hyperelliptic surfaces in flat tori.

Proposition 4.1 If f: M — T" is a hyperelliptic minimal surface, then:
1. The hyperelliptic automorphism is an isometry that is induced by an

H

inversion symmetry in T" through any hyperelliptic point of f(Ar)

2. After a translation, the hyperelliptic points arc conlained in the sel of
order lwo points in T". (Nofe 0 trivially has order two in the abelian

group T".)
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Proof. Let O: AMf — M denote the hyperelliptic automorphism of M. Since
M/© = 5% and 5? has no harmonic one-forms, O is multiplication by (-1)
on the harmonic one-forms. After a translation, suppose that f is repre-
sented by f(p) = S2(Ay, .. ko), where b, is a harmonic one-form and pq is

a hyperelliptic point, Then

()

f(e(p) = [:)(P)(h,,...,hn}:f

O{po)

(hlv'-'ahn) = L: 9'(}11---':}"'-) = "'f(.p):

Hence, (—1): T* — T* leaves M invariant and fixes the hyperelliptic points.
If = is a hyperelliptic point, then the above equation shows that f(z) =
flOe)} = - f(2). Uence, every hyperelliptic point has order two oris 0 €
1" O
One can easily verify that the following theorem holds on the four Schwarz

surfaces of genus three,

Theorem 4.2 Jf f: M, — T? = R/ L is ¢ minimal surface of genus three,

then;
1. M, is hyperelliptic;

2. The hyperelliptic automorphism is an tsomelry and is induced by in-

version symnetry in T3 through any hypereliptic point;

3. Jf f is an embedding, then after a translulion, the set of zeros of (auss
curveture can be identified with %L = order two points of T°. (Note

0c¢ %L trivially has order two. )

Proof. The Gauss map G: My -+ 52 represents Afy as a two-sheeted cover
of 5% with simple branch points. Hence, by the Riemann-Turwitz formula,

we get eight branch points or zeros of Gauss curvature. Since there are
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precisely eight erder two poiuts in T3, the theorem follows from the previous

proposition. @]

The following theoremn gives a natural interpretation of the classical Abel’s

Theorem for periodic minimal surfaces.

Theorem 4.3 (Abel’s Theorem for Periodic Surfaces) Let f: M, -+ T*
be a minimal surface and lel G: M, — 5% be its Gauss map. Then for all
s € 8% ¢g=Tpegi(P € T? (summed with mulliplicity) ts independent of
s € S%

Proof. Since G is holomorphic, the continuous map G: 5% = T? defined by
G(3) = Tpec1(s) P> Where the sum is taken with multiplicity, is locally a sum
of harmonic maps and hence is itsell a harmonic map. Since 5% is simply
connected, G lifts to the universal cover R* of T? with harmonic coordinate
functions. Since a harmonic function on a closed Riemann surface is constant,

the lifted map is constant. Hence, G is constant, which proves the theorem.
=

Remark 4.1 The above theorem holds for any meromorphic function F: M, —

852, not just the Gauss map.

Corollary 4.4 After a fired translation, the three points of a periodic surface
of genus 4 with the same unit normal are coplanar, i.e. they lic on the quotient

of a plane passing through the origin.

Proof. Suppose M, is a genus 4 minimal surface in a flat three-torus Ta
After a fixed translation of M,, we may assume by Theorem 4.3 that p, +
e+ pa=0€ T for {p1,pz,ps} © G (s) for every s € 5% not in the branch
locus of G. This iplies p;, pz2, and py are coplanar. 4]
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4.2 The main existence theorems

One of the beautiful classical theorems on Riemann surfaces states that every
closed Riemann surface of positive genus holomorphically embeds in a com-
plex torus called its Jacobian. In particular, every closed Ricmann surface
of positive genus conformally embeds as a complex minimal submanifold in

some flat complex torus.

Theorem 4.4 (Abel-Jacobi Embedding Theorem) Let M be a closed
Riemann surface of positive genus g and lel {w,...,w,} be a basis for
HY(M). Then f(z) = [i(wr...,wh: M — CL = J(M) (= Jacobian
of M) is a holomorphic embedding, where L is the laltice of period vectors
{J(wy o owy) Ly € Hi(M, 2)}

It is important to consider the conformal structure of a Riemann surface
when searching for minimal surfaces in tori. In fact, on two-dimensional
Riemannian manifolds, (M, <>}, there is usually much to be gained by using
appropriate coordinate charts. When A is orientable, it is possible to pick
coordinates so that the metric ds* = F{ds? + dy?), and under change of
coordinates, angles are preserved. Such coordinates are called isothermal
coordinates and give M a conformal or complex structure.

A nonorientable “Riemann surface” A with a conformal-anticonformal
structure no longer has holomorphic forms but it still has harmonic one-
forins. By integration of a basis of the space of harmonic one-forms, one
obtains a harmonic map f: M — A(M) where f(p) = fP(h,,...,h,) and
A(M) = R*/P where P = {f_r(hh...,h,,) | v € Hi(M,Z)}. As shown in
(48], f is not always one-to-one, however, it is a smooth one-to-one immersion
when f is a branched minimal immersion. This regularity theorem will be

used to prove the regularity of the surfaces described in the next theorem.
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Theorem 4.5 There is a real five-dimensional family V of pertodic hyperel-
liptic Ricmann surfaces of genus three. These are the surfaces which can be
represented as two-sheeted covers af 8% branched aver four pairs of antipodal

poinis. Furthermore,

1. There exist two distinct isomelric minimal immersions Jor cach M, €

L
2. These immersions are embeddings;

3. V induces a five-dimensional farmily V of embedded non-orientable min-

imal surfaces of Euler characteristic xy = —2.

Proof. We first give explicit analytic formulae for the periodic minimal sur-
faces in the family V. Suppose M € V with Gauss map G: M — §7 =
C U {o0}. We may assume, after a possible rigid motion of the lifted sur-
face in R?, that G is a branched cover of C U {00} with branch points
P = {a,,...,a4,85 = —1/@\,...,2s = —1/&,} in the complex plane and
where the product ayazazay is a positive real number.

In this case the plane curve of M is y? = (z — a1)...{(z — ag). In this
representation G is the meromorphic function z:Af - CuU {m}. If g =
(Vy)de and w = [(1— 22),(1 + 22}, 22)), then f(z) = f*w: M — J(A)
induces the Jacobi map of M. The projections f; = Re(f) and fo = hini f)
are the two minimal embeddings described in Theorem 4.1,

It is straightforward to check that the antipodal map on §2 has two lifts
oy and o; to M, each acling freely on M and of order two, Furthermore, it is
eastly checked that one can index oy and o so that fioo (resp. fzoo,) differs
from fi (resp. f2) by a translation v, {resp. v3) of order two in the quotient
torus of fi (resp. f2). After quotienting out by this additional translation

one obtains a map f,: Mjoy — 13 (resp. fz:M/o, - T3). Since f (resp.
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f2) is the Alhanese map of the nonorientable minimal surface My (resp.
Mfey), fl (resp. f;) is a sinooth minimal surface embedded by the carlier
stated regularity theorem for the Albanese wap of a nonorientable closed
Riemannian surface [48]. Since fl and f; are one-to-ane, so are f; and f,,

which completes the proof of the theores, o

Theorem 10.1 in [44] states that every flat thrce-torus contains an infinite
number of examples in the family V of genus 3 periodic surfaces described in
Theorem 4.1. In fact, every T2 contains an infinite sequence By,..., Ly,... of
nonorientable embedded minimal surfaces with Euler characteristic y = —2
and such that lim; . Area(E;) = co. The existence of these new examples
is based on an abstract mini-ax type proof that is independent of Theo-
rem 4.5,

Let T3 = R*/Z* where Z® is the integer lattice in R® and let F ¢ T3 be
the quotient torus of the z,z;-plane in T2 Let o: T3 — T3 be the diagonal
translation of order 2. Consider the surface ¥ in T? obtained from F and F+
(0,0, 1) by taking their connected sum along vertical line segments £ and a{£).
Do this so that o(Z) = Land let T= /o c T = T3/o. See Figure 3 below
for a picture of 5. Let F denote the image of Fin T°. It is straightforward
to check that ¥ is isotopic in T° to P/o where P is the Sehwarz primitive
surface. Let B:T% — T be the rotation around the diagonal veetor (1,1,1)
hy 120° and note that R commuies with o, Let 7: 7" — T denote the
associated quotient linear isometry. Since P is invariant under R, Plois

invariant under K. IHence, R(T) is isotopic to 5.
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If F is a subtorus of T° that represents the same 7;-homology class as
T, then there exists a linear automorphism L:T° — T° with I(F) = F and
such that I lifts to a L: T® — T3, Note that the linear automorphisms of
T? are generated by R and A, A defined by e; — e; + ez, €3 — €3, €3 — e3.
Note also that ¥ is isotopic to A(T) where A: T — T is the associated
quotient map. Recall that the surface T is obtained from F by taking and
adding a handle along a vertical line segment in T°. Since A(F) = F and
A preserves the vertical, A(E) is isotopic to F by adding a vertical handle.
Hence A(T) is isotopic to E. Since I is a composition of products of A and
R, both of which preserve the isotopy class of T, the isotopy class of F can
be obtained by a single surgery on X. This proves the following lemma.

Lemma 4.1 Suppose F C T® is a subtorus that represents the L3-homology
class of T. Then F is tsolopic to a surface obtained by doing surgery on %,

This lemma is used in the proof of the following theorem in {44] that has
been proved independenily by Hass, Pitts, and Rubenstein [67].

Theorem 4.8 Let T? be an arbitrary flat three-torus. Then there ezists an

infinile sequence of embedded minimal surfaces Ty, ., Ly, ... in the fomily
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V given in Theorem {.5. Furthermore, the L, can be choosen to have area

greater than k.

We briefly outline the main idea of the proof of the theorem. After lifting
to two-sheeted covers of flat three-tori, it is sufficient to prove that our origi-
nal T? contains an infinite sequence T7,..., 54, ... of nonorientable minimal
surfaces the family ¥ described in Theorem 4.5 and such that Aree(E,) > k.

After composing with a linear isomorphism of T* with T3, consider ¥ to
be contained in T3, By Lemma 4.1, the surface ¥ is “isotopic by surgery”
to any fixed flat two-torus in the Z;-homology class of ¥. Suppese T, and
T, are two flat tori in T° which represent the Z;-homology class of T but
represent different Z-homology classes. Furthermotre, choose T, and T3 so
that Area(T,) > Area(T3) > n. Notice that flat two-tori in T? are strong
local minima to the area functional on the space of Z;-currents representing
a I3-homology class and the local minima T,, T, can be joined by a path,
2, 1 >t > 2, such that the X, limit as varifolds to T,, T, respectively, as
t -+ 1 or 2 and for any such path Area(Z.) > Area(T2). The general of mini-
max principle for minimal surfaces, first developed by Morse-Tompkins [58]
and Shiffman [73}, states that in the space of paths ¥, joining the local area
minima Ty, Ty, there should exist an a path whose maximum area surface &
has area which is minimal over all such paths. The surface ¥ is then called
a mini-maz and it is an unstable minimal surface. Since ¥ is a mini-max,
its area is at least as big as Area(T;) > n.

While the above guiding mini-max principle is easy to state, in princi-
pie it is usually difficult to apply because the spaces involved are infinite
dimensional. By working with paths of harmonic maps, one can reduce the
question of finding the minimal £ to finding the required mini-max on a finite
dimensional space which is the Teichmoeller space of E. This proof of the

existence of & was found around 1980. It seemed clear to the author at that
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time that the results of Meeks, Simon and Yau [52] and Simon [80] should
generalize to prove the existence of the minimax £, by doing the mininax
procedure in space of all embedded surfaces. This second approach has been
made rigorous by Hass, Pitts and Rubenstein. Their proof of the existence
of ¥ is much more gereral than the author’s and is applicable Lo the general

theory of closed minimal surfaces in closed Riemannian three-manifolds [67).

5 Doubly-periodic minimal surfaces

5.1 Existence of examples

Before discussing examples of properly embedded minimal surfaces M in a
given T x R of finite topological type, recail that Theorem 1.3 and Theo-
rem 1.4 give certain topological and geometric restrictions on what is per-
mitted. For example, when T x R does not have a commensurable lattice, M
is not a planar domain. On the other hand, the natural quotient of Scherk’s
slobaly periodic minimal surfaces is a planar domain with four ends ina T xR
where T 15 a square torus. This surface can be described as the solution set
to the equation cos{z}e* — cos{y) = 0. Scherk's surface fits naturally into a
one-parameter family of doubly-periodic minimal surfaces where each exam-
ple is invariant under translation by two linearly independent unit vectars
with varying angle between the vectors.

Actually the full fattice L of translational symmetries of Scherk’s surface
& contains orientation reversing translations and $/L € RY/L is a properly
embedded minimal surface diffeomorphic to the projective plane punctured
in two points. A simpleanalysis carried out in [51] shows that for every closed
orientable surface punctured in four points or for every closed nonorientable
surface punctured in two points, there exists a sublatiice of I such that

the quotient of § by this sublattice is diffeomorphic to the surface being
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considered. This result should be compared to the nonexistence statements
in Theorem 1.3 and 1.4,

Karcher [38] has constructed a large number of geometrically distinct
examples of finite total curvature minimal sutfaces in various T x R. Based on
one of Karcher’s examples and Meeks® existence theorem for triply-periodic
minimal surfaces (Theorem 4.5), Meeks and Rosenbery found the following

family of embedded doubly-periodic minimal surfaces.

Theorem 5.1 Let M be the elliptic curve defined by

Wl = (2 - ;) (z — 2a)(z ~ 23)(2 — 24},

where zy,z3 € C - {0} with arg{xy) = —arg(z3) and =, = i_% and z4 = %
Consider z and w to be meromorphic fuzctions on 8. Define M = 3 —(Z U
P) where Z and P denote the zeroes end poles of 2131 — C U {oo}. Choose
a base point py such that 2(p) = x,. Letn = 2 and & = {(1 — 205, {1 +
W I, 2:zn) and A = {,®]v€ H(MT)}. Then

I. The real and imaginary projections Re(A), In{A} C ’R? are cach gener-

ated by two linearly independent vectors.

2. The maps fp: M — R/ Re(A) and fro: M — B/ Iin(A), defined by
Sre(p) = Reff @ and fia(p) = Im [7 B, are ecach proper one-to-one
manimal immersions of a surface of genus one with four horizontal

ends,

8 The surface fu.(M) C R*/Re(A) is invariant under a translation of
order 2 whick is orientation reversing and whose quotient surface is
a Klein boitle with two ends. A sirmilar statement holds Jor fo (A1),
Furtheremore, all embedded Klvin boitles with two parmllcl ends in T %R

arise from these familics.
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4 fre(M)} C W/ Re(A) is invariant under the isometry p — —p. A
similar stalement holds for fr.,(A).

5. Every T x R contains an infinile collection of nonhomotopic examples

in the above families of minimel tori and Klein botiles.

6. The eztended Gauss maps for frM) and fi(M) are the same and
are equal to the meromorphic function z: M — CU {oo}.

5.2 Generalizations of Theorem 1.1 for doubly-periodic
minimal surfaces

In this section we shall generalize Theorem 1.1 for doubly-periodic minimal
surfaces in several ways. One generalization is to show that a properly embed-
ded minimal surface in M in T x R of finite genus has finite total curvature.
This will be proved by showing that any properly embedded minimal surface
% C T x R can have only 2 finite number of ends and by showing eachend &
of such a I, which has an end-representative E such that the induced map
m(E) — m(T x R} is not onto, has linear area growth. Throughout this
section, the surfaces we will consider are noncompact, have a finite number
of connected components, and have compact boundary that may be empty.

We begin with a definition.

Definition 5.1 A surface M in T x R has linear atea growth in T x R if
there exist constanits K, and K; such that for t large, K1t < Area{M,= Mn
Tx[—¢,t]) € Kat. We will say thal M has area growth bounded from below
[resp. above] by Kt if for t, large K't < Area( M) [resp. Area(M,) < K1].

The next lemma is well known.
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Lemma 5.1 Suppose A C T x R is a proper annulus with smooth compact
boundary, nonpositive curvature and A has area growth bounded from above

by Kt. Then A has finile total curvature.

Proof. Since A has one end and nonpositive Gaussian curvaiure, we may
assume that 4 C T X [0,00). Consider I'{1) = AN (T x {t}). Again using
the nonpositive Gaussian curvature of property A, it is straightforward to
show that for { greater than the height of 34, T x {1} is transverse to A and
T(t) is a simnple closed curve. Since A has area growth bounded from above
by Kt, there is a sequence of ¢, < t3,< ... with lim¢; — oo such that I'{t;)
has length at most ¥ = K 4 ¢ for some fixed positive . Hence when {; is
large, we can choose a point p; € A, and replace I'({;) by an embedded least
length geodesic arc o; passing through p;, and with a possible exterior angle
at p;. Since the subdomain of A with boundary o; U84 is an annulus 4,
the Gauss-Bonnet formula shows

KdA:—j g 2 — Ky - 2m.

A a4, - a4

Since each compact subdomain of A is eventually contained in A for i large,

A has finite total curvature. O

Remark 5.1 If the area of A C T x R is bounded from below by Kt, the
intrinsic area of A{t) grows at most linearly with respect fo the distance from
OA. The proof of the above lemma can be easily generalized fo show that
if A is an almost-complete Riemannian annulus with compact boundary and

nonpositive curvalure and at most linear area growth, then A has finite total

curvature. (In fact guadratic area growth implies finite total curvature.)

Proposition 5.1 Suppose £ C T x {0,00) is a properly embedded minimal

surface with compact boundary and more than one end. Then ¥ has area
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growth bounded from below by C( 1) £ where C(T) is a positive constant that
only depends on T. Furthermore there exists a noncompact, flal minimal

annulus with compact boundary in T x [0, 00) that is disjoint from %

Proof. Without lass of generality we may assume that 8% is nencupty
and contained in T x {0}. Since ¥ has more than one end, after removing
a compact subdomain of ¥, we may assume that % is not connected and
contains two noncompact compenents L, and I;. Let N denote the closure
of one of the components of T x [0,00) —~ M that contains at least two
distinet components of £ on its boundary. We will assume that two of these
components are £, and I,. {Noteif X, (resp. £;) does not separate Tx [0,00),
then Iy (resp. ¥1) appears on the houndary of N two times, once from each
side of By {resp. ¥g). If B, appears in JN two times, fix and denote one of
these occurrences as T; C ON ]

Since AN is a good barrier for solving Plateau type problems in N, if
0%y bounds in &, 8L, is the boundary of a compact embedded minimal
surface & in N, which by the maximum principle must be contained in
INO(T x {0}). Clearly, in this case, A = INN(T x {0}), which is impossible
since (N NT x {0}) contains AL+,

By the proof of Theorem 3.5, J%; is the boundary of a smooth properly
embedded orientable stable noncompact minimal surface F of least area in N
such that F separates N. The least-area surface F has finite total curvature
(Theotem 3.3) and so the annular ends of F, which are asymiptotic to flat
annuliin T x [0, 0), must have arca growth bounded from below by ((_H-'( F) -
e}t where € is any small positive number and (1) is the mininium fength of
a closed geodesic on T. In particular F has area growth hounded from below
by %(_,'(T Y. Let C(T) - %("('l ). Since Fseparates N, (S U F)n (T = {t})
bounds a subdomain of 1 x {t} of area less than Area(T}. Hence, if the area

growth of Fis greater than (1) - &)t for any positive ¢, then the area
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growth of 2y is alse greater than C( 1)t This implies the arca growth of T
1s also greater than C{T)e

It remains to prove that there exists a flat annulus in the complement of
. Tet i, . N denote the union of £, 21nd a small e-neighhorhood of 8%, in
ON. Using ¥, in place of B, in the construction of F, we obtain a properly
embedded minimal surface F in N with 3F = 8%, and the ends of F are
twinimal annuli with finite total curvature. Note, by the maximum principle,
Fis disjoint from T since every component of 3N - 8%, that intersects &
is not smooth. Hence, there is a stable minimal annulus A, which is an end
of F, that is contained in T — % and 84 is compact. By the maximum
principle at infinity dist{ A,£) > 0. Since A is stable, it has finite total
curvature, A simple calculation using the Weiersirass representation of A
shuws A is asymptotic to a flat minimal annulus A whicl is also a positive
distance from X. In particular AN E = 0, which completes the proof of the

proposition. O

Actually the proof of Proposition 5.1 shows that each end of a T salisfying
the hypotheses of X in Proposition 5.1 must have area growth bounded from

below by C'(T}. This observation proves:

Corollary 5.1 Suppose E < T x [0,00) satisfies the hypotheses of Propo-
sition 5.1. If & has at least n ends, then ils area growth must be atl lcast
n-CT). In particular if T has an infinite number of ends, the area growth

of T is not bounded from below by K1 for any positive constant K.

The second statement in Proposition 5.1, concerning the exislence of a flat
annulus, implies that every end @& of X has an end-representative F(#) such
that the induced map m( E(@)) — m( T x R) is not onto. On the other hand,
if a properly embedded minimal surface T C T % |0,00) has one end @ and

% contains an end-representative E{&) such that =, { £(&)}) — m(T [0,00))
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not onta, then there is a two-sheeted cover of T x [0, 00) such that the inverse
image of & to this covering space satisfies the hypotheses of Propusition 5.1.

These observalions prove

Corollary 5.2 Suppose ¥ C 1 x [0,0c) is a properly embedded minimal
surface with compact boundary and at least one end. Then ¥ satisfies the
conclusions of Propasition 5.1 if and only if £ has an end-represenlative E
such that the induced map ®,(E) — m(T) is not onlo,

Propesition 5.2 Suppose T C T x [0,00) is a connected properly embedded
noncompact minimal surface with compact boundary. If £ has more than
one end or T has one end with end-representative B such that m(E) —

(T x [0,00)) is not onte, then & has linear area growth.

Before proving Proposition 5.2 we state and prove some of its important

corollaries.

Corollary 5.8 If M C T x R is a properly embedded minimal surface, then
M has a finite number of ends.

Proof. If M has an infinite number of ends, then we may assume that M is
transverse to T x {0} and & = M x [0,0oc) has an infinite number of ends.
By Corollary 5.1, £ does not have linear area growth but Propesition 5.2

implies T has linear area growth, a contradiction. o
The next corolary is an immediate consequence of the statement of

Proposition 5.2.

Corollary 5.4 If M C T x R is a properly embedded minimal surfoce and
E is an end representative of M with m{E} — m,(T x R) not onto, then £

has linear area growth.
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Lemua 5.1 and Corollary 5.3 and 5.4 imply

Theorem 5.2 Suppose M is a properly embedded minimal surface in T x H.
Then M has a finite number of ends and each annular end of M has fiuile
total curvature. In particular if M has finite genus, then il has finite tolal

curvalure,

It remains to prove Proposition 5.2,

Proof of Proposition 5.2. Suppose I satisfies the hypotheses of Propusi-
tion 5.2. By Proposition 5.1 there exists a flat annulus 4 in T x [0,c0) that
is disjoint from . Since A({(ZU A)N T x [t,00)) C T x {t} for t Jarge, we
may assume that both A and T have their boundary on T x {0}. Let N
be the geodesic closure of (T x [0,00)) — A and note that N has two sides
Ay, A; that correspond to parallel copies of A. Note that ON = A, UA; U A,
where A, is a compact flat horizontal annulus. Consider the set of compact
paralle]l flat annuli in N with boundary in A; U 4; and that are orthogonal
to A; U A;. Let A be one of these flat annuli which is transverse to . Let
N be submanifold of N obtained by removing the compounent of N — A con-
taining 8A,. This new N has the advantage over Nin that, after a rotation
of coordinates A is horizontal and the sides of N are vertical. See Figure 4

for a picture.
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Figure 4:

Suppose now that ¥ has area that grows faster than At for any constant

K. We shall derive a contradiction by considering two possible cases.

Case 1 There exists a positive number ¢ such that the subdonain E(e)of
¥ whose normal vector makes an angle of at least ¢ radians with {he vertical
line has area greater than K¢, for any positive K and for some values of ¢
that are arbitrarily Jarge and that depend on K.

Let Fi(t) be the horizontal compact annulus of height ¢ in M. Since the
normial vectar to X(e) stays a bounded distance ¢ away from the horizontal,
there exists a #, such that F(ty) is transverse to (e} and the following

equalion holds:

sin(£} - Length {#{f) N L{¢)) 2 Length (A%),

o
n

Let £ = 20 (T x [0,¢0]). Recall that the height function X of £ is
harmonic. Thus, if we let ndenole the conormal to ¥ the divergence theorem

implies

sin(e)-Length (F(to)nE(e)) < jm - VX"”:/an VX2-9 < Length (9T),

which contradicts our previous equation. This contradiction implies Case |

can notl occur.

Case 2 W = ¥ — E(}) has area growth that is faster than At for any
constant K.

This time Ict F(t) be one of the two families of flat compact minimal
annuli in N with boundary curves on the sides of N and whose normal
veetor makes an angle of } radian with the vertical. As in Case 1 there exdsts
a {g such that F(¢;) is transverse to E(1) and the length of this intersection
curve s at least equal to the length of 8% divide! bysin(2). Let ¥ denote the
compact subdomain of & with boundary 8% U {Fta} N E). As in Case 1 we
obtlain a contradiction via the divergence theorem: applied to the harmonic
function on £ that is induced by the linear function on N that has level sets

containing the foliation {F(t)}.

Since Case 1 or Case 2 nuust accur, the proposition is proved. ]

6 Singly-periodic minimal surfaces

6.1 Proof of the Structure Theorem for one-periodic
minimal surfaces with more than one end.

Rtecall from Section 1.3 the definition of limit tangeat plane for a properly
embedded minimal surface M in H* A limit tangent plane for Al is the limit
tangent plane passing through the origin of any properly embedded noncom.

pact orienteble minimal surface ¥ in R* with compact boundary 0% ¢ M

ob



and finite total curvature and such thal X is contained in the closure N of
one of the components of R* — M. Theorem 5 in [6] states that when M has
at least two ends, M has a unique limit tangent plane. Assuine now that
M has at least two ends and we shall sketch the proof that M has a unique
limit tangent plane.

By Theorem 3.5 M has a limit tangent plane. It remains to prove the
uniqueness of the limit tangent plane. Suppose ¥, and ¥; are two minimal
surfaces satisfying the conditions of ¥ in the previous paragraph and which
have nonparallel limit tangent planes. Clearly we may assume that £, and
L, are connected. Since the ends of ¥, are parallel, as are the ends of Ty,
if an end-representative of I is disjoint from an end-representative of Ly,

then £, would have the same limit tangent plane. Hence we may assume:

1. Every end-representative of L) intersects every end-representative of
b Y

9. T, and ¥; are contained in the closure N of the same component of
R® — M;

3. E]ﬂN = 321 and E;ﬂaN = 32;.

It follows directly from the proof of Theorem 3.5 that there exists a simple
closed curve 7 on M that separates M into two components M, M; where
9T, UST, are contained in My, and such that 7 is the boundary of a properly
embedded minimal surface 3 of finite total curvature where Xy is contained
in the closure of one of the components of R (M UL, UZE,). Since the ends
of D5 are disjoint from the ends of I, and of £;, the limit tangent planes of
%, and of L, are parallel to the limit tangent planes of ¥ and hence parallel
1o each other. This contradiction completes the outline of the existence and

uniqueness of the limit tangent plane for M.
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‘I'he uniqueness of the limit fangent plane to M will be used in the proof
of the Structure Theorem (Theorem 1.10). We will also need:

Lemma 8.1 Suppose M is a properly embedded minimal surface in R® with
more than one end and infinile tolal curvature. Then there erists an end
E of a plane or a catenoid with a circle boundary such that ECR - M
and the limil tangent planes of E and of M are the same. Furthermore, the
boundary circle of E is not homologous fo zero in the component of &® — M

in which it is conlained and E is a positive distance from M.

Proof. If M has finite total curvature, then E can be chosen to be the end
of any plane that is parallel to the Limit tangent plane and such that this
plane is not asymptotic to one of the planar ends of M. Suppose now that
M has infinite total curvature.

Theorem 3.5 .mplies there exists a simple closed curve ¥ C M that sep-
arates M and such that 7 is not homologous 1o zero mad 2 in the closure
N of one of the components of R* — M. Furthermore, 7 is the boundary of
a properly embedded orientable minimal surface ¥ of finite total curvature
in N and © N &N = . It follows that at least one of the annular ends A
of ¥ has 84 not homologous to zero in N. By the maximum principle at
infinity dist(A, M) > 0. The annulus 4 is asymptotic to the end E of a plane
or catenoid that has an end E that is also a positive distance from M and
E ¢ N. Clearly 8E is not homologous to zero in N, which completes the

proof of the lemma. o
We now sketch the proof of the Structure Theorem in Section 1.3. See {6]
for further details in this proof.

Proof of Theorem 1.10. Suppose M is a properly embedded minimal
surface in R? with infinite symmetry group and more than one end and

suppose M is not a catenoid. We shall prove that there exists a plane P,
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parallel to the limit tangent plane at infinity for M, whose intersection with
M consists of a finite number of simple closed curves. Theorem 1.10 follows
easily from the existence of the plane P,

Suppose that the (zy,z;)-plane is the limit tangent plane to Af. Since
M has more than one end and il is not invariant under a rolation of infinite
order, it must be invariant under a screw motion symmetry ¢ of infinite order
whose linear part fixes the limit tangent plane to Af, which is the {z1,x2)-
plane. Hence o is either a translation or, after a horizontal translation of A,
a screw molion Sg.

Let E be the minimal annulus in Lemma 6.1. If I is the end of a plane,
then a small translation of this plane, yields a new plane P that is transverse
to M and whose end is still a positive existence from M. In the case P is the
required plane. It remains only to show F can not be the end of a catenoid.

Assume, after a rigid motion that 8F is a circle centered at the origin in
the (z,,#2)-plane and F is a nonnegative graph over this plane. Let D be the
flat disk with 8D = 8. Since 8F is not homologous to zero in R? — M, the
subdomain M* = {z € M | r lies above F U D} has nonempty intersection
with Af.

We first show that ¢ is not a translation by a vector in the {x1,z3)-plane.
Ifit were, consider the 7-orbit T'; of E. Let JT denote the upper half space in
R>. Since M* is disjoint from I', M* is contained in one of the components
C of If - T which is contained between two vertical haif planes. In particular
the convex hull of M* is not R® or a slab, a contradiction of Theorem 3.7,
This proves o must have 2 translation component that is vertical,

Suppose now that the symmetry & has a positive vertical trans! dional
part. Thus, for a large power f of o, we may assume that SUML) < M, Since
@M, is compact, there is a large k such that (M, — FHALY) o (f4(AN).

Let 7' be the (7, 22)-plane. Let M t{k) denote the portion of M* below
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FH5(I). By the divergence theorem the flux of the vector field VXion M*(k)
across the top boundary curves of AM* (k) equals the negative of the Aux
of VX3 across the lower boundary curves A * of M* (k). But since VX5 is
invariant by f*, the flux across f*(#Af*) equals the flux across the portion
f"((’i‘M*)iM*(k) 1 f*(T), a contradiction since there is also flux across the
boundary curves (M*(k) f*(T))-- f*(@M*). This contradiction completes
the proof of the existence of the plane P and our outhine of the proof of

Theorem 1.10. 0

6.2 Outline of the proof of Theorem 1.1.

In this section we will give a brief outline the proof of Theorem 1.1. By
Theorem 5.2 we know that Theorem 1.1 is true for doubly-periodic tninimnal
surfaces and so we need only prove the theorem for singly-periodic surfaces.
The first step is to study the geometry of a properly embedded minimal
annulus A {with one boundary curve) in a complete flat three-manifold N
with fundamental group Z. Here, N = R*/8,; where S; is a screw motion
symmetry of R* generated by rotalion by # around the zy axis followed by
a nontrivial vertical translation. Next, by applying Theorem 3.5, one proves
that A ¢ N can be “trapped” between two minimal annuli of finite total
curvature. The third step is to show that the finite total curvature trapping
annuli can be chosen to be flat vertical antuli or to be planar or hclicoid-
type ends. This step of the proof involves the development of an analytic
representation for a minimal surface M of finite total curvature in N in
terms of two meromorphic forms on the conformal completion of M (sece
Theorem 3.10). The final and most difficult step is to use the trapping of
A by standard examples of finite total curvature mivimal annuli to prove
A must have finite total curvature. This proof breaks up into three cases

depending on the geometry of the trapping annuli.
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Recall that the three types of trapping annuli are planar, vertical flat
annuli or helicoid-type. The proofs of all three cases depend partly on a
new technical tool which involves the construction of a foliation of commpact
minimal annuli. By examining the intersection of A with the leaves of the
foliation we are able to prove that A contains an end that is stable and,
therefore, has finite total curvature (Theorem 3.3). This foliation construc-
tion first appeared in work of Hoffman and Meeks [27] and we will use it to
understand the case where 4 is trapped between two minimal annuli /1, F2
with planar-type ends.

After lifting A to R?, we see that A can be trapped between two parallel
planes P_; and P, which we may assume are the horizontal planes of height
1 and —1, respectively. After a homothety of A and the removal of a compact
portion of 4, we may assume that A is contained in the cylinder radius 1
centered along the zj-axis. Choose a compact minimal catenoid C with axis
the zj-axis, invariant under reflection in the (z1,3)-plane, has its boundary
circles on P_y U Pp, (' is a radial graph transverse to A, and 84 is contained
inside the bounded component of R* — (P_; U P, U C).

Let S denote the slab between P_, U P. Fort > 11let C(t) = (¢-C)NS
be the portion of the homothetic expansion of C that lies inside S. Let
[ = Ui C(t) and let F:T — 1,00} be the function whose level set at
tis C(t). Let Ar = ANT. Since the level sets of F' are minimal and
A is minimal, f = F|Ar has no local maximum or minima in Int(Ar), f
obtains its minimal value along &Ar and the critical points of f havestrictly
negative index (since minimal surfaces that are langent at a point intersect
in a hyperbolic manner).

Since f:Ap — [1,00) is proper and Ap is a planar domain with, say,
n+ 1 boundary components, the Morse inequalities imply that f has exactly

n crilical poinis connected with multiplicity. Since A has one end, for any
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t greater than the largest critical value of f, FY(t} is a simple closed curve
on A, This means that for ¢t large, C({) N A is a simple closed curve on the
compact catenoid C(t) and let £o be such a value of £. Hence, after replacing
A by (:—Q)A and removing the portion of A inside C = C(1), we may assume
that ACTand JACC.

We want to show A contains a subannulus A such that the normal vector
to A is never horizontal, which will prove A is stable and hence has finite
total curvature. If such a A fails to exist, then there exists a sequence {p(i}}
of points on A with vertical tangent planes {T()} and for all i and we can

clioose p; so that |p| > 4.

Case 1 For some i, T(i)NC = @ and p; is in the (21, z3)-plane.

In this case there exists circle @ in #; that is tangent to the line (1) Py,
its projection onto the (z,,z;)-plane contains p;, and such that the planar
disk with boundary a; contains the circle ag = C P in its interior. Suppose
p € Py is the center of a{1) and (1) has radius R. For t > 1 let at) denote
the circle of radius ¢t + B — 1 in P, with center p. Fill in the annulus in P,
with boundary a{0) U a{1) by circles aft),0 < ¢ <1, so that C(1) = {a(?) |
t > 0} is a smooth foliation of the annulus UC. Let C(—1) denote the vertical
translate to P, and let F = {F(t)} be the related foliation of catenoids where
F(t) is the stable catenoid with boundary a{t) U (a{t) — (0,0,2)}. Note by
construction of F, F(0) = € and the catenoid F(to) containing p(i) has the
same tangent plane as 4 at p(i).

Let f: A — [0,00) denote the induced proper function corresponding to
the minimal foliation F. As in the earlier considered case f, has n critical
points where n + 1 is the number of boundary curves of A. Since n +1 =
1, f has no critical points. However f has a critical point at p(i). This

contradiction proves that Case 1 can not occur.
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In the general case, one modifies the above construction of F to show
that, when |p(3)] ts sufficiently large, C is the leaf of a foliation f(:) of the
exterior of ' in § by compact minimal annuli and such that some leaf of F(i1)
is not transverse to A at p(i). The construction of f(z) in thecase A C 8§
is cartied out in detail in {27] and [40), This completes our outline, by way
of an example, of how foliations of minimal annuli can be used to prove a

trapped minimal annulus has finite total curvature.
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