

UNITED NATIONS EDUCATIONAL, SCHNIERCAND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS LCT.P., P.O. BOX 586, 34100 TRIESTE, ITALY, CABLE CENTRATOM TRIESTE

IN RUPAY PULASE RUPER 100

H4.SMR. 405/19

SECOND WORKSHOP ON TELEMATICS

6 - 24 November 1989

Cambridge HSLAN's and Real-time Multimedia Applications

C.S. ANG
Cambridge University Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG
U.K.

These notes are intended for internal distribution only.

History — The Cambridge Ring

• History of ring network

- Token ring by Farmer and Newhall (1969)
- Slotted ring by Pierce (1971)
- Register insertion ring by Hafner (1974)

• The Cambridge Ring

- Prototype at Cambridge University Computer Laboratory using SSI and MSI TTL (1975)
- Integrated version, Hopper (1983)
- 10 Mbits/s, slotted ring
- Main objectives: computer networking & resource sharing

Cambridge Ring Structure

Cambridge Ring Minipacket Format

The Cambridge Fast Ring

• Main features

- -10-100 Mbits/s
- Source-release pass-on-free slotted ring
- link: twisted pair or optical fibre
- 32 bytes data field
- 1983 circuit design
- 1984 VLSI design, 1986 operational

CFR Node Structure

CFR Packet Format

ECL Repeater Chip

CMOS Network Controller Chip

CFR Network Architecture

CFR Station Cluster

CFR Application

• Olivetti MetroBridge

- CFR as backbone network
- Protocol transparent bridge for Ethernet LANs
- Up to 15 LANs
- Bridge node: PC format LAN card & transputer-based bridge engine
- Adaptive filtering and routing algorithm

The Cambridge Backbone Ring

• Main features

- Ongoing project, Greaves (1989)
- Fibre optic ring
- -500 Mbits/s 1 Gbits/s
- CFR compatibility
- Real-time traffic capability
- Metropolitan area network
- Backbone network

• Frame structure

Header (4)	Full Monitor Type (4+4+4)	Four CFR size mini-packets, each contains nine 32 bit words including the routing fields. (4 × 9 × 32 = 1152 bits)	Response and Qualifier	CRC
(1)	(17-17-4)	$(4 \times 9 \times 32 = 1152 \text{ bits})$	(4+4)	(12)

CBR Station Structure

Multimedia Information and Message Systems

• DARPA

- Diamond
- The ISI multimedia mail system
- CCWS

• Xerox PARC

- Etherphone

• Bellcore

- MICE
- Telesophy
- RAP

- MIT
- MINOS
- Sydis SIM
- Cambridge
- Janpan
- Others

Audio & Video Services on LANs

• Video services without data compression

Video Service	Bit Rate
Videophone	12 Mbps
256 pixels x 256 lines, 8 bits quantization	
Frame rate: 25 Hz	
Standard Colour Television	432 Mbps
CCIR 4:2:2 digital coding	
Format: 625/50/2:1	
Resolution: 110,000 pixels	
High Definition Television	1.7 Gbps
Eureka 95 proposal	
Format: 1125/60/2:1	
Resolution: 440,000 pixels	

• Video Services with data compression

Video Service	Bit Rate	
1	With Compression	
Low grade videophone	64 Kbps	
Videophone	384 Kbps	
High grade videophone	2 Mbps	
Television	30 Mbps	
High definition television	140 Mbps	

• First generation image coding techniques

Method	Compression Ratio	Comments
Zero Memory Methods PCM; Pseudorandom Noise Quantization; Interlace.	1:1 — 2.5:1	Simple to implement
Predictive Coding DM; DPCM, Interframe, Intraframe; ADPCM, Interframe, Intraframe; Conditional Replenishment. Transform Coding	2.5:1 — 4:1 5:1 — 15:1	These methods are generally simple to implement, are sensitive to data statistics. Adaptive techniques improves performance substantially. Channel error effects are cumulative and severely degrade image quality.
Fast Transformations; Intraframe, Adaptive; Interframe, Adaptive.	5:1 — 15:1	These methods achieve high performance with low sensitivity to fluctuation in data statistics. Channel and quantization errors distributed over the image block. Hardware complexity is high.
Hybrid Coding and Others DCT/DPCM; Subband Coding / Vector Quantization; Intraframe, Adaptive; Interframe, Adaptive.	4:1 — 10:1	Hybrid coding combines the advantage of transform coding and predictive coding. Complexity lies between the two types. Subband coding achieve good performance with less complex hardware.

• Second generation image coding techniques

Method	Compression Ratio	Comments
Pyramidal Coding	10:1	This combines features of transform and predictive coding methods. Its hierarchical structure uses functions close to those of human visual system. It has elegant capabilities for progressive transmission or reconstruction.
Anisotropic Nonstationary Predictive Coding	35:1	This method also uses the properties of the human visual system to achieve high compressions.
Regional Growing Based Coding	70:1	This contour-texture oriented technique segments the image into textured regions surrounded by contours. Contour and texture are then coded separately. In this method contour is extracted by regional growing method.
Directional Decomposition Based Coding	70:1	This is another contour-texture oriented technique. Edge detection technique is used.

• Voice coding standards

CCITT	Coding	Bit Rate	Bandwidth	Audio	Application
Recommendation	Technique	(Kbps)	(Hz)	Quality	
G.711	PCM	64	300–3400	Toll	Telephony Telephony Telephony Conference
G.721	ADPCM	32	300–3400	Toll	
G.722	SB-ADPCM	64/56/48	50–7000	High Fidelity	

• Audio services

Audio Service	Bit Rate (Kbps)
Audio library (LPC)	2.4
Voice mail (ADPCM, PCM)	32-64
Telephone (ADPCM, PCM)	32-64
High grade telephone (SB-ADPCM)	48-64
Hi-fi audio broadcast (DPCM)	160-480

- Real-time service data transmission modes
 - isochronous
 - synchronous
 - asynchronous
- HSLANs for real-time services
 - FDDI
 - CFR/CBN
 - METROCORE
 - LION
 - DQDB(SONET)

Guaranteed point-to-point bandwidth of CFR

Station latency of CFR

Packet delay distribution of multimedia traffic

Blocking probability in singly ring CFR

Offered traffic in single CFR with Erlang-B formula

No. of Stations		per Station in Erlangs
	1% Blocking	10% Blocking
50	0.24	0.35
100	0.12	0.18
150	0.08	0.12
200	0.06	0.09

Maximum point-to-point bandwidth of CFR

Inter-ring video packet delay in bridged CFRs

Project Pandora

- A research vehicle for multimedia applications
- Joint project of ORL and CUCL
- Transputer-based video processor

• Video server structure

- Video capture
- Overlay of video to host
- Pandora direct CFR access
- Host CFR access using standard interface
- Local storage on private SCSI bus

• Video server design

- Modules controlled by transputers
- 32-bit transputer bus links modules

