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Abstract

ELLIPTIC OPERA TORS ON MANIFOL 1S,

L Ao abstract Dicichlel problem: Hilbert space background; Kepresentation of funclienyls; Compact
transfoimations; The Dirichlet problem L, Elliptic operators on the torus: Group duality and Fourier analysis;
The Hilbert spaces; Dirichiet’s problem on T, Regulanty of soludivns; Zero boundary values in [R" . Strongly
elliptic systems. 11, Diftercntial operators on veclor bundles. Sheaves of madules; Vector bundles; Smooth
manifolds and vector bundles; Certain vperalors on vector bundles; Ricimannian structures, Differential operators.
V. The existence theorem and applications: The exislence theorem; Hodge's theorem.

INTRODUCTION

The primary object of this paper is to present an elementary and self-contained prool of
the following fundamental existence theorem. fet X bea compact smooth manifold ( withour
boundary), and let £, be smooth vector bundies {finite fibre dimension) over X. Let A be d
smooth elliptic operator from the sections of £ 1o the sections of v 1f W is a smooth section of n,
then there is a smooth section @ of Esuch that Ag = if und unly if W is orthogonal to the kernet
of the adjoint of A. Furthermore, dim Ker(A) <Z o0, 50 that deviatien from UnKueNEess is somewhat
restricted.
There are several well establishied approuches o this problemy for examiple:
(1) The methods of potential theory, centering around the properties of singular integral equalions
and pseudodiffercntial operators: see Secley [171 for an exposition in appropriate generality.
(2} Schwar’s alternating method { Hildebrandt 17,
(3} The heat equation method of Milgram-Rosenbloom [12], put ina Hitbert space framework by
Gattney |4].
t4)  The theory of coercive quadratic forms i lithert space. based on GErding's inequality. Lt is
tlus fourth method tat we shall develop. 1t should be clear that our EXPUSIION OWes 4 great
deul to Bers-John-Schechter | 2] { their chupters on Hilbert space methods are the basis for our
Section 11y, Koszul |9, Singer [18]. A treatment of Hodge's theorem in this direction was
given by Morrey-Lclts {1 3],
The material was presented ot Cornell University in the Fall of 1964, and at the Unaversity ot
Amsterdam in the Spring of 1966 10 included in the present volume primarily because
that fundamental theorem hax been so frequently used during our Summer Course.

I. AN ABSTRACT DIRICHLET FROBLEM
Lo LI BERT SPact BACKGROUND
(A Let us review briefly certain aspecs of ihe theory of Hilbert spaces, over the real number

eld iR the modifications necessary to produce the analogous theory for the complex field €
will be tuken for pranted.

W
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Definition. A pre-Hithert space is a vector space t together with an inner product ). We will fet
(g denote () o we wish to emphasize the space 1o which the inner product bedongs. Thus €.}
is @ symmetric bilinear form £ X E —~ IR such that 0, %32 {1, and &, % =0 when and ooty when

x = 0. Foreach x € 1 we write [x} = + \/Gmﬁ then we have the

Schwarz inequality: Forany x,y € E. [y} < ixl iyt Tt foliows at ance that the function
x = x| 1s a norm on k:

(1) x| =0 ifand only if x =0
(23 lax| = lal x| forall (a,x) € IRXE whore jal denotes the absolule value of ag
(31 Forany x.y € I we have [x tyl~ a4 1yl

I particelar, selling pix,y) =[x —yldelines mretric on Vooand that i turn deternimes o TausdorfT
topology on B relutive Lo which the aluebraic operations are coalmuous.
We have also the

Parallelogram law: [x+y|? + [x - yl1t = 2xT D)
Pythagoras' law: If % and y are orthogonal, then |x+ w2 = ix + dylh

Definition. A Hilbert space is a pre-Hilbert space which is complete in the metric p. Yvery pre-
Hilbert space E has a unique completion to 2 Hilhert space 4, whose points can be viewed as
the totality of Cauchy sequences of ¥; and E is a dense subspace of By,

1E(E, [ [, and (E, 11;) are Hilbert spaces, we say that they are cquivaleni if there 1 a
number ¢ > 0 such that

e Vx|, €Ixl; =cIxl; for xCE
This is an equivalence relation; the equivslence classes are called Hitbertian spaces. Thus a

Hilbeitian space is a topological vector space whose topology can be given by an inner product
whose induced metric is complete.

Exampie.  Let E be the totality of smooth functions x:1~ R, where [=[0,1] Then

x,yH = [(x(ny(t)dwjx'my’mdt
! 1 ’

G, ¥)g = x( y(Or + [x'(t) y'erdt
|

are both inner products on E; let and E; be the completions of E in the indicated metric. Then
E, and E, are topologically cquivalent Hilbiert spaces, and hence are two representations of the
same Hilbertian space, really the fundamentat entity. The elements are those absolutely continuous
functions on | having square integrable fiest derivatives.

Example. Any two innet products on an n-dimensional vector space determine equivalent Hilbert
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(B) “Theorem. A Hithertian space is locally compuct if and only it s finite dimensional

Proof of the sufficiency . } L. .
oof of the sufficiency. Lot (e .oy bea base for B2 Deline the isomorphism ¢ N >t by

n

Xy, --nxn):L Xi€;

i=1

Then ¢ is @ homeomorphisay: for this is true for n=1 by the axioms for @ noam, and we can spply
.!mlurlmn. Thus any n-dimensional vector space ks topologcally isomorphae 1o RY, whenee 14
is lovally compact.

P " T T . 9 . . ‘= =
roof of the necessity. We can suppose B {x G B3 € 11 is comupact without loss ol generahity.

Suppmu dimE = oo, then there is an infinite orthonormal set (el -y in B. which we can suppose
is convergent. But that contradicts Pythagorus’ law: 2= |° + e = e, e i’
1 L

(C) Theorem. Let V bea closed subspace of the Hithert space B, Then

(1} forany x € E, there is a unigue y €V such thar |x-y) = p{x, VI{(=inflix-z|:z€ V). Soyis
the point in V nearest to x.

{2) yis the only point in V for which x-y 1 V.,

.‘Trooffl). Let o= p(x,V), and let (y;)» 1 © V be a sequence such that [x —yil + o Then {y;) is
Cauchy. By the parallelogram law ]

|}'i_y1“: |Yi—X +X—yi|2 = 2(|X—yi]2 + |xﬁy|11),4‘x7(yi+y”/212

!iut t.yi +yj}/2€V, whence 4]x ~(y; + yj),"'l‘;2 2 40®. Given € > (0, choose iy, such that i,j 3 ig
implies [x = y,i* € e&? + €, Ix ~yjl* <o +e Then

|yi—)’,|2€3(ﬂ2+€+a1+e)*4a2:4g

Since (y;) € V is Cauchy and V is closed. we findd that yi approaches seome y € V, whenee
plx, yi) = p(x,y) and p(x, y)} = & Suppose ¥’ were another such point. Then

ly =y = ly —x+x =y = Ny = x +ly" = xI") = dix =ty +y'y200
<ot + o) —do? =0
whence y = y'.

Proof(2). Furany z € V such that z # 0 and any number X # 0, we have [x —{y +x0)? > o

Thus 2x{z,y —x) <A%|z|? foruil real X # 0. But this cannot be (for all [A] small) unless G,y — x3 = (.

Suppose now y' € Vissuch that x ~y' L'V. Then
of =ix -yl = -y Py -y

But o< |x - y'|, whence ly — y'1F = Q.
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(D} Proposition. {f Eand ¥ are Helbert spaces and £ = E a linear map, then ¢ is coliinuous
if and only if there is a reat number b stech that

l¢()|p < bixlg forull x€E

Lemma. /f ¢:E - Fis a lincar map for which there exists number b > O such thut

b He(x)|p < (Xl Sblg(x)y  forall XEE
then ¢ is continuous, infective, and ¢(E) is closed in F.

Proof The first two assertions are immnediate. To prove that ¢(E) is closed, fet (v bea
Cauchy sequence in ¢(E), and let x; € E be the points tor which ¢{x;) = ¥;- Theq %= %l
<bly; —yjlp > Qasi,j oo letx € E be the limit of x; in E, and set y = ¢(x). Then |y —yily
= ¢(x — x)lp < bix ~ xilg 0, whence y € ¢(E} is the limit of the y;.

(E) Let #:E — V be the nearest-point map x = y given by (1) in Theaqrem 1€, 'l'h-cn clearly @
is surjective and is linear, and is conlinuous, {Proof of linearity: x +y — mlx +y)is LV, and so
is X + y — (x(x) + x(y)). But there is only one vecior z such that {(x +y)—z 1 V., whence

n(x +y)==(x)+ x(y). Similarly for x{ax) = ax(x) for(a,x})ER XE)

Proposition. Kernel x={x ¢ E:n(x) = 0} is the orthogonal complement of ¥, writien vi we
have E = V® VL ie. every x € E can be written uniquely x = #(x} + (x — n(x)) with m(x) € V.
% — 7(x) € V! und these components are orthugonal,

Corollary. If V #£E, there existsa u +# 0 in E such that u L V.

Proof Take any x €E, x§ V. Then we can write x =a(x)+u, ul V. u#0, for otherwise
x =w(x), whence x € V.

2. REPRESENTATION OF FUNCTIONALS

(A) Representation theorem. Let :E = IR be a continuous linear form. Thew there exists 4
unique w € E such that f(x) ={x, w) for all x €E; if |f| = supfifCl: 1xl = 1 in LY, then Il = jwl.

Proof Let V= kemel f; then V is a closed linear subspace, (or if (xj);5 | C Vand ix;— x| = 0
then If(x)| = ifix — x;)| K const [x = xil = 0; whence x € V. I V=E, take w = 0. Other-
wise there exists a u in E such that Ju/ =1 andu 1 V. Then flu}+# 0, and forall x €E

f(x-f(-x—) )=f(x)—f{x) ={)
u

Thus x — g—ﬁ% u €V, whence <x - %if: u, u> =0, ie {x,ur= :*:-:—i inj?. It follows that

f(x) = (x, fwiuful®y. Taking w= fluu/iui? satisfies the conditions of the theorem. 1 w'is
another representation of f, then f(x) = {x, w} = {x,w"), whence (w' —w) L E, and by Corollury Ik
we have w' —w=0.

flu) t{u) [l .
To peove If] = wi, we first observe that jwi® = i m—;(u,u), whence |w| = <t .

Conversely, for every € > 0 there exists an x¢ € E such that [xg| = | and |[] —€ < lixe) = {rg,wh
< |xellwl = {wi. Since this is true for all e 2> 0, we have |f] < [wi.
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(B} Consider now a continuous lmear map ¢~ F. Forcach y € F the map £:x — {p(x}, ¥
15 4 condmuous lincar form on B By Theorem 2A there Is a unigue clement xy € E such that

Hx) =00y forall xeLd

‘Thus we have a map F = E defined by y = xy, which we will call ¢*, the adjoini of ¢. Clearly ¢*
is 4 continuous linear map, satislying (¢(x), v} ={x, ¢*y)g forall x €E, y € F. {n particular,
grr=¢.

() Representation theorem.  Ler §:E X E — IR be a bilinear furm such that:

{1} 18(x, y) < const |x]iyl

(2 Ixl* € bpix,x)

Jor all X,y € E for some strictly positive b € IR, Given any continuous linear form 1 E — IR,
there is 4 unigque v € E such that

fix)=B(x,v) forall x€E

Suppose first that §is symmelric. Then |xi? < bg(x,x} < constlx|* shows that § is a topo-
logically equivalent inner product on E, and Lhe theorem follows from Theorem 2A. Thus the
cmphasis of the present theorem is absence of symmetry of .

Proof. Tuakeany y € E; then the map x = Bix, y) is a continuous linear form on E, whence by
Theorem 2A there is a unique element, which we will call Sy € E, such that

Bix,y) = {x,Sy}

I Follows that 5 s a lincar endomorphism ol 1+ which is continuous: 18xi? = {8x, Sx} = f(5x, x)
= const |Sx| X, whence 18x =5 constix) for all x € E.

Furthermore, §x| =< const|Sx| for all x € E, so that § maps E bijectively onto a closed linear
subspace (by Lewmma 113, in fuct, S 1s surjective, for otherwise there is a w L S(E) and w # 0.
This would imply that {w, Sw) = 0 so that tw, w} = 0; Le. w = 0, a contradiction.

Now take the form f, and let w be its representative: f(x) = {x,w). Then there is a unique
v € E such that Sv = w, so that [({x) = {x, Sv) = f(x,v) for all x EE.

3. COMPACT TRANSFORMATIONS

(A) A linear transformation ¢ :E = F s compact (o completely continuous) il ¢ maps bounded
subsets of E into relatively compact subsets of . (A subset 1s relalively compaclt if its closure

Is compact.) Such a ¢ is bounded (i.e. is continuous), for otherwise there is a sequence (x;);5 | C B
with [xilg = 1, I¢xilg 0, but (§4x)); 5 is relatively compact, so that a subsequence would
converge to an element of F.

Proposition.  Let ¢:E = F be a compact linear transformation, and set y~ 1 —¢. Then y:E—~E
& a continuous linear map whose kerel KO ) has finite dimension.

Proof. Clearly  is continuous and linear. Let (X3} 5 C Kty) be a bounded sequence. Then
X = @ixp) foralli = §, whenve (xj) 3 38 a relatively compuct subset of E. Thus every bounded
sequence in K(y) has a convergent sequence, which implies that Kernel ¥ is locally compact.

Exampie.  Let E be the completion of the smooth functions x:1 = IR with the inner product

{xylg :fx(l)y(l)dt'l' /x'u]y'(l)dl

o



100 EELLS

Let F be the completion of the samw spuace in

(Gyle = _/ x(t) y(thdt
I
Then the inclusion map ¢ E = F 15 compact, for if (x;) is 4 bounded sequence in E, then it can be
proved that (x;) is equicontinuous, whence by Ascoli's theorem (x;) has a convergent subsequence.
Let Ky ={x €EE:{x,y)=0foraly €Ker v} KL is called the orthogonal complement of
K(y); it is cleatly a closed linear subspace of E.

Lemma. There is a number ¢ > 0 sueh that ¢ "I < id(x)l < clxl forall x € KLy

Proof. The second inequality is clear. 1f the first were false, there would exist a sequence
(XY= € KL(y) such that [l = 1 and [y(x)] =+ 0. But xi = é(x;) + Wixp) and {¢(xN; % hasa
convergent subsequence, whence (xj); » | has a convergent subsequence (still called (xj); =)
converging to a point x € Kl(sb). The continuity of ¢ implies that p(x) = x, so that x € Kiy)
i.e. x = 0. On the other hand, continuity of the norm shows that x| = |, contradiction.

(B) Lemma. /f ¢:E — E is compact, then so is ity adjoint ¢*.
Proof. Suppose (x;} is a bounded sequence in E. Since ¢* is continuous, (¢*{x;)) is also bounded.
so that (¢¢*{x;)) has a convergent subsequence, still caltled (¢p*(x;1). Then

B 0x) - S P = {PE0x; = x ), 0 XD = (g g GG~ X P < constipp*(x; ~ x;) -+ 0

ie. (¢*(x)) is convergent.
Propaosition. Giveny €E, thereisay € E such that y*(v) =v—¢*(v) =y ifand only if y € Kley).

Proof The necessity is clear. To prove the sufficiency, we first remark that by Lemma 3A the
functions x — x| and x — [{{x)| are equivalent norms on the Hilbertian space Ki(y). Since the
form f{x} = (x, y) is continuous on [{l(w). it follows from Theorem 2A that there is some

u€e Kl(\b) for which

(x.y) = 0 = Gx), v forall x € KHY)

In fact, this holds for all x € E. 'or K(¥) has finite dimension and is therefore closed, by
Proposition 1E we can write every x € E uniquely in the form x = x'+ x" with x' € KX(y).
x" EK(). Then (@ix}), Plud) = (x"), Plup = {x'. y) = {x, ¥, the last equality because y is
orthogonal to every x" € K(§). If we now set v = (), we find that (x, Pl ={dtx v =y
for afl x € E, whence ¢*(vi=y.

WIE}

yUED

-
/'K-b

Ky

Corollary. (iveny EE thereisa v € Esuch that ftv) = v~ dlvy =y if und only if'y € KM¥*y
i.e. Kl(\t/) = y*(E)and KL(I.D“} = (E). In particular, ¢ and ¥* have closed ranges and finite-
dimensional kernels and cokernels.
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(C) 10 an casy matter to check that the composition and linear combinations of compact lincar
endomorphisms of E are again compact. Thus the n'® jteruie:

n

wll =-:“_¢]n:i I Z (:)f—”kﬁbk:l*'l‘

k=1

where T is a compact linear endomorphism of E. In particular, setting KP = K(y?), we find that
(KP) is a non-decreasing sequence of finite-dimensional subspaces of E,

Lemma. There is a positive integer n such that
KpngH for p<n
KP = K" fur p>n

Proof. First of all, that KP = KPH! implies K" = KP P o = KPTX follows at ance. [f the
l(cmmapwire ﬁjﬂ:\c, we could find a sequence (sp)ps) CEsuch that (xpl =1, xp € KP* Yand
xp. K1 =0. Then (¢xply5 | has no convergent subsequence, because Igx, — xp_gi? = 1.
Namely, ¢(xp = xp_q) = Xp = (Yxp + @xp_gh and YPOYxp + Pxp_gh = 12 ]xp+ dYPxp_g=0,
whence xp and yxp+ ¢xp_y are orthogonal. By the faw of Pythagoras, l¢xp = ¢xp_q12 =

= lxpl? +1¢Xp + ¢xp-gyl* 3 1. But this contradicts the compactness of .

Theorem. If ¢:E — L is compact, then - | — ¢ is injective if and only if @ is surfective.

Proof of the sufficiency.  Suppose there is a non-zero element x, € Kig). Let (Xj)i=) be chosen
inductively so that §x; = x;_;. Then yPxp™x, #0, wp”{\cp) =Xy =0; i.e. KP g KP* for all P,
contradicting the lemma. Thus K{y) =0.

Proof of the necessity. The hypothesis K(y) =0 implies that ¢* is surjective by Proposition 3B.

We then spply the preceding argument to ¢* 1o conclude that Ky *) =0. Corollary 3B shows that
¥ IS surjective.

(1) Theorem. Ki{y}and K(y*) have the sume finite dimension.

Proof.  Let these spaces have dimensions n and n*. Without loss of generality we can suppose
n* 2 n; and we shall show that strict inequality leads to a contradiction.
Let (uj) and (u}) be orthonormal bases for K(J) and K(y*) respectively. The operator

n
X x) fx {u,, ouf
=1

is corpact, being the sum of two compact operators. We define

n

Bix) = Yix) + Z(ui. K

i=t
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Now if 8(x}= 0, then x =0. For
n
0={ul, 8(x)= W, P(xn + l {uj, x}uf, uj") = (a0 xr=Cu;, %)
i=1
forall 1 <j< n, whence $(x} =0, and therefore x = . Thus 0 is an injective mup of the type

considered in Theorem 3C, from which we conclude that there is an clement v of E such that

Bv) = U;+1- But
n

1= udyyl? = (Udeg, OV = (Ul P + z Qg V{ugy,u =0
i=1

contradicting the assumption n* > n.
(E)} For any A € IR, the endomorphism A is compact if ¢ is.

Proposition. Let ) =1 A Then dim Ky ) > 0 for at most countably many X having no
finite accumulation poini.

Proof. Suppose there were a sequence (A;); » | of distinct bounded non-zero numbers such that
each dimK(yy;) > 0. Choose 0 # x; € K(yy,;) for each i; then tor cach n, the elements X, ..., Xp
are lineatly independent. For, Suppose x,, ..., Xy are lineatly independent and

n
zcjxj=0
i=l1
Then
n n n
0= \hn(z cjxj) = Z Cjxj Z Apcid(x;)
=1 i=1 =1
and because ¢(x;) = x,-fhj. we find
n-1
> (-3)
1-— e =0
I
i=l "

so that ¢, =... =<, = 0; it follows that ¢, = 0 100; i.e. Xy, ..., Xq are hinearly independent.
Let V,, be the subspace spanned by x,, ..., An; then there are elements vy € Vg such hat
fval = 1 and vp 1 V. Further, if w EVy, then w— Apd{w) €E V.

n
w=Xij,-

ELLIFTIC UPERATORS 103
whence
n i n-1
B ' Yy _ ' A
W Apo(w) = TR N X = i *: Uy,
— } : i
i=1 k=1 i=i

But (¢(Aqvpl)y 3 his no convergent subsequence since ¢AnVy — Am V) = vy~ (va = Aa$ivn)
+Am@(vm)), und For n > m we can apply Pythagoras’ law:

[$(An¥n = Amvm)? = Iy 4 vy = Rpdhvy) # Ay dlvg)l? 2 1

But because ¢ is compact, this contradicts the boundedness of (Aj); . Hence the numbers
Adim Ky ) > 0 can be counted.
Let us collect several of the preceding resulis as a theorem, often referred to as the

Fredholn Alternative Theorem. Lot o be a compact endomorphisin of the Hitbertian space L,

and form the endomorpliism ) =1~ A Then there is.

(1) at most g countabie sequence of read nunibers X for which dim Koy ) > O, For such values
there is a solution of Ypix)=x —Ap{x) =y fand only if y 1 K(ﬁ)‘

{20 If Nis a value for which dimK gy )= 0, then for all y € B, there is @ unique x € & for which

Yalx) = x ~ Aplx) =y

4.  THE DIRICHLET PROBLEM

(A) Let V and E be Hilbert spaces, and suppose we have a compact injection of Vinto L, in

particular, considering V as a vector subspace of E (from the algebraic viewpoint only), there is a

constant such that x| < const [x]y for all x € V. Suppose turthermore that Vis dense in E.
Let a:V X ¥V = IR he a bilinear form for which:

(1} there exists a € R such that lex, y)| < aixly lyly forall x,y €V.

(2) there are numbers ¢ > 0, ky > O,such that ofx, x)+ Rolxli = clx\{, for all x € V. This will
be called the coercivity condition on a. [n physical terms afx, x} has an interpretation as
a sort of cnergy.
For any positive A € IR set agtx, y) = adn,y) + Mk, . Then jog(x, y) < alxly lyly +

+ Al lylg < constlxly lyly , where the constuul depends on A, Also, for X 22 kg we have

aix, x) =oatlx, x) + 7\u|"-|i~; + (A~ )\l,]mfg }clxti, forall x & V.

(B) Suppuose now we are given u € I then the linear form £:V — I given by fix) = (x,ulyg
is conlinuous on V, for [(x, gl < Ixlglulg < constlxly for all x € V. Thus by Theorem 2C
for any A 3 X, there is a unique v € Vsuch that fy) =aiv.y)forally EV; ie. foru €Lk,
thiere is o unique v € V such that

alv,y) + My, ydg = (u,y)p  ftorall yeV

Thus for A 2 Ay we have a linear map Gy = V given by u - v (G plays the role of Green's
function in potential theory). We have

-

Py

-

Y

s
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whence Gy (w)l}, constiulg Gy (ullg so that 1G{udly < constiujy; i.e. Gy, is a conlinuous linear
map. Because the injection V —+ L is compact, we obtain the

Proposition. Tuke A2 g The composition Gy E = Vi @ compact endomorphism such that
forany u € B, Gplut is the unique clenent such that

el Gyluwh y) 4+ MGy(uh, v ={u, ¥
forall yev.
This result leads us to consideration of the operator | - MGy, to which we can apply the
methods of Section 3.
(C) Definition. The first null space of @ is K (o} = {x € Vatx,y) =0 for all y € V}. Similarty
for the second null space Ky{a). Il we define o*(x, y) = oty, x), then clearly K, (o*) = Kq{a)y
Proposition. x € K (o) if and only if for X = kg, x — MGy (x) = 0. [ particndar, dim K, (@) < o=
Proof. Forany x € V, alGy(x). y) + MGy (x), y)g = (x, ¥, so that e{Gy(x). ) = {x = AGRIX). yip
If x = AGyp(x), then 0 = a(G(x). y}= A 'alx, y) forall y € V.
Conversely, we compute
e (x ~ MG (X)L ¥) =oplx,y) — Ao (Gyix) y)
=mixn,y) ~ AOGyg
=alx.y)=0 forall yEV
The coercivity condition now shows that x ~ AGy(x) = 0.

Lemma. [f G} is Green's function associated with a*, then Gy and (¥ are adjoints relative o the
inner product of b for 3z N,

Proof.
(x, GRty g = end G, Gy
= a(Grixd Gy + ML) Gy
= oGy ). Gy tahy = {y, Gy [xPg
it follows that G is @ compact endomarphism of [ and the corresponding results above
apply 1o Gf. Yor instance, hm K (e} = dim K (a*) <o,
(D) Proposition. Givenu € E. there is a sulution v EV of alv.y) = lu, ylg forall y € Vifand
only if u L gk ()= K, {a*).

Proof. First of all, alv, y) = (u, y) forall y € Vif and only if (1 = AG, v = Guuia 2 Ap): for

CLdain
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oly — MGy dv), y) 4 Av = XGyiv), yig = (u, vy
alv, ¥}~ MedGyivh vy + AGyv, wIgtd Alv, v = (Ul yog

whence afv, y) = {u,y)g. The necessity is obtained by reversing the steps, using the uniqueness
ol Gytu).

by Corollary 3B there is a v € E with v — Gy (v} = Gytu) (o1 Gplu) € image 1 - AGy ) if and
only if Gy(u} L zKul = AGE). But thenv € V. By Proposition 4C, K¢l — MGy = K (a*), where
Az Ay But Gylu) LK( = M3} when and only when u L Kil -~ MG}, for (o, ydg = Mu, G ylg
= MGyu, vg foraliy € K(I - MG3)

For (utlure reference let us formulate our results as follows:

Theorem. Let Vand ¥ be Hilhert spaces and V =+ E a compact dense injection. Suppose that

oV XV = Risa V-continuous coercive bilinear form. Then

f{} Forallu €F and \ 3 Ay, there is a unique solution v of alv, y) + My, y)p = om(v,y) = yig
Joraglty €V,

(2} alv,y) ={uy)g has a solution if and ondy if u 1 gK;(a).

(2) dimK, (o) =dimK,(a) <o

(E) Consider N ={x € V:the form y = a(x, y} is K continuous on V}; because V is dense in E
it foliows that we can ¢xtend this form to be defined on E. By Thiwcorem 2A, for each x € N there
is an element Atx} € E such that alx, y) = (A(x), yh: forull y €V, Then A is linear on N, called
the domain of A and written hencetorth Dom{AJ, but not necessarily continuous.

Lemma. DomlA) s dense in E.

Proof, Take u € E such that (x,u}y = 0 for all x € Dom{A). For X 2%, there i$ a unique
v € Dom(A*) for which A%(v} = u, whence {Ay(x), v}g = {x, AR(v¥g &, u} = 0 for all x € Dom(A).
But A, is surjective, whence v is E-orthogonal to alt E. [t follows that v = 0, whence u=0.

Remark, Let V and E be as above, and let AV = E be a continuous linear map with closed
range and dimK(A) <oo. Then the bilincar tern o x. y) = (A%, Aydp on Vs a special case of
the preceding situation, and is 1he objeet of the study [6].

in Part 11 we shall be interested in Jdensely defined operators A DomiA ) -+ E (not necessarily
satisfying the strong conditions ol the preceding Remark). These seem to be most easily studicd
a8 we have done in this section — through the associated bilinear torm a(x, ¥y} = (Ax, y)g, with
solutions given hy Theorem 40}, if we think of A as a differential operator, then these solutions
are thus given, so to speak, in integrated forn.

1. ELLIPTIC GPERATORS ON THE TORUS

1. GROUPDUALITY AND FOURIER ANALYSIS

{A) In the next section we shall study elliptic differential operators on the torus. There are
certain special features of this case which provide simplification in the analytic theory. Basicaily

thic hannane hoacanes the Fonrsr trancform ic a tnnl need eccentialiv in the ctudv nf differential
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operators, and on the torus it is especially simple. {Here we have an example of a principle pre-
valent in modern mathematics: in certain problems a dualization is possible, and the dual problem
is somelimes easier to handle. For instance, cohomology is richer in structure than homology

the dual space of a Banach space has special lealures not always present in the given space.) In
our case dualization is provided by the Fourier transform. We illustrate the idea briefly now before
specializing to the torus,

Let G be a locally compact ablian group: its dual group G is the totality of continuous
homomorphisms of G into the unit circle SV With natural (weak) topology, G also has the structure
of u locally compaet abelian group. The Pontrjagin duality teorem asserts that the natueal map
G X G = §'is a dual puiring, written X, y = {x, y) and called the character function; ie. the
canonical map G ~+ G is a topological isomorphism.

With every such G we have an {essentially unique) invariant Radon measure, cabled Huur measure,
relative to which we can form the complex Hilbert space H(G) of square intcgrable complex func-
tions on G. Given f € H(G) we can construct its Fourier transforin f=F(n € HG) by

ity)= f fix) (x, y)dx
G

When the Haar measures on G and G are suitably normalized, the Plancherel theorem states that
F: H(G) -+ H(G) is a bijective isometry.

Example. G=R" Then G = R™ too, and the chagacter function is (x, y) = explilx, y}} for all
x,y ER®, where {x,y)=x,y, + ... + xpy,. The Haar measure is (except for a multiplicative
factor) Lebesgue measure. The Fourier transformation of u € H(R™} is

i(y) = f u(x) eI Y2
mﬂ

The Plancherel theorem asserts that

flu(x)l‘dx=(2:r)" flﬁ(y)l’dy

R° R"

{B) Example. The following example is basic motivation for all that follows. Let Z™ be the

lattice subgroup of IR™ consisting of the n-tuples of integers. The quotient group G = Th = RO 27 Z"
is called the n-dimensional torus; its points can be thought of as n-tuples of real numbers modulo

2x. Then clearly G = Z with character lunction T? X Z" —+ 8! defined by (x, k} = explitk, x)).

We form the Hilbert space H{T?) of square integrable (relative o the natural invanant measure

on T?) complex functions on T® with inner product

(u.v)H(T..,=fu(xW(x)dx
‘]“n

The functions x — exp(i{k, x)/(2m? for k € Z™ form an orthonarmal base for HT™); ie. if
ey = explilk, 2T, then {ep, egt=8pq forall p,.q & Z", and their finite linear combinations
{called trieonometric nolviomials) are dense in HCT™), by the Riesz-Fischer theorem.

ELLIFTIC OPERATORS 1G7
Now HUZ), the wotality ol maps Z" - @ of the form k - ay, wilh
}4 Iilk} 2 < os
ke Z™
Iy also a Hilbert space. relative o Hhe uner product

{a, b)lﬂl") = (2" E a by

kC E"
The Fourier transform F:HCTPy - HOE™) is given by Flu) = §, where
dk) = /ulx)e Mk xD gy

'rﬂ

Thus we transfer the study of HUT™) to HIZ"), thereby obtaining a definite simplification. Further-

more, if HYT") denotes the completion of the smooth functions in the inner product (with s a positive

integer)

u, V)H_(T,,) = )_, {D%y, DGV)H(T“)

lal& s

then :]hc Fourier transform defines a topological isumorphism of H¥(1™) ondo a Hilbert space
HYZ"); in lact, H(Z") is the completion of the trigonometric polynomials in the inner product

Al
{a, b) =(2m" 3 O+ (K3t
[Tv L] - ) dg by
k('z“

. 2 .42 .2 . f :
where (ki = k3 + ...+ k2. We shall not prove this, but mention il now only as motivation fur
the constructions to (ollow.
‘ A powerful property of the Fourier transform is that it changes differentiation into multi-
Ellicunon. Tlis fact lies behind the equivalence of the norms on H3(T") expressed in Proposition 24
elow. )

2. THE HILBERY SPACES

(A) .Wc wish to consider real.valued trigonometric polviomials on TP, e, Tunetions u expressible in
lhc. form u(x) = E uy explitk, x¥), where thie sum is extended over all k € 2™ where the o éd‘
salisly u_y = if,, and where only finitely many u, # 0. For any real number 3 let {18 deno:‘c the
completion of Lhese trigonometric polynomials in the inner product

(u, v, = (21r]“\ (L4 (ki2Y¥uu v,

o

g

R o

ry
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Note that
i< luly  if s=t

whenue we have a continuous injection HY - HEif s <t

Define H® = N{tI':t ER}Yand 1177 = Uit tE R}y
-

Hec  CHYC . CHYC..CH*C..CH
Lemma (Schwar(1)z inequality). Forany trigonometric polynomials u, v we huave
i, Vgl = (ulgy I Vig-t
In particular, ul3 = lulgygluig_ -

This follows from

s+l -1

- stt 8 2 - )
I\ (1 R 2w+ 172 v_k‘ l\ O+ ki P g u
[

J/
i

3 (1 IR vy
—J

Lemma. Forany 0 <e<landt, <<s<t, we have
- (s~ - :
ol < elul}, + eSO Dl

for all trigonometric polynomials.  Also,

(g )i
luly < €lulg, + € (3-12)fity a)|m11

Proof, We first note the inequality A< et + e'("lz}"“"’)a" for a = 1. Namcly,

et + E'(’"tl)ll(ll-s)ah”s= eal " 4 (Ea‘l.'!'(ﬂ‘li)f(ll's))

i sases €abl™® : alt=8 < 1; in either case
But this is always = 1, as we see by considering the cases €a™' 7% 2 1 and €4 ;

one of the terms in question is 2 1. A _ . .
Applying thistoa =1+ IkI? for k € Z" multiplying by upu._y and summing gives the desired

inequality for all trigonometric polynomials x = u(x} = E uy, explitk, x)). The second inequality
follows, replacing € by €.

Lemma. For all € such that 0 <e < | we have

bty Selul2 + €72 1721 i

for all trigonometric polynomials u, if s & 1. (This lemma is tor usc in Section 3.)

Proof. Assume first that s > 1.

Iy =2s5—1}y (2
|U|§|U|:_| < lu':if lUis + € luls]

P it wwrithe o rondaced by 2 and taking 0 <s— 1 <s
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By completion of the square
IZluiZ < e [l + e~ 23uiid + e 272 Juld] = eluil + (e =25/ 2ud |2

Now observe that the sanie estimates liold for s = 1. even withoul the preceding lemma.

Lemma. The differential operator D® = a""',’ax‘," xg" {where la} =@, +.. + o) isd con-
tinuous map D= H R S 1S wigh 1D%) < [l 4 | SO all v E 1Y lel  there is a constans
depending only on s such that

lulg < const l (D%,
lef<s

Proof. First of all, %u is only defined for trigonometric polynomials u. D%u(x) = T tik)®uy
X exp(itk, x)), where (ik)® = (ik Y . (ikp)®. Then

(D)2 = (2m)" l(! + {KIBGK)T n_ (~ k)T = (2m"2( T+ kPP k00,
Bul k2 < (k12 pal < (1 + 2yl g that

a2 < + _
D uls‘h(lw)“/\_(u KOy = ui?,

It now follows that D* has a unique extension to a continuous linear map H¥¥lal - s,
On the other hand,
(1+ 1kI*)* < const Z Kl

lal < 3

hence

- -
halg = 21}“Z(|+ kI Pugu_y < const Z‘ khuku-k < const Z{ %l

lal & s lal<s
Putting these together, we obtain the

Proposition. Suppose s is a positive integer. There are numbers 3 > Q and ¢ > Q such that

atlulg < Z (D%ulf < aluif

lal < s
)
lul} + i (D%utd

fol < 5 lal = 5 lo <5

—

P A RS

< c\ DY
[

forall u € HE.
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Proof. The first equivalence of inner products follows at once from the preceading lcuu.nu. To o
prove the first inequality of the second equivalence we nole that tor every € > 0 there is 4 number
such that (taking t; =0, t; = t,in a lemma above)

[D%ulg < ulq < blulg + eluly
for all & for which laf <t. o
Thus we regard HS as a llilbertian space, and are free to choose any one of the above three

inner products to describe its topology.

(B) Lemma. Lef

n
al
A= "‘:j';?
i=1
be the Laplucian on R™, and define K =1— A. Then for any t we have

(Ktu, vl = (u, KMy = {0, Vg,

. tf2. s+t e ifective sometry, in
for any trigonometric polynomial u.  Furthermore, K {2 H5* U HE is a bijective isometry
particular, [K¥?uly = lulgy,.

This is immediate, because

Ku(x) = E(l + kiYug explitk, x)  if u= Zuk explitk, x)

Propesition.! Let s> 0. The Huinner product dually pairs H'~% X H‘:‘E-* IB; ie the continious
linear forms f on H'* * are uniquely representable as the elements v € W%, with l(r;I f)s— (lf, i,
for all u € HY%; and every v € B'"* thus represents u continuous linear form on H*%. Furthermore,

(lgey = supf(u, vl fulyy = 11
. [ £33
The Schwar(t)z inequality shows that {u, v} is defined for u € H!'*® and vy € 11*-%.
: TR N o pits

Proof. First of all, clearly every vE H'~% defines such a form. Given sm._h a form 1 H‘ -* IR, <
there is a unique ¥ € H'*® such that f(u) = Cu, W, g for all u € HYS, and Wi, = ?uP{“(u)l. luleg <1k
Let v =K% € H'™5, whence Ivl_ = [Viges Then (u, vy = {u, K% = (u,v)I:s - fu). .

If there were another such v' € B8 then {u, '~ v), =0 for all u € H'Y¥8. Taking u = K™%y
gives

0= (K5 ~ vl v =yl = V' = v},

whence v/ = v,

(C) Lemma. If¢is a smooth function on T%, 6 € HE, then ¢u & H* and |pulg < constluls. The
constant depends on $.

! We have not yet defined K' for ¢ not s positive integar. Note that we can define K* fur t not 8 positive

e tat et _w_ai__ dwrl oA —dl o
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Proof. 1620, then by Proposition 2A

K 1
lpulg = const ) DY @upg < CORsl, l IDEUld ~ vonstyluj?
jal<s Jul % s

If =3 <0 then by Proposition 28 and tie Schwarttz incquahity,

loul_y = suptlou. vos vl = 1F = supltu, ovg:Ivi; = 1} < [ul_yI¢vl; < constgiul_

g -

As an application we have Lhe

Proposition,  fet A be a smuooth differential operator T® uf urder ;i e.

A= }_, g DY

lad = r

where ay TP — R are smooth functions. Then AT - W3 is contintious for alf s
(1)) Theorem (Rellich). If s <1, then the injection HY = [P i compact and dense.,

Proof. The image is dense because i contains the trigononetric polynomials. 11

Y

ullx) = Zlui explidk, x))

is a sequence 3 1) such that jull, << M for all j > |, we shall find o sequence which is 115-Cauchy.
First of ull, we have lufcl SMO+ K2y Y028) Y2 We order Z" (denoted by k,, ky. )
and then select inductively and successively on ky, kg, ... convergent subsequences of the rows of

1 2
Ug g

] 2
uk;‘ l.lkz,

i
uh, .-

The diagonal sequence, still called (uf(l, will be convergent for every k € Z°.
Now fix a positive integer N and write ui = ug + vy, where

g~

1
ul (x) = >4_‘ uf exptidh, xJ)

ki< N

:
Then

|ViN‘VL|3:ll1'ri" >_4 1+ |k|2)s(uiii-“i““l_k”ul_kj

, |kl = N
B Z e (I i € — luf = w2 a
(14 [k[2)t-s E Tk Y s t
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is arbitrarily small for N sufficiently farge. Take such N Then

2
IuL—LIjNI:= Z‘ iu{(—-u{‘)c\p\/- (ke x

kIl = N s

i e Gne j CVEree Wi < N. [olows
is arbitrarily small fori.} sufficiently large. since (ui)]__l converpe uniformly for (k= N. Itd
that the subsequence (n) is H¥-converzent.

1 DIRICHLET'S PROBLEM ON'l B

(A) Let

A= Z‘ ag DY

Jol & 1

be an elliptic differential operator of order ¥ with smeoth real periodic coefficients on R™. That
means that its symbol s T" X R? ~ R detined by

\
oalx,p)= (-1 2 ag(xIE"
ol =1
is positive definite, where we have writlen 1 = 2s and £% = £5 g0 Viewed as 2 differential

. ) e
operator on T, it follows that there is a number Ap > 0 such that optx, F) = AplEF forall x € rm,
£ € M. The following resull is immediate:

Lemms. The composition of elliptic operalvrs on T0 s elliptic. 1f A s elliptic, then So 5 HS
formal adjoint A*, given by

A*u= l - DD agu)
o] <r
Furthermore, {Au, vl = {u, A%, for all trigonometric polynomials a,v. . .
Form odu, vi = {Au, v}, forall (rigonometric polynomials u, v. It is our aim in this sechion
’ ' — N Cus 1= 110 Theo-
to show that the hypotheses of Theorem 4D of Part | are satisfied, with V = HY k= ‘H . Theo
rem 2D shows that H® = HO is a compact dense injection. Since A 113 H™* is continuous by
v = L3
Proposition 20, we lave fodu, VI =< AL, Wl %= 1Au_lvl; < const julglvlg tor allu,v [ 1d

Propasition (Glrding's inequality). If Aisan rthearder smootle ellipiic differentiul operator on
TP, then there are numbers ¢ > 0, X > O such that

(Au, wly F A uld = ciul}

forall u € HY. Againr= 24, This will be proved in Seation 3¢

Example: The operator K3 = (1 — AW is elliptic of order 96 Lemma 2B shows that (KSu uly = {u.ul,

th o P Rediee inaanality s verified i a very SITONE sense.
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(B) Before proving Girding's incquatity, wue need 1o know that in IR"™ there are sufficiently many
snooth functions to separate closed sets,

Lemma. Let Osca<h. Then there is a smooth function ¢ R - IR suei that ¢l = 05 U< a,
@O = 1if t 2 band O < (t) < | otherwise.
In fact, define ¢o(t) = exp(— 1/t —alb—D) fora <t < b, amd D elsewhere. Then set

I } oa
lth = /({:.,ls]tlr /upu(n_]cl:s

Proposition.  ff Cq, O are disjoint non-void, closed subsets of IR, then there is a smooth function
@:R" — IR such that ¢lx) =0 if x €Cy; dix)= FPif s 0Oy and Ussgix) = | forall
x € R

Proof  1FC, is the closed disc centred at 0 € R™ andl of redius a = Q,and Cy is the complement
of the open disc centred at 0 and of radius b > a, then set ¢t = L — tix]), where J is defined as
in the Lemma.

In the general case we start by taking an open coveting (U}, =1 of Cy by discs such that
the family (Uy) 5 is locally finite and each l_Jk NCy=9 Tet ¢ IR™ = R be a smooth function
such that ¢, (x) > 04 2 € Uk, and ¢y () =0 if x € R" — Uy. Define ¢, IR" = R by

¢i(x) = Z‘ O klx)
k=1
Phus ¢0%] > 0 if x € C,, whenee there s a neighbourhood Uotf Cpin winch ¢, =0 Set
¥ = IR — U, C¢ = C,. These are disjoint closed subsels of IR" and we repeat the construction,
giving a smooth function ¢,: R™~ IR such that ¢,(x) > 0 for x € IR = and ,ix) =0 i x €CF.
Finally, the function
x = $ix} = @y (xH[@(x) + $2(x)]

satisfies the requirements of the proposition.

Definition. The support of 4 function ¢ is the closure {x:$(x) # {1}: denote it by sptig).
The following result is a special case of a theorem proved later.

Lemma. Let (Uidj < <m e a finite cover of TV by open sets. Then there are smooth funcions
T = 1= 00, 1] for 1 <k < msuch that

m
Vetei

N
=1

=

and sptig) C Uy,

Proof.  First of all, construct by induction an apen covering (Vi) Cx<m of T" such that tach
Vi € Ug. Use it and the preceding proposition Lo define a smooth function - TR = IR such that
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Yi(x) > 0if x € Vi and spi(yy) € Uy, Then

m
x - z vilx)

k=1

is a smooth positive function on T®, whence the function

X > dy(x)= wk(x/ I Z‘ w,‘m

k=l

satisfies the requirements of the lemma.
Similarly for the following result, needed in Section 5C.

Lemma. Let (Ui o be alocally finite open cover of the open set Uin IR®. Then there ure smooilt
functions (§); 0 on U such that spt(g)) C Uj forall j > 0, E $j(x) =1 for all x € U, and each
01,

(C) We now proceed to the proof of Proposition 3A for all trigonometric polynomials
u(x) = Tuy explitk, x)).

Case 1. All coefficients ay are constant functions, and aa = 0 for lal <r. Then
{Au, uly = <Z Z‘ aglik)®uy explik, x)) , zukcxp{i(k, x))>
k lal=r k 0
But ag(ik)® = (— 1)*a k, whence

— - 1
Au,wy =(- I)‘l Z agk%ugl? = llu,\{x.k)lukl2 >2‘?\ulb&l'lukl2

k lal=r k k

= lozll + k" lug 1~ Xg i3

Consider the function f(x) = Xo() + xZH/(1+ x%)% Then there is a number such that 0 < ¢ < f(x)
for all positive x € IR; in particulur, A, (1 + |k|") 3 (1 + [ki?)®. Theretore,

(Au,u), > ch + KL Pl 2 ~ A luid
k

2 clull - Rgluid
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Cuse 2 The coelficients ay, = 0 dor fod < 1 and A = Ay + A where Ay has constant coctlicients,

A= S b ¢
—

lad =t

witls ail [by(x)| < 7 Tor some sufficiently small > 0; the size of 7 will be determined in Cases 3, 4.

We apply integration by parts over T® tu obtain (A, u, uly =1, + [, where

I = Zfbﬁ,[)ﬁumu

is the collection of all terms with 18] = [yl = s;

A
I, = by, DELDY
2 l. n‘r u u

where |l + ¥l <r and I8l =5, [yl =<s. Nowinl, the by are just relabellings of the by, whence
by Propusition 2ZA we have

2 _/Dﬁu[)‘fu

Similurly, by the second and third lemmas in Scetion 2A, for every € >0,

Li=n < 5 constfu)?

121 & constlulglul,_; < e constlul} + e~ B canst|ul3

Suppose ¢ 2 O and Ay -~ O are constants for Garding's inequality fur Ay, Beeause the preceding
estinuates tor {1y ] and |1, are valid for any 5 2> 0, € > 0, we can redefine ¢ > 0 and A, > 0:

Agu,udy = cluf = pluld + 1, + 0,
2 cluld - Aglutd = i1 = 1312 < lul2 = A i}

und the proposition follows for this case.

Cuse 3. A=A+ A+ Ag, with Ay, A} as in Case 2, and

-

A= l.‘uUa
lat <

Then arguing as in Case 2,

(Ayu, )y = l ./cmDﬂuDTu

g e

=

Ty
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summed over all 8,y such that 181 s, byl <s 080+ [yl <o Again, forall e » 0

€A u, wlgl <= constlulgdul,_y
< e constlull + €7 b eonstluld
whence we can also absorh this contnbution into Ginding's inequality for A + A4,

Case 4. Thus far we have proved the proposition for those elliptic operators A with nearly constant
coelficients. We now prove the general case by cutting up T into small domains on which A is
nearly constant. Let {Uj)) i< m bt 4 finite open disc cover of T such that in each U every aq
with {ad = 1 has oscillation <7, with 5 chosen as in Cases 2, 3. Let (¢} o j <y be functions on ™
chosen in the second lemma of Section 1B, Now wrile

m m m
(Au )y = Z ¢>J-3(f\u. TS :l(aﬁj.'\u. q‘nju)" zZ(Al¢le), (bju)n +R
=1 j=1 j=1

We can apply Case 3 to the summands in the right member, to obtain
m m
(AU, Wy 2 c3 \¢ju|§ =, Inpju\ﬁ t R
— . fa
j=1 i=1
But chju[n < lulg, and using Proposition 2A we can find a > 0, b > (. such that
m
-
llci’juli > ajull — bluli

i=1

Thus by adjusting ¢ and X, if necessary, (Au, kg 2 clul — X Jul + R. The term R may involve
derivatives of u through order <r, and through integration by parts we can express it in the form

R= Xfcﬂ,uﬂumu

summed over all [Bl <s, [yl <5, 18l + |y} < 1= 25, Onvce again, for any € 2> 0 we have

-25+%]

ikl < e constiul} +e constlul}

By choosing € sufficiently small we can absorb R 1o obtain (Au, u)y 2 clulf = X, luld. This completes
the proof.

4. REGULARITY OF SOLUTIONS
(A} Let CS{T™) be the Banach space of functions on T% having continuous denvalives of order
= 5, with norm

[alpserny = sup{iDTu(x}ix €1 and ol <s}
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Clearly C3CU™) CHEC™ Tor ald inteperss 2 00 Let C7CI™ = O{CY O ™05 22 0F the vecior space
of smooth functions on |7

Theuvtem {Sobolevy. 41 > nf2 + s then we have @ contines injection HCT™y » OSCI™). In
particular, considering this as an inclusion, we fave 17T = C701"),

Proof. Incases =0, il ulx} = Euk explitk. x2) is a trigonometric polynomial. then for all x €717

;o 2 Al hl ] ™
ulx)? < Q_Jlukll) g{lu + |k|1)'|uk|2} {)J(l + \kilr‘j = |u|§21 I+ [kI2)t

But 1 2> n/2 implies that the sum is convergent. whence [u(x)| << constiuly. Thus the Fourier serics
representation of any u € H' converges unifortmiy, wirence its limit is continuous. In case s is any
positive integer such that £ 2> nf2 + s and Jal = s, then [DTutx)] < const D%, _, < constijul,, which
proves the theorem in general.

(B} Let A be an elliptic operator of orderr = 25 on 1™,

Lemma. Define Ay = A + A Let t be an integer. Then there are numbers ¢ 2> Oand X > 0
such that (Ayu,wy 2 clull, forall uE B Sand d = 2.

Proof. I tis positive and K =1 — A.then K'A and AK® are elliptic of order 20t +s). Glrding's
incquality shows the existence of ¢ and A, such thal

(Ayu,u)y = (K'Ayu w2 clul?

Tos  Moluld + Al

it
2 clulf,

+ (A - Aunulg

= clu if Aa2)y

2
t+s
If t is negative, then

(Ayu,u) = (ANK UK ), Kty 2 clK'l? |~ R K aid + Mu Kludy

t+s

= clul?

- 2 2
t+s 7 Roluly, + Aluly

Zclull,, if A2}

Lemma. There is a unrique continuous linear map A™ - HUYS o HU% such that for all u, v € HY®
we huve (Au, vy = (u, A*v),.

Proaf. Fix v and consider £: H™S - [R defined by Ru) = (Au, vy, Then [flul < jJAul_ ¥4
< constlulyy vl ¢ By Proposition 2B there is a unique A*v € H'9 for which flu) = {u. A*v),
faraltu e N and A* is bounded on HTS,

Proposition.  There is @ number N, 2> O sueh that for alt X 3 N, the map Ay VS~ HU=% g5
hijective, with universal bound independent of X2 X, .

Proof. First of atl, JAy uly_duli g & KAz u | 2 cialiy g, whence iAyuli_g 2 clulyy forall
u€H'"S and A 2 . By Part|, Lemma 11D, By = AyH'™S is closed in H'=% and A is injective.
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if Ry, is a proper closed subspace, there is a non-zero w € 18'*5 for which {Aju, wh,= W, A wh =
for all u € H'*3, Therefore A{w = 0; but our choice of k shows that {v, Afu) = (Ayu,wy =clulf,,,
s0 that A{ is injective; j.e. v = 0, a contradiction,

Theorem. If v € H °(T") and Av € HY(T?), then v € HY*I(T™). In particular, if Av € H*(I™)
then v is smooth.

Proof. Assume v € HP = HP(T™) and set u = Av. Thenu+iv € H’“i"“’P’]. But v = A3 (ut+av)
€ Hn(tG 40 1 ) g sujtably large. Repeating the process, u + kv € HREP¥TY yhence
v € HWIB(+n, p+20) (or quitably large b, The process can be continued until we find v € HY'Y

Remark. 1t can be shown using this result that if the coefficients of A are analytic on " and if
Av is analytic, then 50 is v.

(C) Finally we are in the position to apply the results of Part |, in particular Theorem 41,

Theorem. Let A be 2 smooth tearder elliptic operator on T® (1= 2s). Then

(1) A maps HYS(T") onto HEXTY) N KCA®)L, with kernel K(A) for all t.

(2) K(A)and K(A*) are subspaces of CT(TM) of the same finite dimension.

(3) Forevery t there is a number ), > O such that if X A, then Ay = A+ :H'Y T~ HS(T™)
is a continuous bifection. In particular, Ay :C™(T") - C=(T") is a bijection

(4) dimK(A)) > O for at most a countable number of X with no finite accumulution point.

Proof. We define «: H* X H® + IR by ofu, v) = (Au, v},. Then o is a continuous coercive bilinear
form on H®, whence « satisfies the hypotheses of Part [, Theorem 40 if o) (v, y) = (Ayv, ¥, then
(v, y) = {u, y), for all y € H* implies that Ay v = u by Proposition 2B. That the solutions actually
lie in the designated spaces H!'*® follows from Theorem 4B. The statement (4) is a consequence of
the observation K(A; )= K(l — (&, — MGy ): for Gy : H® =+ H? is compact, 50 that we can apply
Part I, Proposition 3E.

5. ZERO BOUNDARY VALUES IN R"

Our next step is to make certain minor modifications to obtain corresponding results in
Euclidean space. The Dirichlet problem in its general form is a theory paying special attention
to boundary value assignments; our applications go in another direction, and we shall consider
only the elementary case of zero boundary values (taken in the Hilbert space sense of belonging
to the space H (U) below).

It would be possible to imitate rather closely the existence and regularity theery of Sections
24, starting with Hilbert spaces HL(U) defined through the Fourier transtorm in R™ for t 3 0
by the norm:

luly = f(l +HIEPYIa(EN d  forall tER®
mn

We shall not do that; rather, we shall use the results just obtained to derive the analogous resuits in U.

(A) Let U be a bounded open set in IR®. For smooth function u,v: U = IR we define the scalar
product for positive integers s:
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\
(Vi = l fl)“u(xn)‘-‘v(x)dx

lel&s U
We let HHU) be the completion of the vector spuce ot smooth tunction on U in that inner preduct.

Definition. A fest function in U s a smooth function on R" whose support is contained in U.

Let HP(U) be the closure in H3(Uj of the space of test functions in U, We observe that Hj(U) = HO(U);

however, Hi(U) is a proper subspace of H3(U) fors > 0.

Proposition. {Poincaré’s inequality). Consider on Hy(U) the inner product

€ Wy = Z (o) (D%u, D%,

Jar) ~ 5

where {;) =sla ! ag! and (D%, DY), = (D%, “awll“lUj' This is cquivalent to that given

on WtU) considered as a subspace of 11(U).

Proof. Since the test functions are dense in HE(U) 1t sutlices to work with these. First of all,
il 18 clear that

1 el b2
”“”H;(U] = "omliu'ﬂ"w]

To prove an opposite inequality we start with

s 4

.
|“|:|’(U) =Z lDﬂula < COﬂStZ “U”:la(U)
1=0 Juj=t t=0

It therefore suffices to prove

ullfyy gy < constilullyy i <

By iteration we reduce the problem to that of proving

4 au |?
lulgy & const|—
X

o

For that we obserye that

X

f du(x)
uix) = dxj
ax;

- oo

since u has compact support; it lollows that
Xj

"lau
Iu{x)llgconst‘/\-- dx
OXj

and the desired inequality follows by inteeration.

I o

iy

e

BLE.
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(B) The spaces HL(U)Y have many of the properties of HECT™), by virtue of the following lemma.
Let €' be a closed cube in IR™ whose intefior contains U. Without loss of penerality we can

suppose that ¢ is the period domain defining T7.

Lemma. Four each o € Wt Uy define W =u in U, 0 in €=U and extend T over IR™ by perivdicity.

Then u = U defines an inclusion H3(U) ~ H5{T™), and latys oy = IUIH,(T,.) (= [als in the notation

3]
of Section 3).

Proof  Given u € HE(U) et {#j); 21 be a sequence of test functions such that |¢y — “lll?)(Ul = 0.
View each @; as defined on 1% then

!¢J —leﬂ‘(T“} =i¢] - U“p((-) ~+0

and the lemma follows.
We can now transfer some of our results from T to U

Theorem (Rellich). If s <1, the injection HY(U) — H3(U) is compact and dense.
Let C5(1)) denote the vector space of (5-functions on U.

Theorem (Sobolev). If t 2> n/2 +s then we have an infection HE(U) = CSXUY. i particudar,
HG (U consists of smooth functions in U.

(7} We shall write U@C W io mean that UC W,

Lemma. Given disjoint closed sets Cy and C, inan open set U of R® and r'Meorder elliptic
operators

- @
Aj = l ajﬂD
<

defined in two disjoint aper subsets yof Uwith CyC Ui = 0,13 Then there oxists an Mgrder
elliptic aperator in U extending these in G

Froof. Construct a locally finite open covering (Uj) .o of U such that Uj N Oy = B for j £ 1. Let
{¢j)j =0 be a smouih partition of unity with 0 & ¢;(x) < I and each sptg; Uj us in the third lemma
of Section 3B, furthermore, note that ¢,1C; = 1 for j=0, 1. For cach j = 2 Jel

-
A_] = l aja[)“

lel&r
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be a smooth r-order elliptic operator in Uj: e.g. we can take for Aj the terxted Laplacian

A2 Then define A in U hy
A Z‘ 2‘ (,b].sml)
iZ20 lal=r
Clearly A s well defined, and has the symbol
]yt 2 .
aa b E) = (-1 2‘ lqﬁj(x)dm!x}f
lal=r j20

In particular, for cach x € U all Pilx) = 0 and some gyl x) > U, whence A is elliplic throughout U.
Also, A = A; in { by our choice of covering,

Corollary. {f A isan elliptic operator in W with U@ W @ Int C, then there is an extension & of
A in U to a periodic elliptic operator with C as the period domain,

Proof. Take Co=U and C, = a closed neighbourhood of bdy C which does not meet W. Then
use the lemma to extend A in C,, and A™? in C,.

(D) If Ais an elliptic operator in W @ U of order r = 2s. then we define adu. v} for test functions
in U by

alu, v) = {Au, v}, = Z ]hﬁT[)ﬁuD7vtlx
u
where the sum extends over all 8, ¥ with [fI<s, [v] <s. By using the right member to define & we
have a unique extension of & as a contirmwous bilinear form on H3(U); thus thers is a number
a > 0 such that

loefu. v} =2 ‘"“'Ii?.{ll)l"lllr,ﬂu

for alt u, v € Hj(U).

Theorem (Ghrding's inequality). If A is an elliptic operator of order 1= 2s in an open set W such
that T W @ IntC, then there are numbers ¢ > U and Ao = 0 such thar

af(u.u)+?\t,Iu!ﬁ;'cluif,ialu) forall wE U

First of all, it suffices to verify this for test functions in U, We extend A 1o a periodic operator A
in (" by Corollary 5C, and then apply Proposition 1A.

(E)  Next we come to the problem of regulurity.

Theorem.  Lef v € HO(U), and suppose that for some integer 12 0 we have Av € H(U). Then for
all open sets Uy with Uy @© U we have v C1EYYU ). I Ay €XI7(U), then v is smooth in U,
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Proof. Let Uy, Uy be open sets for which U & U, @ Uy © U, Chowse d test funciion § in 0,
whichiis 1 on Uy, Set Av=u Then

{{u, w)“D‘U) ={Av, g’w)“ou“ = (v AT wo gy = GV, Arwhp gy v ATWI o)

for all periodic smooth functions w in IR® wilh period domain O, whete AY

operator of order < v~ 1 whose coefficients have supports in U . It follows that

is & smooth differential

{tu, W)H“(C) =y, A'W)Hu“\) +{v, Afw)Hu((.,

Let 5 be a test function in U which is 1 on Uy, and define ¥

w _[vinU
Y 0 in the rest of C

similarly for the definition of i = nu. Extend { and A} to £ and A} in C by defining them 1o be
zero in C-U,. . . o

Let A be an extension of A Lo a periodic ¢lliptic operator with period domain €, by
Coroliary SC. _

If A, denotes the H*(C)-adjoint of AT,

(&, Wye oy = AL ¥ wigege) + R VW)

for all w, so that £ =A(f ¥) +A,(¥). But {ii ~A, (V) EHI"HT")and A is elliptic on T, whence
£V € HY(T") by Theorem 5B, In particular, vE H'(U,). ’ )

We now repeat (he process, starting with an open set U3 for which U, & U; CE U,; w+e hn't'l
that ti-A (V) € H2-Y(T™}, so that v € H*(U}). We can continue in this way until v € HY U,,}
for some open set Uy containing U, . The final statement of the theorem follows from Sobolev’s
theorem.

¢(F) Taken together, these results yield a conclusion similar to that of Theorem 4C; with T?
replaced by U. . o .

First of all, let Hf,.(U) be the vector space of functions in U which have all derivatives of
orders % 1 square integrable on every open U, © U.

Theorem. Let A be un elliptic operator in an open set W D U of order 1= 2. Then

(1) A maps H3(U) OVHEE(UY onto Hi (U) 0 KHAY) with kernel K(A) € CTHU).

(2) dimK(A) = dim K(A*) < oo,

(3) Thereisahg > 0such that Ay: HH(UIN HISSU) > 1) (U) is @ bifection for alt X< Ro.

4) dimK(Ay) > 0 for at most countubly many N having no finite accumulation point.

Remark. 1t is quite appropriate that these statements should involve the spaces II;UC(U) in .
expressing higher order differentiability; for differentiability is a Jocal concept, whereas belonging
to HY(U) is & giobal one.

It is possible to obtain more precise interpretations of the assumption of boundary values
in case U is a bounded region with smooth boundary. Roughly speaking, solutions v ¢ Hut W)
can then be shown Lo have all derivatives of order <s vanishing on bdy U; sce Bers-John-Schechter 121
and Nirenberg | 1 L]. We shall not pursue that aspect of the theory now.
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Remurk,  Suppose we are piven e ll;ml Uhaud g ¢ ll::( UHaand are ashed To i v ¢ HL',:I Lh
such that Av = wm Ul with s asaoaasieg Hhe Boeandasy vidaes ¢ i the sense i g e HL'H L

Sethng ' = u - A we rediee O b nn te selyvioe AvT o a By e i D0 L G i
we can tihe v = v b @ o solve the given piobiem.

Example. Let U={x € IR :x? 4+ x3 < 1} Then the negative of the Laplice vperalor —4 is
elliptic, with symbol ¢ 5(x,7) = §1 + {3, Suppose we sel u = Uan U, bul require (hat v equals
{in the above sense? a given function ¢ on bdy U, The solution describes in IR® a surlace spanning
¢ which is a minimal surface, in the sense thut the mean normal curvalire is zero.

Remark.  Given a subspace H such that HitU) C H C HY L), we can ¢consider membership in 11

as expressing boundary conditions on the problem. I we have a form of coerciveness (such as
Glrding's inequality) for functions in H, then we can apply the above theory, We have considered
the simpiest case, with H = HY U); the opposite extreme = H3(U) has been developed by
Aronszajn [ 1], and intermediate cases by Lions [10], Schechter {15], and others.

6. STRONGLY ELLIPTIC SYSTEMS
On T" let us suppose given for each n-tuple « of natural numbers witl jof < r a smooth map

g 2 I™ = Mip, p). the vector space of real p X p matnices. LM C™¢T™, IRPY denotes the vector space
of stnooth mups T — [RP, then the differential operator

M
A= Z‘ ﬂﬁDﬂ
|6l =5
is an endomorphism of CT(TP, IRP). We define ils symbol
o, T" X IR = M(p, m

by
1

oplx, £) = (~1)/? 2 aglx1gP
Bl=1

and say that A is strongly elliptic if g, is positive definite at every point x € 1% Note that there
15 number Ay, > 0 such that for all (g, ) COTMOCIR™ XOIRD we have 61 — 23)

(UA‘X! ‘f]rfv n)u{p = -'\ulﬂzslmz

g

rEwe s

e

Ty
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Let E=H® X ... X HY {p copies), with inner produc

it
(u, vy, = \ {u;, vi)
E LJ 1 0
i=1

where u = (u,, ..., up), v={v,, .., vp) Similarly for V=H*X . X H®% Then we have the bilinear

form e V X V iR defined by
atu, v) = {(Au, v)ﬁ
As in the case p = |, we again find that « is continuous and coercive. Consequently. if A:H'([% RP)

=+ HYT™ IRP) s ¢ strongly efliptic aperator, then Thearem 40 ix valid with H' = HYT® RP),
Similarly, Theorem 51 is also valid with ll;m{ Uy replaced by HI“Ci U, IRP).

IH. DIFFERENTIAL OPERATORS ON VECTOR BUNDLES

We present in Part H an abbeevialed teatment of smooth manitelds, vector bundles, and of
certain differential operators associaled with them. The theory s primarily Jocal, and thus it |s
most appropriate to lormulate the convepts in terms of sheaves. The basic seterence for shead
theory is Gudement 5] the viewpoint in the theory of connections is thad ot Koszul [V].

1.  SHEAVES OF MODULES

(A} Definitions. Let R be a commutative ring with unit. A sheaf of R-modudes is a triple (.7 m, X),

where & and X are topological spaces and 7: % - X is o continuous surjective map. subject to

the following conditions:

{1} = is a local homeomorphism; i.e. each s €% has an open neighbourheod S such that the
restriction w5 of 7 is 4 homeomorphism of § onto an open neighbourhood of 7(s).

(2) Foreach x € X the stalk &4 = v '(x) is an R-module, and the algebraic operations (s, t) ~»s+1
and {r, s) = rs are continuous where they are defined, for r€ R, s, t € 7.
The totality 1 X) of sections of (%, 7, X), - i.e. of continuous maps ¢: X =% such

that ¢(x) = x forall x € X - is an R-module, with algebraic operations defined pointwise.
If Uis an open subspace of X, then the restriction 7 JU of (5 7. X} is the sheal (27 (U),

mlw~'(U), U

A triple (" 7', X0 is a subsheaf of (7w, XYiF (1) 5 is an open subspace of &7 (O’ e’

(3) each stalk 7y is a submodule of the stalk 7. ,
Given sheaves 1%, 7, Xy and (77 p, Y} andd a continuous map : X =Y, un f-homomorphism
is a continuous map - % =+ for which the folfowing diugram is commutative, and for which

f
oo

n °

X ey
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cach restriction 1.7, =i 18 it R-homomaorphism, In parhwular, for XY and 1 the identity
map we have the notion of R-iomomorplusm A %+, 7 of sheaves of Re-rnoddudes over X, 1-very
A induces a homomaorphism A7 (X} = . 7(X) of their modutes of sectioms; and A is focal, in the
sense thal for all ¢ € %' (X) we have spliA) Cspttg). With mild conditions on % we can prove
that every local homomorphism & ¢ X) —. 77 X} induces a sheat homomorphism; sec Section 21

We say that (%, =, X) is modelled on (.77 p. YY) if every x € X has s reighbourhood U and
homeomormphisms U= Y and : % U - 7 such thal I 15 un Fsomorphism,

Example. Let 7 be the simple sheaf 7= X X R, where R s piven the diserete topology, and
e 7= X is the projection on the first factor. We shall sometimes write .7 = R E S =+ X ix
modelled on .77 with £: X =+ X the identity inap, then % is said 1o be a localfy simple sheaf Its
componenls are covering spaces of X.

(B) Let .% %, X) be a sheaf of R-modules, and U 3 V open subsets of X Then we have the
R-homomorphism

Iy S (V)

defined by restriction. Clearly, it W € V ¢ U arc upen. then ru H 1&13. and r'l‘j = ilentity

Conversely. il Lor aff pairs ol open sees U DV of a buse for the topology of X we have
R-modules & (U) and R-homomorphisms r'{,’ defined with the abaove properhies. then this assignment
tealled a presheal) defines a sheat of R-modules over X In fact, for ciuch point x € X et
Sy = UM oAU, the direct limit taken over the open neighbourhoods of x; define rE:.?'lUl + .
as the natural map. Set %' =U{% x € X}, and wpologize & by constructing the following buse
for this topotogy: for each open U in X and P ES (Ut VU, ¢y = {r,l!w) 'y € Uh The map
7Y = Xs defined by &% = x forall x € X. It is immediate that (5 7, X) satisfies the conditions
of a sheaf.

Example I. Lot :# —+ X be a sheaf of commutative rings with unit. An #-module over X is a
sheaf % - X of abelian groups such that (1) for every open Uin X, % (U) is an 99 Urmodule;

(2} for every open V C U the restriction % U) > ¥ (V) 15 a homomorphism of modules compatible
with the restrictions .#(U) - 9(V) of rings of operalors.

Example 2. 5 and 7 are R-modules over X, their rensor product 5 &, 7 — X is the
A-module characterized by the assignment U - (V) & 4cu) 7 (U forevery open Uin X. Note
in particular (hat \# ® , 7 = 7

Example 3. Let X be a topological space and R the real number ficld. For each open U in X let
% {U, R} be the R-module of continuous maps U = R™ The resulting sheaf 7 =%iX,R“) - X
is the sheaf of continious maps of X into R™; it is 2 @ -module. Then % is isomorphic to the
direct sum %' ® .. ® %" (n copies; definition evident), and & ™ is said to be free of rank n.

A sheaf of €' -modules is focally free of runk nif it is locally isomorphic to %0,

Example 4. 1f ¢:X = Y 1s a continuous mup of toplogical spaces, for each open U in X let
FUr={og: U~ '?_ﬁv.k):na(x) = ¢ix) for all x € U}, where ":(“(Y,R) —+ Y is the sheaf of con-
tinuows functions on Y. ‘Thus & (U is an R-algebra, and if V is apen in U, we have the restriction
homomorphism (U} = (V). The resulting sheal is denoted by 45"’\{‘“.. gy ™ X. Foreach

open Uin X we have ¢! (ﬁY,RJ‘ Uy lentifivd with a subalgebra of (‘;x,Rl( U3, and thus ¢"'6('Y‘ R
as 4 subsheal of %, ..
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2. VECTOR BUNDLES

For our purposes vector bundles over a space X cun by viewed from three standpoints:
(1) As a fibre bundle whose fibres are vector spaces; this is convement for introducing related
structure (e.g. G-structures), . ‘ et as
{2)  As a locally free sheaf of finile runk; this is appropriate for utilizing local structures such as
the differential structure of a manitold; ‘ 7 N .
{3) As a special sort of ¥(R}module, where 1R} is the algelra of continuous functions on X;
this viewpoint stresses the formal manipulalive aspect of the theory.

(A) Definition. Let X be a topological space. A (real) vecror bundle over X uf fibre dimension m
is a topological space E together with 4 continuous surjective map E:E — X such that:
(1) each fibre Ex = £ (x} has a structure of 4 (real) vector space; S
(2} each point of X has a neighbourhood U and a homeomorphism (1 triviatization)

p:UXR® = £77(U) such that gp(x, v} = x foraill (x, €U X R™ and the map v — p(x. v}

is linear forall x € U. o . -

If E and F are vector bundles over X, a hvmomorphism A E =+ F is a continuous map such
that for each x € X the restriction A: E, — Fy is lineat.

(B) Let k:E — X be a vector bundie. '!‘henAl‘or any open sel U XAthVe lola.lily 81";:0[1_’;“[1”;;1;)
sections U — E forms a vector space E(U); for V open in U the resiriction map ry Bl ~ k£
defines a presheaf of vector spaces, whose sheaf (a %' -module over X) we shall. denote by E - X.
From the definition of vector buadle E it follows that each point of X hasa nelghbourhooc} U and
m continuous sections 0;: U — E with f0,(x) = x for all x € U, and each (¢, (x), ..., om{x)} I8 8
base for Ex. 1t follows that E is locally free of rank m. ‘

Conversely, let & — X be a locally free sheaf of rank m. Lol My = {y€® ) :vix)=0L Then
the sequence

0+ M,y > &y + & M B, » 0

of vector spaces is exact. Set Ex = &fy/My &y, and E = U{Ey:x € X}, and define the map §:E - X
by the condition Ex — x. . - .

If U is an open set in X over which (U is isomorphic to CK‘U_ Rm)- then we Im{vsj :c‘.'t‘lm?h, ‘
0y, .., 0 € F(U) defined so that for each x€U, rgal, s ryam is @ base l9r &y over '€’} . Their images
@, (X), ..., Om(x} under the coset mapping form a base for Ex over R. Furthermore, th.e map
o UXR™M — £ 1 (U) defined by pix;a,, ... an) = 2, 2;0i(X) is & bijection; we tupologize E by
requiring that cach p be a homeomorphisim.

The foliowing consequence is immediate:

Proposition (1). I E: X = Xis a vector bundle, then there is a canonical isomorphisin of E ons
the vector bundie constructed from its sheaf L of sections.

Proposition (2). [f &— X is a locatly free sheaf of rank w, then there is a canonical isvmorphism
of & onto the sheaf of sections of the vector bundle just constructed from &

(C) If E and F are finite-dimensional vector spaces, then we can form their space, lomiE, !:”i
of linear maps, their direct sum E @ F, their tensor product E 8 F, the pt® tensor puwer sPL
=E® .. ®E (p copies), the p!? exterior power AP E, the pi symmerric puwer P E. We agree
that®PE=Rifp=0. Let

8E= EOPE, AE=E APE, ®E=z ePE,
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direct sums in cach case. These sl have structures of grisded algebras over R. whose nnillidicanons
pair - and g-summands to the (p b grsammand by pariwalae, viewang AP T e foabty vl

alteinating p-lincar formss on the daad space 14 = HomiL., R we detine the product ol o C Al
and g€ AYE by

o Aﬁ”‘l' co xpiq - L[_JEUUU\U(”. e me))ﬂ()\a(p‘ Iy x(llp+q)’

will summation taken over all peiwatations o of (1, .., p 1 y) and €, e sign ol e permutadion,
witho{l)<...<Z alprand olp + 1)< <t g). Thus aa = 1P A, woud AL 1y an associalive,
conunutative (in the graded sense) graded atgebra of dim i = 2%, where n = dun k.

These constructions are all immediately transferable to sheaves E of sections of vector bundies
E over X. “Thus, tor instance, we define the % L-module b @ 1 1= Xoas in Section LB W is an
casy matier Lo verity that it is lucally free and corresponds canonicatly to a vector bundie whose
fibre over x is the vector space Ly, ® Fy.

(N Let X be a normal space, and £ E — X u vector bundle over X with @ 1) = LX) asits
% -module of sections.

Then €(R) =€ (X XR) is the R-algebia of continuous functions on X.
Proposition. I E and F arc vecior bundies vver X, then there is a natiral ESOMUFpRisH.
¥ (Homy(k, F)) -+ Hot, (o U6 LE), 61D

Proof. Given A € € (Homp (L, Fhand ¢ = % (E), deline Ap € 6 (1) by (Ap)x = MaMpix}) tur

all x € X, Then ¢ = &g is clearly 2 ¥ (R)-homomorphism. The inverse map is defined as follows.
Given a €iR-homomorphism A €(E) » %' (F) and x € X, v € by, we construct tusing the
normality of X) ¢ € €'(£) whose supporl is in some open U over which E is trivial and Plx)=v.
Define MxHv) = (Ag)x. IF ¢" were another such section, then (A¢) = (A¢')x. Forfa,, ., ay € E(U)
are 4 set of sections linearly indepeadent at every point x € U, tien we can wrile ¢= E pio; and

¢'= 2 plo; tor suitable p;, p € % (R) with pi{x) = pilx) (1 Ti=im). Then A(¢') = 3 p! Alo,),

and (Ag')x = z PilxYAlg;) = zﬂl(’”‘““i = tAg)x. The proposition follows.

Example. I E*= Homp (E, R) is the dust bundle of E, then #(E*) = Hon, ) (6'¢E), € 1R)).
Also, B (E) = Hom . (K LE*), % (R)). More generally, if l%{E‘ Ry is the bundle of p-lincar
waps ofEX X E e Rthen " (LRE R - 18 0611, @R

o Kemark, Any local homonospusio (e, support decicasmg) A% () - &' 0F ) delies a shicat
hotmomaerphem Ak - )

From the viewpoint of dilferential operators the following resull is usebul,

Proposition.  Let Eand V be vecior bundies over X and A6 (F) *» G () be o ® (R homamarphism.

Let 3 be an Reendomarphisnt of 6 (R), and suppose A(yd) = Diy)p+yAle) for all ¥ € & (R),
¢ €W (E). Then Ais lucul

Froof Let ¢ € @(E), and let U be an open neighbourhood of a puint x € X such thai ¢jU = 0.
‘Take a tunction ¥ € % (R) tor which Yoo = Gand ¥ = | in a neighbourhood of X = U, Then
¢ = v, whence (Aghx = IIYHXI¢(X) + ¥ x) Adix) = U; e A{g)IU = 0.

Taking 13 us the zero homomorphism, we obtain the

Corollary.  Every @ (R):-homomorphism is local

Al

v

s

s -
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3. SMOOTH MANIFOLDS AND VECTOR BUNDLES

{A) A Hausdorff space X is a topolagicatl n-manifold if it is locally homeomorphic to IR™: thas
with every x € X we have a cfars {8, Uy, consisting of an open neighbouthood U ot s and a
homeomaorphism 8 ot U onto an open subset of IR™ For such a space the tallowing properties
arc equivalent:

(1Y X s paaracompact;

12 Xis metnsable;

3y X s expressible as a countable anion of compact sets;
(4) X has a countable base forats topolagy.

We assume henceforth that X has these properties.

Definitions. Let X be o topological n-manifold. A differential structure on X is a subsheaf

&= ‘@[X,IR) of the sheaf (‘tx,ﬂh of continuous functions, which is modelled on '(]llR"JR)‘

We shall call the pair ¢ X, 27} a smoath manifofd, and sometimes denote it by X alone, We shall let
GHIR) = g’l)(. 1yt X7 denote the algebra of all sections of &, called the smooth 1}mctluns on X.

A smoath map 12X - Y of smooth manifolds is a continuous map such that {72y g, isa
subsheaf of ff(x_ Ry this meuns that tor every open Vin Y, composition with { defines a hamo-
morphism .C’ﬂw' RV gﬂ(xl 3 YV A diffeormarphism is 4 smooth homeomorphism |
whose inverse {71 is also smooth. Note that cach chart &: U - R is a diffeomorphism.

Remark 1t is possible to define a smooth manifeld by giving tin place of 7 a sheaf of sets on the
space X which corresponds (o the sheaf of sections of the principal bundte ot X, That approach
would have the advantage of emphasizing the fibre bundle theoretic aspects of manifolds. See
Section 4F.

Remark. Not every compact topological n-manifold admits a differential structure (n 2 8y nor
is a differential structure unique {n = 7).

The following result follows easily from the constructions in Section 3B of Purt {1

Proposition. /f %/ = (Uj) is a locally finite open cavering of X, ther there is a smouth partition
of unity subordinate to #. ie o family (N} of smooth functions on X such that sptidy C U
Sor all i, E?\i(x) =1 forall x € X, and each 0 < M(x} < |

(B) A smooth vector bundle £ E = X of fibre dimension m is a vector bundle in which ¥ is a
smooth manifold, £ is @ smooth map, and all trivializations p are smooth. The correspondence
between smooth vector bundles aml locatly free @ -modules (ie. sheaves of Z-modules tocally
isomorphic to @™} proceeds as in Proposition 2B. In particular, the space Z(1) of smmwooth
sections of E is a @ (R)-module.

For any section ¢ € FYE) we have the notion of its support. spt{g) = Closure{x € X:¢{x) # o}
Then sptig + ) C sptid) U spt{ ), sptiye) C sptiy) N splig) for all v, € F(E), y € R
We skall say that a section ¢ is compact if splig) is compact, The totality ol compact sections
is a vector subspace  @(E) of 2411 of course, (1) = Z(E) i’ X is compact.

Henceforth we assume that ull manifolds, maps and vector bundles are smooth

Remark. A sheaf is soft il every section defined over a closed subset A © X can be extended toa
section over all X, The sheaf of sections of a sinoeth vector bunde is alwirys solle (For proof
see Kobayashi-Nomizu: Foundations ot Differentizl Geometry Vol |, Inferscicnee, p .58
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(€1 We now construct certum sheaves on Xodelined in tersts of 16 differential struchure. For each
open set Lol Xdet 276U be the algebra of all smooth Tunetions @ in U which admit 4 smooth
extension 10 an open Uy, 7D UL whicl domar is allowed 10 vary with . Les 771U be the totality
of derivations on U0, e Reendonsorphisms v 270Uy -+ 2700 such that vig = vig)l+ pvig)
Thus v is a local homomorphism (it devreases supports, as i Proposition 250 1 Vs an open subset
of U, we define the restriction map rt,r AT ATV as Tollows

baheany v 0 Biengivenag € 2700V there s Uy Pt 1 Seenon Sy, © 77,00
such that g 4y = g

Beline wiw) = vig yrestrivted 10 Vo 1) were another such exlension, then W) e Y =0,
amd bevause vis local, we find vig) ) vl b= 0dn V. Thos wig s mdepende st of the choice
ol extension of ¢, and we define t'l\f(vi =w.

It is clear that we have just defined vector spaces and homomorphisms of o presheat. The
assoclated sheal .7 — X is called the fangent sheaf of X, 'This sheal is locally free of rank n: in
fact, for each puint of X let (8, U) be a chart containing it, and Je line the derivation v in Z5U) by

&
(vil@))x :(’*“" fpad 'Dﬂ[x) l=ixmn
ox;

for ¢ € 22U). Thes ave easily seen to be a base over Z(R) Tor . 71Uy, The vector hundle
7 FEX) =~ X of fihre dunension n associated with 7~ X by Praposition 28 15 called the tangent
vector bundle of X, The fibre 7 'ix) = Xix) is called the turngent space of X at %, and its elements
are called the tamgent rectors af X. These can be identified with those mappings v: ZY(R) =+ R which
are R-linear, vanish on the constant functions, and satisfy vigg) = (@) dix) + dix)v( W) for all
9. & € ZAR). Furthernore, the space @CTIXD =.77(X) is preciscly the Lie algebra over R of all
detivalions of Z% RY with bracket {u, v]=u.v~v.u. Thesé derivations are called the tungent fields
of X

By the constructions in Section 2C we can form the vector bundles

o T(X), AP NX),  wf (X

the dual bundle T*(X) = Hom(T¢X), Ry and ity powers, The elements in the Z(R)-modules
P TIX)), FHeP T*(X)) are called p-contravariont, p-covariant tensor ficlds on X. Those of
AR TH X)) are called exterior p-forms on X. Note that

n
BNTHX N = \ GNP TRX))
L

p=0

is a graded commutative algebra. Similarly for the spaces %75 ®" (X)), etc., of compact tensor
fields. Observe that it X is not compact, then @A T*(X)) does not have a unit.

I X =Y is a map of manifolds, then f determines an Fhomomorphism V() 1(X) = T(Y)
of the tangent vector bundles, which at each point x € X is the differential fo0xi: Xix) + Y(f(x)).
given for each v € X(x) by the function which assigns to each @ € CV’(Y'R}(Y) the number
(wly)ix = v o 0. [tis clear that w has the properties of a tangent vector at f(x), and we define
[o(x)v = w. The map I therefore induces f-homomorphisms:

ST el (X =8P T4Y), &M TH):ePTxY)—>aP THX)

(with evident interpretation of the term f-homomorphism in the second case). §induces homo-
morphisms of the spaces of sections ot the covariant bundles; not of the contravariant bundtes.
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In particular, we have the algebra homomorphism
ADBATHY)) > BIATHXY)
which on the p-components is given by
AP DY x(uy, ... up) = PHXINT 0y, Fo(xjup)
for all g € AP T*(Y)); uy, .., up € X(X)

(D) For each open set U in X let 7,(U) be the submodule of Hompg (), (L), 2L generated by
the monomials v; © ... 0 v (1 Kk < p), where cach vj is a derivation on Z(U). Just as in the
construction in (C), we have a sheal Fp — X defined, cailed the sheaf of p‘h—arder cunlact vectors of
X (or sheaf of differential operators of order p). Again, Fp ~ Xis locally free of rank

P

_ Z (n+ k—l)
un,p) = K

k=l

because in a chart (6, U) the iterated partial derivatives D¥(0 < ja! < p) form a basc over Z(R).
Thus we have a vector bundle »: Tp(X) = X canonically associated.
Its dual bundle X)) = Hompg(Tp (X}, R) -+ X is called the bundle of p-jets of functions on X.

Note that the fibre of JP(X) over x € X is ZXR)/Z2, where Zﬁ ={¢ € Z(R)all derivalives of
orders < p of ¢ are 0 at x}. The natural map ¥ : B(R) = D(IP( X)) such that jPi¢) assigns to each
X € X its coset in @(R)/ZE is called the p'P jet extension.

Again, if £: X =+ Y is a map of manifolds, we have induced F-homomorphisms Tpthy: T(X) + TptY)
and IP(f): JP(Y) —+ J2(X).

(E) Exercise. Throughout the past three sections we have constructed many [unclors on various

categories; €.8.:

(1) % mapping the category of sheaves of R-modules over a space to the category of R-modules
over a space to the category of R-modules. Also @

(2} The functor mapping vector bundles over a space X to sheaves of R-modules over X; its inverse
functor (which is exact, in a sense easily made precise).

(3) The various products ®, A, @, in the category of vector bundles over X.

(4) Ty mapping the category of smooth manifolds to the category of smooth vector bundles.

Organize these sections categorically, and discuss the relations between these functors.

4., CERTAIN OPERATORS ON VECTOR BUNDLES
{A) Definitions. Let §:E ~ X be a vector bundle over X. A linear connection on L is a map
V: @(T(X)) X PAE) » D(E)

written V{u, $) = V¢, such that:
(1) the map u —+V ¢ is @R Hinear for each ¢ € Z(E);
(2) the map ¢ =+ V¢ is R-linear for cach u € ZXT(X));

(3} Vulye) = (Vuy)o+ ¥V for cach ¢ € INE), v € DR} where Yy = uty). We shall refer
to Vud as the covariant derivative of ¢ with respect fo u.
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The curvattre of V is the map

R AZUTIX)) X Py = 20k

3
detined by 7
Riu,,u;lp = vulvu,‘ib vugvu,dh - v|u‘,u;|¢
=~ Riua,u )¢
The curvature is Z2(R)-linear in each variable uy, Uy, ¢. The covariunt differential 1s e wlap
V. @E) ~» D(THX) @ E) = Ptom(TEX), LY
given by (Voiu = Vo 1f VE und VF are connections on the vector bundles E and F, we define
the connection V on E o F by
V90 ) =VE@ eV  for u€BNX), ¢ELE), ¥ELKN) :

Also the connection ¥V on E@ F, charactenized by
Vo0 ® ¥)=VEp) 8 ¢ +00 7 [(§)

1n particular, we have induced connections on 6P B, AP L, P B Also the connection V¥ o the
dual bundle E*, given by

Vi) = V(v - Vv~V tv)  Tor g€ FEY), v E DN

where apain Yyl v) = uiyv). More generally, define the connection Voon the space | IR O
= Hont@P E, F) of p-lincar maps &~ I by

P

Ty

(Vyuddvy, ., vp) ;V:‘(q&(vh o Vp)) 5 (v, ,..,V}jwl;, e Yph
’ i=i

Similarly for Hom{AP ¢, F), Hom{»? E, F).

Remark,  Throughout this section it would be possible to generalize the notons and vesults, replacing
FTXH by DAS), where § is u vector sub-bundle of TX) which is completely integrable, ve.

such that G(8) is 4 Liv subalgebra of 22(T(X))r. By Frobenius’ theorem these are ust the leaved
structures on X.

(B) Definition. If §:E — X is a vector bundie, the Lie dertvative is the map

8:DTXY X LHTH(X)), LEN ~ LPBCT*X)), SB{E) '

v

defined by
»

(G,a) gy, ... dp) = Zu{q&., By (@) bp)  for g EZTHEN

i=1
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where 40, ¢iv = gt vy for v € 70T Sioilarly Tor afternating and sy mmetne plinean o
The Lie derivative is R-lincw in cach variable and satisfies @0y = (T ke 30 o tor y € 270R),
a € LPEDF X)), NEY; hawever, Oy ()7 ydula) in general, 50 thal 8 is not waally @ con-
nection.

Now suppose V js a connection on §:E = X, Then we can define the duwl Tie derivative
{relative to V)

8:2IT(X)) X LPETX), PHED —~ LG TIX), &En
by
n

0, (a)Xuy, . uy) = Vyeduy, o up) = Za(ul. o U] )

i=1

Similarly for altemating and symmelric p-lincar o

(C) 1EE:E— Xis a vector bundie, let P{E)= ALP(ZAT(X)), (E) be the space of alternating
plinear maps from @{T(XH > DP(E};, we agree that .o *(E) = P(E}, and that .o P(E) = 0 for

p < 0and for p > n. Thus .&(E) =E' o P(E} is a graded commutative vector space over R with
only finitely many non-zero summands. We call the elements of (@ P(E) the E-valued differentiul
pforms on X.

Definitiun. Let ¥ he a connection on £:E —~ X. The exterior differential {relative 10 Vs the
map d: ' P(H) ». Pt YE) defined by

ptl

(dgXu,, iUy ) = l(—l)“ POy o0y Ty up )

i=1

+ Z(A DMg(fu oy B ey By ey U
i<j

where y; € [(X),

Given u € @(T(X)), lel us define the interior product iy . of ®(E) . a1k by
Ligghu,, .., up_|) =¢lu,u,y, ..., uP_l).

The following formal computations are left as an exercise.
Propuosition.

Byiy — 1,0, = Ty, v]

iy = 0

0, =diy, +i,d

A —F.0. = ot Rinvi  foroll a v C AT
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fi parin wlar,

Ullil.l = i(l”u

(D) Tet By, Eq, F be vector bundles over X with lincar connections V', V2, ¥ respectively.
Suppose we are given a bilinear pairing ¥, X E; ~F, written (v, v;) = v vy, such that V(g ¢,)
= (Vb b g+ o (V) forall u € @TX0), ¢; € P(Ej). Then we have the induced bilinear
pairing

Ao PE ) X WE,) » ar PHAE)
relative to which

Vuloa ) =(Vid) 4 + $ 2 (VL)

Buldagy=(0,01a ¢ + (0,4

(@A) = (@A + (= 1IPG Al )

dig sy = (dg)ay + {~ 1P aldy) tproofs by induction).

For instance, taking £, = Homp(E,E), E; = E = F and the natural pairing Homg(E, E) XE —+E,
we have the

Proposition.  Forany connection V on E,
0,d =~ df, =iyR Qe 0,dig)— dtiy(¢)=(iyRg
d*=R jie. d'¢=Rnrg
dR =10

(E} Example I, E=XXR. Then V¢ = u{¢}= d¢ u is a connection. Its curvature R{u, v) = 0
for all u, v € ZMT{X)), by definition of the bracket [u, v]. The Lie derivative 8,(v) = |u, v]; for
¢ € F(T*( X)) wehave(Oy4)v=di¢ v)u—¢iju.v]). The product furmula for the exterior differential
in . @ P(R) is obtained through the exterior product A: AP T*(X) X A9 T X)-» APTIT*(X), In
particular,

t1) d¢ is the differential of ¢ € @ R);

(2) digrdr=doay +{-1Ppady forall ¢ €A PR), ¢ €.UR);

(3) d?¢ =0 forall ¢ €.P(R). In fuct. these properties churacterize d.
Note also that

0,d=db,

By0y—8,0, = a{u,v]
Example 2. Let E, =E, E, = E*, I' = X X R with the natural painng. Then given any conneclion
T on I, the dust connection and the differential ton fugctions) are related e the desired way by

definition of dual connection:

dig- g =iVyp) y+8.(V,¥) for pELE)L Y EIEY)
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FExample 3. 'Take E = T(X) (or more generally any completely integrable sub-bundle). A con-
nection V on T(X) is called a connection on X. A special phenomenon oceurs because of Lhe
existence of the identity map o2 ZAT(X ) ~ @(T(X)). s exterior differential

dafuy, u) = Vy aluy) =V adog) ~adfuy, ug])
The map T: 2AT(X)) X D(T(X)) + Z(T(X)) given by
Ty, uz) = Yy, (u) =V () = [y, up =~ Tlug, uy)

is called the torsion of the connection on X, and V is said 1o be symmetric if 1= 0.
Bianchi identities:
(1} (dTxu, v, w) = R(u, viw + R{v, whu + R(w,u)v,
(2} (VaR)v, wd + (VyRNw, ) + (VW RXu,v) =0 forall u,v, wEL(T(X)), il T=0.
The connection V induces a connection VP on ®P T(X); the tensor pairing 8P T(X) X 89 T(X}
—+@P*3 T(X) has the required derivation property VE+"1(¢ ey)=(VEg)e ¥+ ¢e (Vi)
The covariart differential on X is the map S0@P T*(X)) -+ Di@P* 1 'T*(X)) characterized by

P

(Velvy, ... vp) = Z Vo 9¥os s Vjo s V)
i=0

Proposition. Let V he a symmetric comnection on X and VE a connection an the vector bundle
£:E =+ X. Then we have the following formulu for the exterior differential d: &/ P(LE) > o Ptlgy.

(déXu,, ... '-'p+1)

p+! pt!
=z(_,,i+1 1v§|¢<u.,..., o o, upﬂ)—zqs(u., e U Ty (0 s Uy
i=1l j=1

(1f the right member is denoted by (d'pMu,, ..., upy)), then iyd"+ d'iy = 8. But the exterior
differential is the unique operator with that property.)

Example 4. A p‘h-order linear connection on X is a connection ¥V on Tyt X) such that Vud = ug
for all u € B(T(X)). ¢ € T,_j(X). The operators constructed above can be viewed in this context.

(F) For each open set U of the n-manifold X let 5(U) be the totality of charts with domain U.
I V is open in U we define S7(U) -+ S(V) by restriction, whence we have the sheaf (of sets)
F+X

Let G be a subgroup of the general linear group Ly, of linear automorphisms of R, Say that
8, 8' € SP(U) are G-equivalent if ¢ 0 87" has its differential belonging to G for every point of U.
Let &”(U)/G denote these equivalence classes and /G —+ X the correspanding sheaf,

Definiticn. An/(iniegrable) Gstruciure on X is a section of #/G.

For instance, en orientation of X is an L}-structure, where L}, = {X € Ly detih) > 0}; an
oriented manifold is a manifold with a particular orientation. A Riemannian structure on X is
an Og-structure, where Oy, is the subgroup of orthogonal matrices (X' = transpose A); a Riemannian
manifold is a manifold with a particular Riemannian structure. Most of differential geometry
centres around the theorv of G-structures.
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Remark, The viewpoint in the preceding delnition st a faereactting gencealtzalion, as
emphasized by Spencer [19]. Let, @ be a calepory of tepological spaces and conlimuous nlaps.
closed under unions and restrictions to opea sels. Given any topological spuce X, wedehine the
shieal 77+ X whose space 7 (U) of sections over un open set U of X is the totality o1 homeo-
marphisms # of U onto an object 0{U) of . #. Say §, 0" € #(U) ure equivalent (wnlten ¢ ~ @'y
iF0'o87" is a map of . #; let F{UN(~) denote the space of these equivalence classes. An
. # structiere on X is a section ol the sheal

SN~ X

For instance, taking tor .4 the totality of domains ot R", whose maps are the diffeo-
morphisms of one domain to another, an . #-structure is a differential structure.
Remark. A large class of vector bundies can be constructed as follows: Lel 8 € LA LX) be
a Gestructure on X, and define the sheat 2+ X whose space of sections over U s
S ={@ 00 "), U-G withd, 8 €l

If F is a finite-dimensional vector space on which G operates on the left  {ie.
F is a left G-module), then G operates on each #(UY X F hy ((8"-0"), D-g=00" 0" "), g8 ')
clearly (@-871), g = (¢ 87" g),, so that the operation is well defined. Let #2(U) X, ¥ be the
orbit space, and 9 X F — X the resulting sheaf. This is easily verified (0 be a sheal of vector
spaces, locally free of rank = dimF.

5 RIEMANNIAN STRUCTURES

In this section we present brelly the few ideas that we shall need Trom Riemanusan geo-
metry: Riemannian bundles, dual differential forms, integation ol scalar densities, the Levi-
Civitd connection.

(A) Let E be a Euchidean n-dimensional vector space with inner product () or (. We have the
canonical isometric isomorphism P: E = E* given by P(x)y ={x, y) = Ply)x.

If E and ¥ are both Euclidean spaces, then we define inner products on the direct sum E @ F
and the tensor product E®F, characterized .hy

() @y, %3 8y =(xp xadp + oy yoi
O @y, X @ )= O xdp Xy, yady

respectively. In particular, we have an induced inner product in each 8P E, P L%
Introduce the projection map 8:8P E -~ APL by

Alx, & .. 8 x,) = zegxum ® .. 8 Xy0/p!

(1]

sumnied over all permulations 0 of {1, ..., p), where ¢g is the sign ol o. The elements x & .. 4 %p
= Alx, ® ., & xp) generate AP L. We define the inner product on AP E by setting

() A bpg, ¥ b Aypd =(AX @ . @xp), Aly @ . @ yp P
=(x,;® .85, Aly, 8 .. yy)
=d¢i(xi,yi)

Similarly tor the inner product on P E,

pyw

-

i

s
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{B) Definition. An corientation in an n-dimensional vector space Eis a choice of ray in the Definition. et X be an n-manitold. The bundle of twisted real nunbers of X is the vector bundle
one-dimensional space A" E: il 12 s Luclidean, this is equivalent to a choice of o, € AR 1 with of tibre dimension 1 constructed as in Section 4F through the action Ly X R > R given by
togl = 1, using the norm in A" E induced from the inner product in £ (A1) = Sigl]llLl!l M. Lo conform with our convention of writing R for the trivial line bundle
The duality isomorphism & APE* + AYP E is defined by 1) = (@ addag Toralt f € AV R~ XX R welet R -~ X denote the bundle of twisted real numbers. 1 X is orientable, then a choice
The star iscmorphism * AP E* = APTPE* g the composition * = P27 where P2 AT 1D AN E* of onentation deterines a bundle isomorphism [ R: X is non-onentable o and only ifrR - X
15 the isomorphism of Euclidean spaces induced from P F¥ ‘ is u noprtrivial bundle. (The (wisted real numbers are a special case ol what in topology is called a
Then * ix self adjoint: (v, 2 = (= 1 PP sy forall w€ APE* € AP P 2% pumely, system of bocal coeffivients )
Geven a vector bundle £ E - X we shull speak of E @ R =+ X as the twisted bundie of E and
(P, ) = oY = (9 A Py = (- PRI g e = (- 1P PURGA Y ) of its sections ¢ € Z () =7 (E 8 R as twisted secrions of E. In particilar, we have the notion of
a twisted p-lora (called s p-form of odd kind by de Rhan). A twisted n-lonn is usually called 3
Next, = is an isometry: (sp, =3 = 0p, ), numely, P is an isometry, and so is £ (as we can see by sculur density on X,
introducing a base in E).
It follows that * is an involition:  *eg = (= NP Py for all o € AP E*. I'hie aumber Exercise. Deline the notion of an oriented map £: X = Y trom one manifold to another. Describe
1 € A"E* is mupped 1o *1 € A" EF*_ characterized by 1% 1hag = | The * operation does not ‘ the behaviour of twisted forms under an oricnted map.

preserve the algebra structure in A E*; however, for all g, ¢ €AP E* we have
Definition. Let X be Riemannian n-manifold, and £: E = X a vector bundle with Riemannian

GMAYI= P L = Y (xg) metric. We define the star isomaorphism
hecause AP EHX)ISE+ AP THX e R e ki
toa (v ag =7 PP ) = (P, S0y =4, ) as follows, IF X is orivnted then we define * by using the definition in (B) on the fibres. 17 X is

not oriented then we take any chart (8, U) at x and define

If E and F are both Euclidean spaces and E is oriented. we extend the definition of the star

isomorphism to *: AP I*® F -+ AN"PE* @ F* by setling « (9@ y) = (+ 0@ Py, The ubove proper- “ AP X*x}® E, = AVPX*x) @ E}
ties of * continue Lo hold; [or instance, using the natural pairing F X F* = R o deline the
exterior product. using the orientation in U provided by 8. Another chart (#', U') at x defines another *' = sign(§" 8" ),
where sign(@” 8 ') is the sign of the Jacobiun of @'-877 at x; it follows that the star of an E-valued
(pey)r(sPor)=(pr (=Y (yPh ={p Py Dl =g ey Yo+l p-form is well defined as an E*-valued twisted (n-p)-form.

'rom the natural pairings of bundles

C} Definition. Let £:E —~ X be a vector bundle. A Riemannign metric in E is un clement e o -

) Deli £ avector bundle. A £ _ n e RXR+R RXR~+R, EXE* =R
g€ 57 (97 E*) such that each gix) is positive definite: e, each pix) is a symmetric bilinear form

on the fibre Ey, and we require that gex) be a Fuclidean structuse on By Write grotuvy = Qu, vy . . )
. . Lo . . . . x we oblain pairings ol Lhe type
A Riemannian metric tn E determines the bundle isemorphisim Po o+ E*

A Riemanniun structure om the manitold X i a Ricnwnnian metric in the tangent bundle
TeX) = X; we shall call X a Riemantian manifold it it has a Ricmannian structure, That this
definition is equivalent to the one given in Section 4F {in fact, the assertion that there is a natural
hijective correspondence between the Riemannian metrics on 1 X) and the Op-stractires on X)
is left as an exercise (of which we shall not make use).

An application of a partition of unity on X yields the

AAPTHXI8 E) X (AT X X))o Rel*) s APHIT+HX) 0 ]
In particular, we have
AP THX) @ E) X (AP THX} 8 E) > AT T*(X}8 R

given by
(g, @) +pns =¥y

Lemma. Everv vector bundle admits a Riemannian metric.

Remark. Suppose that X is a Riemannian n-manifeld. Then the n-covectors of kength one form

an orientable submanifold X of the totul space of B ATTHX) X, und 7 X -+ Xis a two-leaved Defnition. The vedume density of the Ricmannian n-manifotd X is the twisted n-form =1. If X
covering map. Over each orientable component af’ X there are precisely twa compuonents of X, is oriented then we view * | as an n-form. Note that if (8, U)isa chart at x € X and 1P = cla_se?
which {viewedl as sections over X) determine the orientations of X, s the unit n-covector of R? defining its orientalion, then = [(x) has the representation [AP G(x)e! |,
(12} We now extend the definition of the star ssomorphism to vector bundles. Fhat concept {E) Let X be any n-manifold

rEQUITes SOmMe sort ol onenrtation which cun be achieved cither by: (1) restricting attention

to oriented manifolds; or (2) twisting the differential forms. We introduce the machinery fer ¢2), Definition.  Given any compact twisted n-form w € 25 (A" THX) oﬁ)‘ we define its integral [w

which should not abscure the path of a reader wishing to follow ¢1). as follows.
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Suppose first that spHiw) is contumed m achart (6, Uy of X, Thun 8 orients L, and (A" Y N w
is a compact n-form on R™. We define

]\:v = f(f\“a")w
X R

I£ (8", U} is another chart containing spt(w), then 88" is a diffeomorphism 8(U N U > 0(U N U’y

By the transformation of the integral formula

ﬁ/\“ 8" )yw = sign(¢" 0~") ﬁl\“ ' Nw

R* R"
where sign(@” 871) is the sign of the Jacobian of 8" 87" It foliows that the value of the integral
is independent of the choice of chart.

For any compact w let (y;) be a finite partition of unity whose supports are contained in
charts whose union covers spt(w). We define

Ll

If (B;} were another such partition of unity, then we mix the partitions:

LI T2 e

Thus the value of the integral is independent of the choice of partition.
Remark. 1f X is oriented, then we can restrict attention to those charts preserving orientation,

so that every sign (8-87!) = 1 in the transformation of integral formula, Thus we obtain the
definition of the integral over X if w € Z (A" T*(X)).

Theorem. If wisa compact twisted (n—1) form on X, then dw is also twisted, and ){ dw=0.

Proof. It suffices to suppose that sptiw) is contained in a chart; for if () is a partition of unity
on X whose supports are contained in charls whose union covers spt{w), then

Xd{nw) = ( Ldy,-) AW+ Z'yi Adw = dw

1 L

Thus we have reduced the theorem Lo that of 4 compact (n— 1) form on R?, an clementary case.

(F) Suppose now that V is a connection in the bundle §:E =+ X; in partivular, V induces 4
connection in E* and in @3 E*.

ELLIFTIC OPERATORS 1w

Delinition. o Nicrwwana Breadte E1 - N consisis ol o pair tVo g on b where Vosa connecon,
gis o Riemannan metrie, and Vg = 0o all u € 20N e,

Voo g = (Voo 1 (o, V0
where onve again we have writien

Voo ) = uide, )

It is natural to deternune when a Riemannion metrne on £ B — X induces 2 Riemannian bundle
structure. There are two standard situations:  the fundamental theorem of Riemannian geometry

which tollows, and a class of examples of holomorphic vector bundles.

Theorem (Levi-Civitd). [f g is u Riewnanuian metric on T(X) =+ X, then there is a unigue synunetric
connection V on TIX) such thut V=0

Proof. First of all, it (9, ) is any Riemannian bundle steucture on T(X) and we caleulate
gV, v, w) +g(Vow,u) —g(V,u,v)
then we find the identity
28V v, w) = uglv, w) + velw, u) —walu, v) — glu, fv. wi) + glv, [w,u]) + glw, ju, v]}
~glu, Tty w)) + stv. Tiw, w)) + giw, Tiu, v))
for all u, v, w € Z(T(X)). In particular, il ¥V is symumetric the lost three teams vanish; because g
is non-singular, we sce that Vv is completely determined by g, thereby giving both the wniqueness
of V and its existence (with the required properties).
Kemark,  Observe that this theorem is valid tor pseudo-Riemannian merrics on X, i.e. for
g € L(9*T*(X)) such that each g(x) is non-singular at every x € X,
6. DIFFERENTIAL OPERATORS
The viewpoint {using covariant differentials) in this section is that of Singer [18].
{A) Let X be a Riemannian n-manifold with Levi-Civitd connection D as in Theorem 5F. Let
£:E = X be a vector bundle with connection ¥, We take the tensor product connection on
(8% T*{X)) & I as in Section 4A, and still denote it by ¥. The covariant differential V: Z5(K)
=+ Z(T*(X) @ E) can then be iterated:
T HE) » (% TH(X) @ I)
Weset V9 = identity on ZE).
if 7: ¥ = X is another vector bundle, we define the coefficient bundle Hom (ek T*(X),
Hom(E, £33 = Hom(ek T X} @ E F) We shabl sometimes treat its elements as belonging to
Howek 1 X) @ L, ) using the canonical projection ok T*(X) - of T*(X).

As in Propasition 21 we have the identification:

FUlomgie* T*(X) @ E, ) = Hom g ( Z(@% THX) @ E), ZE))

Y

e

re

iy W
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Definition. A differential operator fram E to F homogeneous of order K is 2 homomorphism
A PAE) = 57 which factor through VK for some coelticient section a:

2 N ezan

~
v ‘\ “a

kY
@k TH(X) e k)
If we replace ®* T*(X) by

k

ZOI’ T*X)

p=0

and VK by
k
.

Lo

p=0
we obtain the notion of differential operator from E oV of order k. The totality of differential
operators of all orders forms a vector subspace Diff(f:, F1 of Homy (5(E), 27 (F)) and a 2/ (R)-
submodule, filtered by Diff* (E, F), the space of operators of orders 72 k.

It is important to note that differential operators are local, i.e. spt{Ap) C sptiyp) for all
@ € ZYE); in fact that property goes a long way toward characterizing differential operators in
the space Homg (2 L), ZMF).
(BY Definition. Suppose that A € Diff¥ (E. ¥) has the form

k

A= la_pvp

p=0

with leading coefficient a # 0. We define the symbol of A as the map oy T*X) +Hom(E F)
covering the projection x: T*(X) = X given by g,(w) = (— l)”"gk(@k w) for all w e T* X):

Homl(k, F)

P

THX) —=X
We make no comment that the factor (- 1)""2 may take us momentsrly out of the real domain.

Property 1. The composition Bu A of differenttal operators is a differential operator, and
Tgaa =0 © 0. where the ripht member is induced by the bundle pairing Homtl,, F;) X Hom(E, )
—+ Hom(E, F;).

ELLIPTIC OPERATORS A

Property 2 T A, B,.A +B € DIt (E, Fr but are not in Diftk =" (E,F), then g4 .5 = 0, + 05

Property 3. Lach u € Z7(UX) defines an clement in DifF' (B £) by V. The evaluation o(w) on

w € T*(X) of its symbol is scalar multiplication in Fapw) by o - L w.n,

Definition.  We say that A is elliptic if fibee dim )’ = fibre dim ¥, and cach op{iw): Epyy ~ F oy is an
isomorphism.

() Proposition. For each A € DIffX(E. F) there i u nigue A* € DIfTK(E* E*Y such that for
eaclt @ € ALY, W EF*) there is a twisted form 7€ (A T2 (X0 satisfying

(Ag) =l —p (A*)* | =dr

Furthermore, sptir} < spiip), so that if ¢ € Z4(E) has compact support we have by Theorem SE

ﬁw)-w* ! =fwm*w)~|
X

X

Again, if X is oriented, then 7€ GAAMT Xy,
A* is called the formal adjoint of A, compare Lemma 3A of Part [I. Note that its uniqueness
is an immediate consequence of the integral formula.

Proof. ICAE DIt Fy = &7 tHlongE, 1)), then we detme A* at each x € X as the atpebiaic adjoint
AfFY = EX of Ay Then (Ap) ¢ = ¢ 1A at every point.,

Consider next the special case that K=F and A = ¥, for some u €7 (T(X), i.e. A =a¥,

where a: S T*(X) ® E} 57 (E) is given by alw @ ) = tw-u)p. Then there is a umique fy € %(R)
such that d(*P™'u) = f, * 1, We define A*=-V2* —fy; then

(A} — ¢ (A%) = ulp ) + fule §)
whence
(Aph =i —g (AY) * I =dp Y IA*P U+ (g yJA d+P e
=d[{g-$IA2 P Tuj
The last equality follows from the derivation formulas of Part 111, Section 4.
For the next step we observe that if A, B are differential operators satistying our first identity
(for some 7,5, 7g) then sois BOA, with (B0 A)* = A% O B* (and 14 + 7). Thus all linear combina-

tions of compositions of 0M_order operalars and VP satisfy the identity. Buf these include att
differential operators, whence the identity is verified in general

Corollary. [ E and F are Riemannian bundies, then
ﬁi\‘p)*‘v'f = ‘/IP*(J‘\“\P)
X X

for any ¢ € SAXE), (i € FHF), at teast one of which is compact.  Note that we are interpreting
A € DItHF, E}, as we shall do consistently in case of Riemannian bundles.
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Corollary. IfAE Diff *(E, F), then upe = (-1 ) o}, where the right member assigny o each
w € T*(X) the adjoint homomorphism of g4 (w). Itis sufficient to prove this for operators vl
order 0 and }, where it is trivial.

Definition. If £:E — X is a Riemannian bundle, then A € DT 25(E, E) is strongly empfu if oy
is positive definite at every point, i.e. for every non-zero w € T*(X) and.non.—zcru vE l:,,(,{..) we
have (g, (W) ¥, Vig(w) > 0. Note that the order of A is necessarily even if A is strongly ell:pucf
see Section 6A of Part 11

Praposition. If E and F are Riemannian bundles with the same fibre dimension, the A € Diff %(E, F)
is effiptic if and only if (- 1PA*A & DIfF2S(E, E) is strangly elliptic.

This is immediate, because Gass = 0400, = (— 11 04 % 0.

(D) Let (8, U) be a chart on X and p:{"1(U) ~ UX RP g trivialization of {:E = X over U'. Faor
each € D(E) let 5:0(U) ~ RP be defined by #(x) = 7ppd™'(x), where m: UX RP — .RP is
projection onto the second factor. We shatl use the same notation for local representations for
¥ C B(F), relative to a trivialization o:p" " (U) ~ U X RY.

Proposition. An R-homomorphism A: SNE) ~ DAF) is u kN-order differential operator iffmd
only if each point of X is contained in a chart (8, U) over which there are trivializations of E and
F, such A has the representation:

Ap(x) = z ag(x) D49(x)
lal <k

for suitable smooth maps 8y 8(U) — M(p, q), the vector space of p X q malrices. Furthermore,
ap(w) = (~ 1)/ zﬂi....i. Wi - Wy
where (W, ..., wp) represents w in (8, U).

Proof. First of all, if V and Vare any connections on E then we can find 35 € DI THX) 8 E F)
for 0 < j < k such that

Namely, fork =1, V- T = w assigns 1o each ¢ € ZUE) an element wlp) & ,f/)ll.ltlllll'!‘(XJ‘ L), and
furthermors w is Z8(R-linear in @, so that g, = aw; the generak case follows by induction. In

particular, if a homomorphism A can be expressed as a polynomial in V (some conncclim\‘ E), then
it can be expressed in terms of any other V. The co-ordinate expression for the symbol will follow

Db ld Al BT iamba a8 ¥R and nra annal
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To prove Lhe necessity we duhe any chart (€, U) and trivializations p, o of the bundle
restnctions E{U, FiU respectively. Define the connection:

V: 200U X SPEU) -+ FHEU)

by

Thus V and ¥ are two connections on EJU cach expressible in terms of the other. The restrictions
of the coeflicients 4; of A 10 U have (using the trivializations p, o) the co-ordinate representatives
(aj(x)}, e € M(p.q). Composing these gives the desired representation of Ay in U.

To prave the sufficiency, let % = (#;, Up be a locally finite covering of X by clurls over
which A has the stated co-ordinate representation. Let (y;) be a partition of unity subordinate
to ¥/, and 6. the above connection in each (84, Uj). Then

v =z{ 7ﬁi

i
is a conn¢ction on E in terms of which we can express A.
Kemark, The proposition shows that the concepts of differential operators, their symbols, and
thwe notion of ellipticity are independent of choice of Riemann structure on X, and of Rigmannian
metric and connection on Lthe bundle E. Of course the adjoint A* of A will depend on metrics.
An alternative formalism {not involving Riemann structures) which is co-ordinate free is given
in Ref.[20], characterizing the k™.arder differential operators as those homomorphisms which

factor through the k™ jet extension j*: ZE) » 1K (K}, where I*(E) ~ X is the vector bundle
ol k-jets of sections ot E.

IV, THE EXISTENCE THEOREM ANL APPLICATIONS

1. THE EXISTENCE THEOREM

(Ay Let X be a Riemannian n-manitold, and £ E = X a4 Riemannian vector bundie over X. We
take the teasor product Ricmannian structure in each bundle 8K T%(X) E, and det (3, denote
inditferently the inner product in X(x), X*(x), Ex and in their tensor products.

15 @,y € Z9(E) are compact sections we define the inber

lpflg = fwmir)* 1
X

7S

oy W

e

opy
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where {g, y7 denotes the function x — (b, gt x ), ot X Fhen for each inteper T 0 et

r

(o), = Z (T, TR,

k=0

These are clearly inner products on 27 (1), and we let HR(E) denote the indicated completion
Suppose henceforth that X is compact, and write HECEY = 1R, Then we have the tollowing
properties:

Rellich’s theorem. £/ s <<t then the wjection HHEY 2 UV s compuctund dense That 1he

map is dense is clear, since @701 I dense in both To see that it s compacl let g b be any
bounded sequence in H'(E), and take ¥ € 27(R) with sptty) contained i somy chaat (0, 1), Then
(7¢;) can be viewed as a sequence in L), so that we can appeal to Section SB ot Part [1 to extract
a subsequence converging in HYE). 1f ¢yp ) is a finite squared partition of unity

-

p

then we construct a subsequence of (y;) such that for each p the sequence (ypyw;) converges in H%E)
Let C3(E) denote the Banach space of sections of E of class (%, with obvious norm,

Sobolev’s theorem. {f t>n/2 + s, then we have a continuous infection HYE} = (S(k). Lo particular,
H™(E} = N{HYE):t = 0} = ZE). This follows at once from Section 5B of Part I1.

Remark. 1t is an elementary matter to check that the Hilbertiun structure of HYE) is independent
of the Riemannian structures of X and E. In fact, let 4 = (8, U;, g1, 7i) be a finite system con-
sisting of a covering of X by charts (8;, U;), trivializations p;- & HU;) U X R™ . and a squared
partition of unity (y;) with cach sptiy;) C U;. Then we define an inner product on () by

U, iy = Zﬁi:@’; TVgm
i

where @ is defined asin Section 6D iPart 11}, Any such inner product is easily seen o be equivalent to
that given using the iterated {through r) covariant differentials defined by Riemanntan structures.

(BY If A€ DItfYE,¥), then A has g unigue extension (@ CONIERIONS fineur map A H¥ E) = HYE)
forail s 3 0. This is clear because the coefficients in the representation A LZy_MV“ are smooth,
whence there is a constant such that

1Ayl < constlyly,, forall w & FUE)

Suppose now that F = E and r = 25; then A can he represented (not uniquely, in general)

A= Z(_‘kmsk

k
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where order By <5, order Oy < 5. Then for any ¢, ¢ € 2701 we have by Corollary 0 (Part FiD
k | 4 Yy ¥

Apy = E By, C7 Y
k

Define

o HYEY =R by wlp)= L(Bk\p,(‘;‘p)‘,
k

On ihe desse subspace G210 C HYE) we huve the cquality afg) = (A, @, . so That a s defined
independentiy of the represeatation i tetims of operatons ot orders ss,

Theorem (Girding's inequality). /' A € Dilt3(E, E) is serangly clliptie, then o is coercive vt
HAE), Le. there are numbers X, 2> 0, ¢ > 0 such that o) + X lwld 2 clol? for all p € HYE).

Proof.  First of all, since X is compact there exists Aq > 0 such that {op{x, E)v, v}, AlE51vi8
for all § € X*(x), v € Ey, and x &€ X. Secondly, it suffices to verify the inequality for smooth
sections. Thirdly, Theorem 5D of Part Il shows thal the inequality is valid ({or suitable Ag, c)

for all ¢ having support in a sufficiently small chart. Finally, to establish the inequality in general
we proceed as in Case 4 of Section 3C of Part 1L Let (7;) be a squared partition of unity with
sufficiently small supports, and write

(Al = Z(A('nw), Yo t R

Now Ghrding’s inequality is valid for the sections ;9. Also, for any € > 0 we have
IR < € constlgi? + e 25 constlpl}: by choosing € sufficiently small we can again absorb R
to obtain the desired inequality for all ¢ € ZXE).

{C} We are now in position to apply Theorem 4D of Chapter [ Furthermore, given € HY L),
if v € H¥(E) satisfies o, §) = (¢, g for all §, then v € B T(E) by Theorem 5E of Chapter £, because
differentiability is a local matter.

In summary, we have the fundamental

Theorem. Let A € DIff I5(E, E) be strongly elliptic. Then
(1) A maps ZHAE) onto KLUA*) in PUE)} with kersel KiA);
(2} dimK{A) = dim K(A*) <os,
(3) Thereisa g > Osuch that Ay = A + N DBy —+ GNE) is a bijection for ull A 2 X,
{4} dim K(Ay) > 0 for ar most countably many X with no finite accunlation point.

An immediate consequence is the theorem of the Introduction.

Corollary. Let A € INTESE, F) be elliptic. Then for any € GUF) there is a ¢ € DUE) such that
Ay = if and only iV & KIA*). Furthermore, dim K(A) < oo, dim K{A*) <os

Proof The last statement follows because A*A = B s strongly elliptic, and K(A) = K(B) since
(B, Wo = {Ap, Apdy. The necessily in the first stutement is also clear. To prove the sufficiency,
take § € KI(A"‘]; then A* ¢ is orthogonal to K(B*) = K{(A). The fundamentasl theorem asserts the
existence of ¢ € HE) such that A*Ag = A% e, Ap =¥ € K(A*). On the other hand, both
wand Ay belong to KL A*), so that Ag-¢y=0
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Remark. In general the index (A) = dis K{A) — dint K(A*) of an elliptic vperaton 1s fol e

see Section 2 below. [ts evaluation in terms of differential invariants (in particular. the characteristiv
classes of X, E, F) was a problem formulated by Gelfand and solved in cowmplete generadily by
Atiyah-Singer | 20].

Remark. In the preceding Corollary three integers appear:  dim X, fibre dim E = fibre dim ¥,
and order A =s. The existence of an elliptic operator in such a setting with prescribed order
and/for with prescribed analy tic properties implies drastic topulugical restrictions on X, 12, 1%
Very little is known about this basic question (but see Ref. {21

Extensive exercise. Throughout the last three Parts we have restricted attention to efhiplic
operatoss on closed manifolds (or 10 0 boundury values in case of a bounded domain in Euclidean
space). It would be a most instructive project now to take a compact Riemannian t-manifold
with boundary (a smoeoth Ricmannian (n— | -manifold) and re-examine our steps with an eye
towards: (1) formulating the concept of elliptic boundary value problems; (2) developing the
required version of Girding’s inequality so that an analogue of Theorem 1C and its Corollary is
obtained. Hints and special cases can be obtained from various sources menticned in the
Bibliography.

2. HODGE'S THEOREM
(A} Suppose that X is a compact Riemannian n-manifold, and §: E ~ X a Riemannian bunadle

with connection V. Then as in Sections 4C and D of Part 11, using the natural pairiug EXLE*~ R
we have the exterior differential d:. @"P(E) . a Pt (E) defined on E-valued p-forms on X, and

digAr ) = dpA*y + (- 1PpAdey

for all p € ' P(E), Y € & 9(Li); similarly for twisted E-valued torms. In particular, replacing
{(p. @) by (p— 1, p) we have

ﬁ(np*\bFO

X

so that
fd\o/\'tlF(" l)"fwmd wy)=(-)pro! fwud-w
X X X

(d, Yoo = bp, (= DT EH e d e,
Thus we obtain the
Lemma. The formal adjoint J* .o/ P(E) —. o P-L(E) of d relutive 10 {3yis given by d¥g =

=(— 1)®** adu Furthermare, *d%p = (— 1Pd s, «d p={— 1PV d* ey for p €. o/ B(L),
where in both right members d and (* are constructed in E®,
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Detimition, ‘Uhe Dirichiet infegral my s U8} is the positive quaddratic function Dof (k) -+ IR given by

D) = dildeld + ld*eid)

lis Laplace operator AL o/ P(E) = o/ P(E) s the second-order linear differential operator
A=dd* +d*d. Aforme € .E:(P(E)is harmonic if p= 0. Let SF P E) = Kerfas o/ PLE)
—. Pl similarly for the space S POX, B} of twisted harmonic E-valued p-forms on X

We have (Ag. Py = (o, M3 . s0 that A is symmedric; and {0, @)y = ideld + ld*pig == 0,
whenee A is positive. From that we oblain the

Lewmma. ¢ € .o (E) &5 harmonie if und ondy if both dp = 0 and d*e = 0.
Note that the directional derivative of D a1 g in the direction

d
-LI_I-! [Dip + h\t‘t‘”h_-o = (Aply

so that Ay serves as the gradient of D) at y; the critical points of 1 in L (E) are just the harmonic
Jorms. and these are the absolute winima for D).

From the relations * dd* = d*d = and * d*d = dd* = we find = A= A » where in the right
nember A operates in E*; that implies the important

Duality theovem.  Let X be a compaet Riemanntian n-manifold, and £:E —~ Xa Riemannian vector
bundle  Then for each p (0 < p < n) we have the involutory isomorphism.

* FPIX,E) ~+ JF VPIX E?)
Remark. It would seem that the sequence of ¢igenvatues of A would be useful in studying the
topological and Jifferential geometric properties of §:E = X. However, beyond knowledge of

their asymptotic distribution and in spite of many attempts, practically nothing is known about
that sequence even for the case E= X X R and A = A,

(B} For each point x € X and w € X*(x) we use the interior product (certainly a local operator)
of Section 4C of Part LLL to define the endomorphism:

b = 1p Gy APXPI B B APTIX O 6 by
Letling ¢y, its adjoint:
(e iy = (o i Wiy

torall g EAPX(x) ® by, y EAPTVX*(x) @ Fy . we find that oy, gelW) =/~ Tiey + i}, 50 that
d+ d* iy an eflipiic operator on E-valued differential forms on X, Also,

{oalwhg, o) = (o ogelW) T 0qs0gi Wi, 9} = Uey iy +igew ). = 2wl 9}

wihenve A s strongly eltiptic. We can now apply Theorem 1C und its Corollary (o assert the existence
of harmonic E-valued forms.

Remark.,  As we have emphasized all along, both existence and differentiability in Theorem 1€ are
based on Glrding's inequality, which in the case of the present section takes the form

Do) + Mgl 2 clpl? forall @€ @ (E)

o

re

rs
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If we were ivterested only in harmonic forms we could produce a special simplified proaf (avoiding
the Fourier transtorm. and making use of 1he special character of the Laplaciany of that estimate
That is the hisis of the proof of Hoedge's theorem (For the special case of B the trivial line bundle
and X oriented, but these are superfictal simplifications) given by Morrey-Eells {Section S of {1.3).

(C) Now specialize to E = X X IR with ils connection given as in Fxample | of Section 4F of

Part 1L Let us write .’ P = .o PLEY and S#7F = 9 P(E). Then the exterior Jifferential

doaP > o/ P hus square zero, as does its adjoint &* o P .o Pl 1 follows that Lntd) = d. o
is orthogonal to Ker(d*); and that Imid*y = d*.e is orthogonal to Ker(d). By Theorem 1L we

obtain the

Theorem. .o =Im{d} @ JF @ In(d*). Afso, H° = dH' @ S¥ @ d*H".

Imid")

Kee(d™)

T Ker{O)
Ker (d)

Imid}

Exercise. Formulate and prove an analogous theorem for a differential operator B with B2 = ¢,
Note that by Proposition 41 of Part 111 we obtain such differential operators whenever £:E ~+ X
is a Riemannian bundle with curvature zero.

Exercise. Study the relations belween harmonic E-valued forms and polyharmonic E-valued forms
(i.e. those which belong to the kernel of some iterated Laplacian Ak). {'ompare these last relations
with those obtained from studying the extremals of the iterated Dirichlet integral

DK(g) = dira+d )k gl}
Definition. For any n-manifold X ils de Rham cohomology is the quotient
H=Ker(d: .o =, o Hlmid: & +. &)
11 is clear from the formula di@ A ¢)=dp A g+ (- P p A d¢ that the denominator is a bilateral

ideal in the numerator, whence the exterior product induces an associative, commutative ¢in the
graded sense), graded algebra structure

o
—
eV
p=0
in the de Rham cobomology

Corollary {Hodge's theorem). Jf Xois @ compdct Ricsiainat nenarifold thea inevery de Rl
cohomology cluss there o precisely one harmaonic form
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in particular, cach dim P = hm 2P 1 Ginite, and is cabled the ! Bera monber i RXror N
Ao, #P =0 for p 2> n; and o Xos turthermoere oricntable, then by the dealily theorem 2A we
have the somorplustn * 0 JFP — 2070 o thae g tX0 = g, 0X) forall U potone This relation,
when coupled with the homology properties below, is o special vase of Pomeare’s duahity thieoremn.

Exercive.  Suppose X is connegted and compact. Then i0X) = 1 o O depenching on whether X
is orientable or noet.

(D) We now assume familiarity with the definitions and elementary properties of the singnlar
homology space

HeX) = EIIP(X)

pa0

and the singular cohomology algebra (with cup product)

H*(X) = z HP(X)

p=0

with real coefficients: also the fact that on X the cohuomology based on smooth singular chains
and that based on continuous singular chains are canonically isomuoiphic as algebras (the 1s0-
marphism is induced from the inclusion map of the chain spaces).

Given any ¢ € .2 P and any smooth p-chain ¢, we have the integral [, defined,  [f
.9 € Kerd . a'P » o Py and o' — ¢ = dy, and similurly if <", ¢ are smooth singular p-chains such
that 3¢’ = 0 = 3¢ and ¢’ — ¢ = ab (here 9 denotes the singular chain boundary operator), then by
Stokes’ theorem

et

Thus the integral f. pdepends only on the homotogy class of ¢ and the de Rham cohomology class
of v. That number is called the period of won ¢. Now IP(X) = Hmnm(l[p(XL IR), and the integral
permits us to view the elements of <RP as linear forms on Hpt X), i.e. the integral induces a linear
map

1: B+ H*(X)

De Rham’s theorem asserts thut s an isomaorphism of afgebras For a sheat theoretic proof
{which is in essence a general uniqueness theorem for cohomologies on X) see Hirzebruch (Ref [ 8],
Section 2). Since H*(X) is a homology {in particular, a topological) invariant of X, it follows that
Bp(X) is independent of both the Riemannian and the differensial structures of X.

We can put Hodge's theorem in a more classical form as follows. Let ¢, ..., g (B = BptX) <o°)
be a set of chains on X with all 3c; = 0 whose homology classes form a base for Hp(X).

Givent any set 1, ..., LA of § real numbers, Hodge's theorem asserts that there is one and ondr
wne ferinonic p-form @ huving these poeriods

]¢=wi (1= i<g)
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Remarks. I ¢ and { are hurmonic forms on X, they represent de Rham cohowology clusses,
as does their exterior product ¢ A . However, in gencral ¢ A ¥ is not itselt hurmonie, Guve an
example.

If X and Y are both compact Ricmannmian manifolds, and £: X = Y u smooth map, then {
induces a degree preserving homomorphism of algebras:

R(D):R(Y) > R(X)
In general, however, [ does not map harmonic forms into harmonic forms. Lven fibre maups
(respecting Riemannian structures) do not behave well. But study the special case of prujection

of a Riemannian product onto one of its factors.

(E) Example I. Let X be oricnted, and define

E= Z AP T*(X), F= l AP (X

p20 pal

These have the sume fibre dimension, because

per ()

p=0

The elliptic operator A = d + d* maps forms of even Jegree into forms of odd degree, and A*
does the opposite. Then

index (d +d*}= Z (B2p(X) —Bap+1 (X)) = Euler characteristic of X

p»0

Suppose for simplicity that X is oriented.

Example 2. The elements of &° are the real-valued functions y on X, and Jy= 0 if and only if ¢
is a constant. Since d*).a® = 0, we find that the harmonic O-forms are just the constun( functions.
(This fact reflects the maximum principle for the second-order elliptic operator A on a manifold
without boundary.} By duality, the harmonic n-forms are just the constant multiples of the volume
form *1.

Example 3. Let E be an n-dimensional vector space, and g, g’ two conformally relefed inner products.

i.e. there is a number v such that g' = expl2y)g; this is merely a convenient way of writing a
strictly positive multiplicative factor. 1f o, o € A" E define the same orientation of E und are

of norm one relative to g, g' respectively, then o = exp(— ayky; thus if &2 and &7 are the duality
isomorphisms, we have 2' = exp(—ny) . Similarly, if P,P':E ~ E* are the isomorphism defined
by g, g’ respectively, then P'(x)y = g'(x, y) = exp(27)P(x)y. It follows that for AP-PE —+ AN PE®
we have P’ = exp(2(n—p}7)P), whence for APE* = AP PE* we have the star isomorphism

*'=exp({n—2p)7)*

AL L sl e A abl st e b i e AD T8 G e i evnmdae #

)
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Suppose that X has dimenstien n=p Fhen 0 ¢ -+ 200 P s an automorplusm depending
onby Gn the contunal eguivalenee vliss o1 The Ryepdannoh et i 2 apoifiiobic i B i wecll, aiigd
skew symmelric it p is odd. We conclude.

(1 Ifdim X = 4r, then the signature of = { = nurnber ol positive eigenvalucs minus the nutnber of
negative eigenvalues) is a signilicant invacianl of X, (1t adnuts an expression i terms ol the
charactenistic classes of X (see Hirzebruch {8])).

{2} WdimX=4r+2 then ., SN
These propertics are especially interesting for comptex manitolds of complex dimension one,

for it is known in that case that the complex structure defines a conformal equivalence class of

Riemannian metrics, whence the entire space ' depends only on the compex structure of X.

Example 4. Vet w: X — X be « finite regulur covering of X. Then a Riemannian metric on X
induces a Riemannian metric on X, and 7%: ,’)?'p()() - "-)}’P():{) is injective. Fhus ,(5‘,(5() = i X)
for all 0 < p & n. Betti number relations between X and X can be given by properties ol harmonic
forms, and the action of the subgroup ot the fundamental group ot X correspuonding to the covering
space X. We suggest Lk as an oxercse, staiting with a cemterpretation of the pleasingt pragaen off
Eckmann | 3.

For the two-leaved covering X =+ X ol any compacl manifold, we have poweriul cohomotogy
relations between X and X (o uny systein of lecal cocllicignts) given by its Gysin sequence (the
fibre is a G-sphere); see Thom (Ret [22], Chapter LU
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