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VARIATIONAL TECHNIQUES IN GEOMETRY
{some preliminary informal notes)

Jacques Lafontaine

A. Introduction.

In these lectures, we shall be mainly concerned with
"differential calculus"” on the space of Riemannian metrics on a given
manifold, and later on on the space of connections on a vector bundle. .
The motivation to introduce this technique in Riemannian Geometry is
threefold.

i) First, the linearized version of a Riemannian geometric problem, when
it makes sense, can give some insight and help to prove or disprove some
con jecture,

Example : Riemannian manifolds all of whose geodesics are closed and have
the same length (see [B1] for detailed information about this famous
problem).

Try to find a one-parameter family g(t) of such metrics on 52
by conformal perturbation of the standard metric. Setting g (0) = fg(0),
a straightforward computation (ir [B1], p. 151) shows that the integral
of f along any geodesic, that is along any great circle, must vanish.
Using eigenfunctions of the Laplace operator, it follows that f must be
odd (see [Bi], p. 123 for various proofs of this fact). This is a mild
condition, but it means that such a deformation does not go down to RPZ.

In fact, this rough infinitesimal approach predicts the good
results. On one hand, for any smooth odd function on Sz there actually
exists such a family of metrics with g’(0) = fg(0) ( Guillemin, 1976,
providing the analytical tools to an idea of Funk, 1913, see [(B1], ch.
4). On the other hand, on RP° ( Green, 1962, cf. [Bl], ch. V), and even
on RP" (Berger, 1976, see [Bl, Appendix) a Riemannian metric all of whose
geodesics are closed 1is isometric to the standard metric.

ii) Some Riemannian geometric problems appear as an equation whose
unknown is the metric.
Example : prescribing the scalar curvature of a compact manifold,.

That is, solve the equation Scai(g) = f, for a given f. A complete answer



has been glven by J. Kazdan and F. Warner {([K-W]). The map g —> Scal(g)
from the space of positive definite two-forms to the space of smooth
functions turns out to be generically a submersion (lemma 2 of [K-W]), or
(B3], 4.36), and this fact is very helpful.

Another example : the existence of Einstein metrics.

That is, the equation Ric(g) = kg, k constant. Very little is known, when
the problem is set in such a general way. Anyhow, it can be proved by
linearization {e¢f. [B3], 4. 62 and ch. 12) and we shall see later that
the space of solutions has finite dimension. (This why the existence
problem is so difficult).

1ii) the equations of General Relativity have a variational
interpretation. In the empty space, the action is Jjust the integral of
the scalar curvature.

In the sequel, after discussing the difference between
Riemannian metrics and Riemannian structures, we shall compute the first
variation of the basic Riemannian invariants (connection, curvatures).
The total scalar curvature of a compact Riemannian manifold, that is the
functional

S(g) = J Scal(g) v
M g
is especially Interesting : if we restrict ourselves to metrics with

prescribed volume, the critical points are just the Einstein metrics.
Therefore, it is natural to compute the second variation of S for an
Einstein metric (like in the case of the energy for geodesics}. But we
shall see that the situation is more complicated : the indice and the
co-indice are both infinite. However, the infinite dimensional positive

and negative spaces have a nice geometric interpretration.

Now, we come to the space of connections on a vector bundle.
Such spaces have been considered by particle physicists for some fifteen
years (they speak if connections as "gauge potentials"), as configuration
spaces for weak and strong interactions. In this situation, the field 1is
given by the curvature of the connection and the Lagrangian is the
integrated square norm of the curvature. The corresponding variaticnal
equation is the Yang-Mills equation. We shall derive it later on. It
turned out in the beginning of the eighties that a thorough study of the
geometry of the space of some special solutions of the Yang-Mills
equation leads to very striking results in low dimensional topology (see

the introductions of [L] and [F-U]). This is a good reason to give an



account of some basic facts about the space of connections and the Yang
Mills functional. In fact, there are so many similarities between this
situation and the Riemannian one that studying both may help to
understand what is going on.

B. Riemannian metrics, Riemannian structures.

When studying the set of Riemannian metrics on a manifold M,
one must work modulo the action of the diffeomorphism group of M. This
simple remark has lmportant consequences that we shall explain below.
More-over, we shall meet later a completely analogous situation, with the
space of connections on a glven vector bundle, which must be studied

modulo the gauge group of the bundle (see for instance [L], pp. 23).

Bi. The action of the diffeomorphism group.

Given a manifold M and a diffeomorphism ¢ of M, any Riemannian
metric g on M lis isometric to ¢'g. This is Jjust the definition of an
isometry ! If we look at g in local coordinates, looking ¢'g amounts to
take other coordinates.

Examples. i) One of the basic theorems of Riemannian Geometry says that a
Riemannian metric with vanishing sectional curvature is locally isometric
to R or that g = ):(dxj)2 in some coordinate system.

ii) All the simply connected Riemannian manifolds with constant curvature
-1 are isometric, but there are several classical "models" of the
hyperbolic space. Of course, they are related in the way explained above.

Now, denote by M, (or M, if there is no ambiguity) the space of

Riemannian metrics on M. The pullILack gives a right action of Diff(M) on
M, and two metrics lie in the same orbit if and only 1f they are
isometric.
Definition. The set of Riemannian structures on M is the orbit space
M/DIfF(M).

M is an open cone in the space F(SZM) of smooth symmetric
2-forms for the compact open topology, and can therefore be considered as
a manifold modelled on that space.

From now on, M will be assumed to be compact.

With some more work, it is possible to make Diff(M) a manifold

modelled on the space of smooth vector fields, with the compact open



topology. {However, it 1s  necessary to introduce metrics and
diffeomorphisms of class H° (s > n/2) so that the inverse function
theorem may be used in the Banach spaces context (cf. for instance (E],
§2)). One has for instance the following

Proposition. ( D. Ebin, [E], §6)} For any metric g, the orbit Diff(M).g is
a smooth closed submanifold of M.

Afterwards, 1t can be proved -see B.2 - that M/Diff(M) is a
manifold in the neighborhood of any Riemannian structure which has no
isometries. (Indeed, non trivial isometries provide fixed points for the
action of DIff(M) on M. Although a reasonable description of M/Diff(M)
which take these singularities into account is available (see [E] again,
§2 and 7), it will be more simple for us to work with M, and remember
that everything which has a Riemannian geometric meaning must be

equivariant with respect to Diff(M).
B.2. The tangent space to the space of Riemannian metrics.

As we have seen, ﬂﬁ is open in F(SZH) and we can set
TgMM = T(SZM)

In a more down to earth way, taking M compact for simplicity, notice
that, for any g € M and h € F(SZH). g + th e M for t small enough.
Therefore an h in F(SZM) = ngﬂ) shall be called an (infinitesimal)
deformation. There are three interesting subspaces of TgM.
i) the conformal deformations, that is the space Cm(H).g.
ii) the traceless deformations (they preserve the volume element, see
below]).
iii} the trivial deformations.
Definition. A trivial deformation of g is a symmetric two-tensor with can
be written as Lxg where X 1s a vector field on M. ,
Namely, taking the loccal flow ¢t of X, we get a curve t —> ¢tg of
metrics which are isometric to g, and

ﬁ‘p Elt=0 = Lx®
In other words, the space of trivial deformation is the tangent space at
g to the orbit of DIiff(M).
Now, recall that, denoting by D the Levi-Civita connection of
g, we have
Lxg(u v) = g(D X,v) + g(D X,u)

Instead of Lxg, we shall Con51der %Lxg and denote it agx {or & X if there



is no ambiguity). This notation will be explained presently.

Since any h in F(SZH) can be written as

h - (1/n)(tr h)g + (1/n)(tr h)g

conformal and traceless deformations give a splitting of F(SZM). But it
would be much more interesting to have a splitting involving ImG*. so
that we get rid of the trivial deformations.
Definition. The divergence & of a symmetric two-tensor h is the one-form
- trlzDh {(we trace with respect to the first two indices).

In local coordinates, ahj = -} ngD ki C By the way, notice
that this definition makes sense for any tensor field, and generalizes
the co-differential of exterior forms.

Now, recall that on the space of tensors of a glven type on a
Riemannian manifold M, we have the local scalar product g(s,t) (take the
scalar product fiberwise} and the integral scalar product
<s,t>g = Jﬁg(s,t) Vg

for compactly supported tensors.
Theorem (Berger-Ebin, cf. [B 3]), 4.5.. If M is compact, the spa&é TgM =
T(SZH) admits the splitting

resm) = In a;e Ker &,
which is orthogonal with respect to the integral scalar product defined
by g.
The proof relies on standard elliptic theory for manlfolds.
Indeed, 6* can be seen to have injective symbol, and is the formal
adjoint of &. Namely, for any compactly suported h in F(SZH) and X in
reTM),

»
<éh , X >g = <h 38X >g
as can be seen from Stokes formula.
(With the Riemannian metric, we have identified vector fields and
one-forms) o.
The gecometric meaning of thls decomposition is the following :
take g without infinitesimal 1sometries. Then there is a nelighborhood U
of 0 in 6—1(0) and a neighborhood V of the identity in Diff(M) such that
the map
(h, ¢) > ¢ (g + h)
is a diffeomorphism of UxV onto a neighborhood of g in M (compare with

the preceding paragraph, and see [E] §7.)
By the way, F(SZM) is a prehilbert space for the Iintegral

scalar product, and < ., . >g depens smoothly on g. Therefore, M appears



to be naturally equipped with a so-called weak Riemannian melrics. This
simply means that < , >g is non degenerate ; 1t is not required that any
continuous linear form on F(SZM) gshould be given by the scalar product
with an element of F(SZH).

B.3. Riemannian functionals ; gradients.

Definition. A Riemannian functional on M is a map F from # into R such
that F(¢*g) = F(g) for any ¢ in Diff(M) and g in M. (In other words, F
goes down to the set of Riemannian structures).

Examples. We shall be mainly concerned with the volume

vig) = I v
M £
and the total scalar curvature

S(g) = J Scal(glv
M g

of a compact manifold M.
(Trivial) counter-example. Fix m € M. The functional g —> Scal(g)(m) is
not Riemannian.
Definition. A functional F is differentiable if it is differentiable for
M equipped with some Ck or H"k norm (if this works with different norms,
the differential is clearly the same).

For example, V and S are clearly differentiable (take the 62
norm). Using well known properties of derivatives of the determinant, we
see that

V' (g).h = (1/2) I trh v
" g

We shall see later on that
S'(g).h = < Ric - (1/2)Scal g, h E.

The followng property is both trivial and important.

Proposition. If a Riemannian functional is differentiable, then for any
vector field X, F'(g).B*X = 0,

Proof. Take the flow ¢t of X, write that F(¢t.(g)) = F(g) and take the
derivative for t = 0. o

For the functional V, we get that for any X, the integral of 8X vanishes.
This property is neither new nor difficult, but it should be noted that
we can prove it in that way.

Definition. A functional F is said to have a (smooth) gradient if there
exists a (smooth) symmetric two-form gradF such that

F'(g).h = < grad F, h >g



for any h € F(SZH).
For example, gradV = g/2, and gradS = Ric - (1/2)Scal g.
Then a straightforward consequence of the preceding property is the
following
Corollary. If a Riemannian functional F has a (smooth) gradient, then
Sg(grad F) = 0.
Proof. For any vector field X, we have

F'(g).8"X = 0= < grad F, 8 X > = < &(grad F), X >
{by taking the Stokes formula). This forces &8(grad F) to vanish.no
Remark. This property is true for any manifold, compact or not. Just take
compactly supported vector fields. It should also be pointed out that it
is completely elementary, 1n the sense that it does not use Berger-Ebin
decomposition.
Example : 8(Ric - (1/2)Scal g} = 0, that is

8(Ric) + (1/2)dScal = 0.

Usually, this is proved by tracing the second Blanchl identity. In fact,
it was first pointed out by Hilbert that this identity can be proved by
using the action of the diffeomorphism group (Hilbert spoke of

"invariance under change of coordinates"}.
B.3. Vector fields on the space of Riemannian metrics

Since MH is an open set in F(Szﬂ), a vector field on MH is just
a smooth map of ‘“M into F(SZM). Since some differential calculus is
available on this space, we would like to go a bit further and integrate
differential equations.

Examples. 1) the vector field g —> fg (where f 1s a given smooth
function) admits the flow Qt(gi = exp(tf)g.

ii) the vector field g —:—> agx {(where X is a given vector field on M)
admits the flow Qt(g) = ¢t(g), where ¢t is just the flow of X.

Now, these examples are not very interesting, not only because
they are trivial. In fact, the data f and X have no geometric Riemannian
meaning. It should be clear from the preceeding discussion that we should
consider Diff(M)-equivariant maps of 'MM into F(SZH). The first non
trivial example is given by the map g —> Ric(g). The corresponding
differential egquation on MH is just

8g /8t = Ric(gt)
That is, we have a second order non-linear system of partial differential

equation (and this is the simplest situation that we can get, since there



are no differential Riemannian invariants of order 1).

It turns out that the vector field g —> ~ Ric(g) has a local
flow (R.Hamilton, cf. (B 31, ch. 5 ; in fact + Ric(g) has no flow). We
shall not go in this direction, which involves difficult analytical
techniques (Nash-Moser theorem). It should also be noted (and this is why
this problem was studied) that Ric(g) is roughly the gradient of the
total scalar curvature S, and taking the flow of - Ric(g) amounts to a
"steepest descent" method. Inceed, Hamilton proved that e.g. if dimM = 3
and Ric(g) > 0, this flow does converge towards a critical point for S,
that is an Einstein metric. In that case the differential calculus on A

does not provide the solution, but provides a guideline to set good

questions.
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Most of the topics of our lectures are covered by [B3],
especially ch. I, § K, and ch. IV, § A,B,C,G. The basic facts of
Yang-Mills theory we shall be concerned with can be found in [L], ch. II
and III, and in [B-L 2). See also the expository article [B-L 1].

The reference [B 2] (especially ch. 9, 10, 11, 13, 16 and the
appendix) gives elementary properties of four-dimensional manlifolds which
are considered as "well-known" by the experts in Yang-Mills theory.

[H] was not quoted in the text and will not be used. It glves a
very neat and detailed account of infinite dimensional differential
calculus, with numerous geometric examples.

The conference of Yang at the Chern Symposium (in a book
published by Springer in the M.S.R.I. series, I am sorry I have not the
precise reference by now) gives physical motivations in a way a
mathematician can understand.

Suggestions for further readings :a) about analysis on the
space of Riemannian metrics : [B 3], ch. 5 and 12 (prescribing the Ricci
curvature, moduli of Elnstein manifolds}.

b) about Yang-Mills theory : [B-L 2} (the title is quite explicit),
[L}, [F-U] (beautiul accounts of Dcnaldson theory.)



