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LECTURES 2 AND 3

AUTOMATIC SPEE ITI

i, Introduction
1.1 Objective and scope

In April 1981, the Japanese government announced a com-
prehensive ten-year programme aimed at acquiring world supremacy
in information technology. This plan was motivated by their
assessment that the country’s future economic viability depended
on leadership in this field. The main thrust of this programme,
undertaken as a Jjoint venture by the Japanese Government, In-
dustry and Academic Institutions, was the develoupment of a new
(fifth) generation of computers. The first comprehensive presen-—
tation of the philosophy behind this project was made at the In-
ternational Conference on the Fifth-Generation Computer Systems
held in Tokyo in Qctober 1981, (Feigenbaum and McCorduck 1983).

The Japanese thrust in the direction of realisation of fifth
generation computers triggered more or less similar exercise in
several other countries: notably USA, France, USSR and UK. The
Department of Electronics of the Government of India has also
formulated plans for the initiation of activity of leading to the
realisation of concepts techniques, technologies, and systems,
relevant to the implementation of fifth generation computers, as
a multi-institutional effort. Financial provisions have been made
for this purpose in the seventh five-~year plan.

The main features visualised by the Japanese researchers for
their fifth generation computers were-the ability to provide as-
sistance to the user at the level of an ‘expert’ in any given
area of activity, the capability of accepting instructions from
him in ‘natural language’ and the provision for interacting with
him in the speech mode.

The last menticned of these features, the ability to inter-
act with the user in the speech mode, implies that it should be
possible for the computer to accept information given to it as a
spoken message as well as to give him information in the form of
spoken messages: recognition and synthesis of speech. Work on
automatic speech recognition (ASR) received a fresh impetus in
the recent past as a consequence of its relevance to fifth gener-
ation computers,

Our aim here is to provide a brief overview of the state-of-
the-art in ASR research. It is almost impossible to entirely
cover the many advances that have taken place in the last few
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yeara. In face, aome of these are not even rully reported in the
literature for reasons of their commercial value, We have,
therefore, tried to present here the current status of ASR,
primarily in terms of those advances with which we are familiar
enough to comment confidently upon. To supplement this, we have
included at the end of the paper a selected bibliocgraphy for fur-
ther reading, in addition to references.

1.2 Advantages of ASR

Work in the area of speech recognition has been pursued for
the last three decades for variocus reasons. The main motivating
factor has been the hope of utilising speech for communication

between man and machine. Interaction in the speech mode would be’

much more convenient than other modalities (such a typing) be-
cause of its universality, convenience and speed. The best com-
munication aids now avajilable through modern technology
notwithstanding, speech remains unrivalled as the fastest and
most convenient means of interactive communication between man
and man. The same advantages would be there in the case of speech
interaction between man and machine.

There are alsoc some disadvantages. Table 1 lists the advan-
tages and disadvantages of man-machine interaction in the sapeech
mode. It can be seen from this table that most of the disadvan-
tages can be overcome. Even as early as ten years ago, it was
evident on the basis of practical experience that the advantages
of speech I/0 far outweigh the disadvantages (Martin 1976).

1.3 Applications of ASR

There are, quite understandably, countless applications for
ASR. Applications of individual systems would naturally depend on
their capabilities and limitations. ASR systems which can recog-
nigse words spoken in isolaticn have been commercial use for the
last ten years and have found a number of significant applica-
tions (Martin 1976). Typical among these are industrial robots,
command and ¢ontrol environments or data entry situations, where
the use of a key-board is not practical because the users hands
are otherwise occupied.

As ASR technology advances, ASR systems are finding wider
applications in civilian as well as in military tasks (Beek et al
1977; Woodard & Cupples 1983). In these applicationsg, ASR sys-
tems are used either alone {(e.g. in speech control, toys and
games etc.} or in association with speech synthesis and speaker
recognition systems. These applications are listed in taulie 2
{(civilian tasks) and table 3 (military tasks).

Table 1. Advantages and disadvantages of speech 1/0

Advantages
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Engineering
* Can be faster than other modes of communication.

* Can be meore accurate than other modes ¢f communication.

* Compatible with existing communication systems, that is
telephones.

* Can be more accurate in tasks currently performed by humans,
that 1is, automatic speaker verification wvs. identity

verification by human visual inspection.
Can reduce manpower requirement.
Requires little panel space in cockpits.

E

Psychclogical

* Most natural form of human communication.

* Best for group or team problem solving.

* Universal (or nearly so) ameng humans,

* Can reduce visual information overload.

* Increase in value when the person is engaged in activities
requiring highly complex cognitive processing.

Physiological

* Requires less effort and motor activity than other com-
munication modes.

* Frees hands and eyes and does not require physical contact
with a transducer.
Permits multimodal operation.
Is feasible in a darkened environment.
Is omnidirecticnal and does not require direct line of

sight.

* Permits considerable operator mobility.

* Contains information on identiy and emotional state of
speaker.
* Contains information on physical state of the speaker.
* Simultanecus communication with machines and humans are
rpossible,

Disadvantages

Engineering

* Competing acoustic signals may interfere with speech. These
include noise, distortions, and competing talkers.
* Physical conditions can change the acoustic charac-
teristics of speech, that is, wvibration, g-forces, and
physical orientation of the speaker.
* Unlike typing, there is no permanent record of speech
(unless explicitly recorded).
* Microphones are required for speech input, and acoustic

speakers are required for speech output.

Psycheolegical

* Speech is not private and may be observed and recorded
by cthers.

* Psychological changes (stress, for example) in the

speaker may change his speech characteristics.

* Synthetic speech output may interfere with other aural
indicators,

Physiolegical

* Fatigue can result from prolonged speaking, and this
may change speech characteristics.

* Physical ailments such as c¢olds may change speech
characteristics.

{Scurce: Woodard & Cupples 1983)

Table 2. ASR applications in civilian tasks.

Accetability parameters

Application User Provider Quality Price Examples
Toys & games ©Cccasional Industry Immaterial Low Vice-controlled
toys
and games with
speech
output (spelling
testers etc.)
Industry and Profes-— Business High Non-— Stock control,
commerce sional critical acgcess conrel
alarms systems
CAD
Handicapped Handi- Govt . High critical Assistance in
persons capped and ac- or non- communication,
persons ticns critical access to in-
groups according formation reha-
to peliti- bilitation
cal cir-
cumstances
Telecommu~ Occasional Govt. Very Immaterial Dialling,in-
nications P & T high formation as
Dept. sistance in
call set-up.
Consumer Occasional Industry Very Immaterial Translations,
goods high data bage ac-

cess, inter-
active servi-
ces [goods
crdering, tic-
ket reserva-
tion). auto-
mobiles



Teaching Govt. Very Immaterial Phonetic and

high programmed
teaching.

{Source: Gagnoulet & Mercier 1981)
1.4 Preblems in ASR

Though ASR research has been actively pursued over the past
three decades, a successful recognition system for unrestricted
continucus speech is yet to emerge. Why is continuous speech
recognition so difficult ? The problems in developing an ASR sys-—
tem are really formidable and are described below.

Speech recognition is basically a decoding process: the in-
verse of the speech encoding process that takes place when one
speaks. An understanding of the basis of this encoding process is
therefore necessary to appreciate the problems of recognition.

Figure 1 shows the human speech production system along with
its schematic representation. The lungs and the associated
respiratory muscles constitute the source of power. This power is
used to generate the guasi-periodic acoustic signal by means of
the vibrating vocal cords for voiced sounds such as vowels. for
fricative sounds (such as /f/ and /s/) it is converted into an
aperiodic (noisy) signal due to the high velocity frictional flow
of air through a narrow constriction formed in the mouth. For
plosive sounds (such as /p/ and /t/) it is converted into short
bursts of noise by the sudden release of pressure which is built
up by completely closing the wocal tract for short durations.
Thus, all of the above mechanisms convert the more or less steady
pressure of the lungs (DC power) into an accoustic signal (AC
power}) which is used for exciting the vocal tract system to gen-—
erate audible speech sounds.

Table 3, Speech I/0 applications in military tasks

Security

* Speaker verification {(authenticaticn)

* Speaker identification (recognition)

* Determining emotional state of speaker (e.g. stress effects)

* Recognition of spoken codes

* Secure access voice identification, whether or not in com-
bination with fingerprints, facial information, identity
card, signature, etc.
* Surveillance of the communication channels

Command and control

* System control (ships, aircraft, fire control, situa-
tion displays etc.)

* Voice-operated computer input/output (each telephone a
terminal)

* Data handling and record contrel

* Material handling (mail, baggage, publications, in-
dustrial applications)

* Remote control {(dangercus material)

* bdministrative record control

Data transmission and communication

* Speech synthesis

* Vocoder systems

* Bandwidth reduction or, more general, bit-rate reduc-
tion

* Ciphering/coding/scrambling

Processing distorted speech

Diver speech

Astronaut Communication
Underwater telephone
Oxygen mask speech

High G force speech

* O ¥ ¥ N

{Source: Beek et al 1977)

In all these caases, the freguency~wise distribution of
acoustic energy is achieved by the dynamically changing shape and
size of the vocal tract. These changes are effected, and dif-
ferent sounds are produced, by the movement of the articulators:
tongue, lips, jaws and velum., For nasal sounds, the velum moves
o connect the nasal tract to the vocal tract.

The shape of the vocal tract uniquely determines the sound
that is produced. The problem of speech recegnition may be
visualised as that of determining of surmising, from the informa-
tion contained in the speech signal, the causative movements of
the articulators, and from thence, the spoken message. This mes—
sage can be seen to be composed of more or less discrete entities
at various levels: sentences, phrases, words, syllables and so
on. ASR therefore requires two operations: (1) segmentation or
the process of dividing the running speech signal into discrete
segments; and (2) classification of each segment or recognising
it as one of the finite number of elements of the vocabulary e.qg.
words.

There is a trade-off between complexities in segmentation
and classification, depending on the type of entity chosen as the
basic element for recognition. Choice of a higher level of entity
as the element may be expected to simplify the segmentation
process in some sense but this complicates the task of class-
ification because the number of classes (or different elements in
the vocabulary) increases. For instances, segmentaticon becomes
trivial if one chosen sentence length elements, but the number of
classes (individual sentences possible) become infinitely many.
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Segmentation and ¢lassification would both have to be per-
formed on the basis of the acoustic properties of the speech
signal. To do these operaticns quantitatively, it becomes naces-
sary to select a small number of convenient parameters and to ex-
tract their values from the speech signal at wvarious points of
time. These parameters have to be collectively adequate for
characterisising the dynamically changing configuration of the
vocal tract as a function of time.

Spoken utterances can, for all practical purposes, be
adequately expressed using a phonetic alphabet consisting of a
small number of elements, called 'phonemes’. Each phoneme is
defined, 1in articulatory terms, by the positions of the variocus
articulators ({(and thus the shape of the vocal tract) that are
necessary to produce it: the articulatory targets. During normal
speech, the articulators are required to rapidly move from cne
articulatory target t£o another. The time constants of the move-
ment of the articulators, and their consequent inability tc as-
sume configurations corresponding to individual phonemes
abruptly, account for the centinuity of the acoustic signal of
speech (the speech signal). This also implies that there are por-
tions in the speech signal (corresponding to movements from one
target to another) that do not correspond to any single phoneme.
Alsc, to achieve speed, individual articulators move to positions
cortespending to a following phoneme while earlier phonemes are
still being uttered. A consequence of this anticipatory coar-
ticulation is that the acoustic properties of a given segment of
speech do not depend merely on the identity of the corresponding
phoneme, but on the phonemes that follow as well. A third com-
plication is that, during rapid speech, the articulators do not
necessarily assume the proper target positions for each phoneme.

As a consequence, one faces two main problems in reccgnising
continuous speech by machine: 1) There is, in general, no practi-
cal criterion by which one can associate with each element of the
phonemic string a well-defined segment of the corresponding
apeech signal in a clear-cut manner. 2) The acoustic characteris-
tics of a given phonemic segment display enormous variability in
different phonemic contexts.

Change of speakers adds another dimension to the problem of

acoustic wvariability discussed above. The acoustic characteris-
tics of a given phoneme vary widely when spoker by different
persons. In addition, even the same person c¢an proncunce a given

sound differently from one rendition to the next. These dif-
ferences become particularly pronounced when the speaking rates
differ.

These two fundamental problems {the segmentation problem and
the problem of acoustic wvariability resulting from ditferent
phonemic contexts, speaking rates and speakers) are illustrated
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in figures 2 and 3, respectively. Tt has been observed that dif-
ferences in acoustic characteristics cccurring due to different
speakers and speaking rates are, in many instances, more than the
inter-phonemic differences.

There are, in addition, a number of engineering problems
that the designer of an ASR system has to deal with. For example,
a typical application of an ASR system may be insider the cockpit
of an aeroplane; engine noise would be the main problem here. For
such applications, special signal processing technigques have to
be devised which can estimate the wvalues of recognition
parameters from noisy speech. Speech utterances may also be ac-
companied by speech-related noise such as lip smacks, tongue
clicks, breath sounds, and inadvertantly spoken like 'uh’s’ and
‘er’s’. These cause problems in detecting end-points (beginnings
and ends) of the speech utterances.

Because of these problems, it is impossible to achieve
recognition of continuous speech using accustic information
alone. Humans, however, can understand spoken language even when
the speech signal is corrupted by noise. For this they use not
only acoustic information but also their broad knowledge of the

world, which includes higher level socurces of knowledge such as
syntax of the language, and the semantics of the task
environment, ASR systems can also make use of these higher level

sources of knowledge to improve their recognition performance.

ASR systems which use such higher level scurces of knowledge
have been termed ‘speech understanding systems’ (Newell et al
1973). The goal of speech understanding systems is to understand
what the speaker meant rather than recognising what he said; as
long as the message is understood, it hardly matters whether each
and every phoneme or word is recognised correctly or not. The
problem here relates to codifying, storing and wusing all the
knowledge of the world which human beings acquire through their
experience of many years. In speech recognition systems, the em-
mphasis is on recognising every phoneme or word correctly.

1.5 Types of ASR systems

In the Jlast subsecticn, we discussed the problems one en-—
counters in developing an ASR system. To develop an ASR system
that is scphisticated enough to recognise or understand con-
tinuous speech spoken by any speaker under any circumstances
would be next to impossible. It is therefore necessary to
simplify the speech recognition problem by specifying some
constraints; the size of the vocabulary (number of phonemes or
words}, the type of speech {isclated words or cennected speech},
the number of speakers acceptable to the system, the task en-
vironment (airline flight time enquiries, telephone directory
enquiries, numerical computation tasks, etc.), the acceptable
noise level and speech quality (sound treated room, normal
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office, telephone quality speech
etc. i
structure of sentences. Y sp ' ), and even the syntactic

N Dependlng_op the type of constraints, ASR systems can be

roadly classified as follows: 1) isclated word recognition
systems, 2) connected word recognition systems, 3) phoneme recaog-—
nition systgms‘for continuous speech, and 4) speech understanding
gystems. Significant advances have been made in the last decade
in each of these types. Isolated word recognition systems are al-
iggdy commerciallylavailabla. One can buy, for less than US &
b é Foys an§ v1d§o games which respond to speech commands. A
VlC ;tlon machine which has unlimited syntax and a 5000 word
gggz ula;yblhas peen recently demonstrated by the IBM speech
N g. able 4 gives a summary of the advances already made and

€ future ocutlook for different types of ASR systems., These ad-

vances in systems will be discussed j il i
: in more detai -
tions of the paper. b deter sec

svitem
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The acoustic processor divides the continuous input speech
signal intoc small time-segments and extracts the relevant recog-

nition parameters. It then performs a process of preliminary
classification of the segments into some convenient groups or
classes wusing a suitable pattern classification method. The

selection of proper techniques for parametric representation,
signal processing and pattern classification is important at this

stage. In 2, we describe different signal processing techniques
used for ASR. Section 3 describes different parametric repre-
sentation used in ASR systems and their performance. In 4, we

describe different pattern classification methods used in ASR and
their relative advantages and disadvantages.

We present next an overview of different types of ASR sys-
tems and their present status. We deal with the isolated-word
recognition systems in 5, connected-word recognition systems 6,
phoneme recognition aystems (for continuous speech) in 7 and
speech understanding systems in 8.

We describe in 9 the IBM system which supports a large
vocabulary and unlimited syntax. This system was demonstrated

recently in March 198%, at the IEEE International Conference on
Acoustics, Speech and Signal Processing held in Tampa, Florida,
USA. In 10, we describe the present status of ASR research in

India. We conclude with a discussion of the future cutlook of ASR
research in 11,

2. Signal processing technigques used in ASR systems

Sophisticated signal processing techniques are required in
ASR systems to obtain accurate and reliable estimates of recogni-
tion parameters. Since the speech production systems generates
sequences of phonemic sounds by changing the shape of the vocal
tract, the parameters should characterize the time-varying shape
of the vocal tract for speech recognition to be possible. As the
sound sources and the wvocal tract shapes are relatively
independent, a reascnable approximation is to model them
separately. This model is commonly known as the source-system
model of speech production and is shown in figure 4a. In this
model, a time-varying {(digital) filter represents the vocal tract
(system). This filter is excited by an appropriate (source) sig-
nal which is guasi-periodic for voiced sounds {figure 4b) and
aperiodic for others (figure 4¢). The output of this filter is
the speech signal.

The speech signal is the result of the convolution of the
source function and the vocal tract impulse response function.
The short-time spectrum of this signal reflects the characteris-
tics o©f both the source and the system. The periodicity of the
source {in the case of voiced sounds) appears in the form of
ripples in the spectrum, as shown in figure 4b, arising due to
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the harmonics of the fundamental frequency (or pitch) cf the vo-
cal cords. The system characteristics are reflected in the over-
all shape of the smoothened power spectrum (spectral envelope).

The parameters of the filter ({(such as the impulse response
function, transfer function or pole and zero frequencies) can be
used to derive information about the vocal tract configuration:
i.e. for speech recognition. The aim of accustic analysis to es-
timate the parameters of this filter.

Since the parameters used in most ASR, systems are derived
from the frequency domain representation of the speech signal,
the main task of the signal processing technique is to compute
the short-time power spectrum. In order to represent the speech
signal as a sequence of short-time power spectra, one has to make
the assumpticn that the signal remains stationary for the dura-
tion of the segment over which the analysis is made. The assump-
tion is not valid for regions where there are sharp transitions,
as when the articulators are moving fast from the target posi-
tiona of ocne phoneme to those of ancother. For the stationarity
assumption to be wvalid, it is necessary to choose as short an
analysis segment as possible.

Two types of analysis procedures are possible for analysing
speech signals: pitch-synchronous and pitch-asynchronous. 1In
pitch-synchronous analysis {Pinson 1963), pitch pulses mark the
beginnings of the analysis segments; the analysis segments can
then be quite short (usually less than one pitch period). Thus,
the stationarity assumption is quite easily satisfied for pitch-
synchronous analysis.

However, it is not possible to reduce the analysis segment
duration to that extent for pitch-asynchronous analysis. This is
because arbitrary placement of the analysis segments (with
respect to pitch pulses) can cause large errors in spectral es-
timation if the analysis segment is too short., A reasonable com-
promise for pitch-asynchronous analysis is to use a segment dura-
tion which is two to three times the pitch period.

The following three signal processing technigues have been
used in ASR systems for obtaining the frequency domain repre-

sentation of speech: 1) filter-bank analysis technique, 2)
cepstral analysis technique and 3) linear prediction analysis
technique.

Filter-bank analysis is the oldest spectral estimation tech-
nigque but is still used even in the very recent ASR systems (Pols
1971; Dautrich et al 1983; Kuhn & Tomashchewrki 1983), Here, be-
tween 8 to 32 frequency bands are chosen covering the entire
frequency range of interest. The amount of energy in each band is
measured and averaged over the segment duration. The spacing and
width of these frequency bands can either be uniform or vary in
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some systematic way with frequency. Filter-bank anaylsis can be
performed either by explicitly filtering the speech signal using
a bank of filters or by prcocessing the power spectrum computed
through fast fourier transform (FFT) methods (Dautrich et al 1983
b). In some ASR systems, the frequency response characteristics
of the ear have been used to assign filter parameter values
(Zwicker et al 1979; Kates 1983). Though filter-bank analysis
does not provide as parsimonious a representation of speech as
the other two techniques, it has one major advantage. ASR systems
using this technique have the most graceful performance degrada-
tion in noisy environments.

Filter-bank analysis provides gress information only about
the composite spectrum which, as we noted earlier, is the result
of the convolution of the source function and the vocal tract im-
pulse response function. Cepstral analysis provides a technique
for separating the two by computing the spectral envelope which
truly reflects the system characteristics.

The Fourier transform of a speech signal is the product of
the transforms for the scurce and the system. The ripples in the
power spectrum therefore exhibit a periodicity f = 1/T, where T
is the pitch period. If the logarithm of the power spectrum is
taken and its Fourier transform is obtained, the resultant
spectrum is the sum of the components corresponding to the source
and system.

The power spectrum {(square of the Fourier transform) of the
logarithm of the power spectrum of the speech signal is defined
as  the 'Cepstrum’ of the signal (Noll 1567). The independent
variable of this function has the dimensions of the reciprocal of
frequency (i.e., those of period) and is termed ’'quefrency’.

The periodicity of the ripples in the power spectrum of the
speech signal, which arises from the periodicity of the source
function, appears in the cepstral domain as a sharp peak at a
quefrency which is the same as the pitch period. The system
characteristics manifest themselves as a broader peak at lower
quefrencies. Since the cepstrum is the sum {(and not the product})
of the source and system components, separating the two is a
straightforward process and can be accomplished by appropriate
windowing. Going from the cepstral to the spectral doman is also
quite straightforward.

The cepstral analysis technique (also known as homomerphic
filtering) thus provides a procedure for computing the spectral
envelope. This, in turn, can be used to extract the formant
frequencies by the peak picking method (Schafer & Rabiner 1970).
The procedure for computing the smoothed power spectrum can be
outlined in the following four steps: 1) compute the log-power
spectrum from the speech segment, 2) compute the cepstrum by
taking the Fourier transform of the log-power spectrum, 3) window
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the cepstrum for eliminating the pitch effects, and 4) compute
the smoothed power spectrum by taking the inverse Fourier trans-
form of the windowed cepstrum. Figure 5 shows the results ob-
tained by using the cepstral analysis technique for computing the
smoothed power spectrum. Figure 5a displays the power spectrum of
vowel fa/ computed through FFT, (b) the cepstrum and (¢) the
smoothed power spectrum.

Apart from computing the smoothed spectrum, this technique
provides an economic (but approximate) representation of spectral
information for ASR in terms of the first few cepstral
coefficients. Spectral pattern matching can be performed using
these cepstral coefficients without having to compute cthe
smoothed power spectrum explicitly (Gray & Markel 1976a).

The linear prediction (LP) analyais technique (Makhoul
1875b; Markel & Gray 1976) has been used more recently in ASR
systems, Like the cepstral analysis technique, this technique
too provides a procedure of estimating the short-time smoothed
power apectrum. It also permits a more parsimonious repre—
sentation of the smoothed apectrum than does the filter-bank
analysis technique. It assumes an all-pele model for the speech
signal shown in figure 6. According to this model, the speech
signal is produced as the output of an all-pole (recursive) fil-—
ter which is excited either by a periodic pulse train (for voiced
speech) or by a random noise sequence (for unvoiced speech). The
filter coefficients {also called linear predictor coefficients)
are computed from the speech signal on the basis of a least-
squares fit between the observed values and the values linearly
predicted from preceding samples.

One basic difference between the LP and the cepstral
analysis techniques is that while the LP analysis technigque is
parametric, the cepstral analysis techniques is not. The smoothed
power spectrum canh be exactly represented in terms of say p LP
coefficients (where p is the order of the all-pole model used for
LP analysis). In contrast, it is not possible to represent the
smoothed spectroum exactly in terms of a few cepstral
coefficients. Because of this, the LP analysis technique does a
better job of spectral matching (without explicitly computing the
smoothed power spectra) than the cepstral analysis technique.

Another advantage of LP analysis over cepstral analysis is
with respect to formant extraction. The LP analysis technique
computes the smoothed spectrum. The number of peaks in this
spectrum can be controlled by prior specification of the order of
the all-pole filter model. There are major peaks as - well as
"kinks’ in the smoothed spectrum computed through cepstral
analysis. This can be seen from figure 7 which shows the smoothed

spectra of a vowel segment computed through LP and cepstral
analysis techniques,

14
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Because of these advantages, LP analysis is the most popular

sigral processing technique used in ASR systems. As mentioned
earlier, the LP coeffieicnts are cbtained a sclution of the mean-
squared error minimization problem. There are three popular

methods for estimating the LP coefficients which differ from each
cther in terms of solving the minimization problem (Markel & Gray
1976; Makhoul 1975%a; Ullrych & Bishop 1975). These methods are:
1) auntocorreletion method, ) covariance method and 3) Burg
methed.

The covariance method does not ensure the stability of the
estimated all-pole filter. The autocorrelation method guarantees
this stability with floating-point computations. The Burg method
ensures filter stability even with fixed point computations. In a
recent study (Paliwal & Rao 1982a), the performance o¢f these
methods was found to be comparable for pitch-asynchrenous
analysis. For pitch-synchroncus analysis, however, the autocor-
relation and Burg methods do not perform as well as the
covariance method.

A modified autocorrelation method (known as the cyclic
autocorrelation methdo) has been proposed {(Paliwal & Rao 1981)
with performance comparable to that of the covariance method for
pitch-synchronous analysis. Some modified versions of the Burg
method have recently been proposed which bring the performance of
the Burge method close to the covariance method for pitch-
synchronous analysis (Paliwal 1984a}.

Mcre sophisticated techniques have to be used for ASR sys-
tems operating in noisy environments (as in airborne command
posts or cockpits of fighter aircraft and helicopters}). ASR sys-
tems onerating in these envircnemtns use one of the following two
strategies: 1) a preprocessing stage which uses speech enhance-
ment techniques to eliminate noise (Lim & Oppenheim 1979; Hoy et
al 1983; Paliwal '985c; Ephraim & Malah 1985); 2} robust signal
processing techniques to estimate speech parameters even in the
pregsence of noise {Lim & Oppenheim 1978; Chan & Langford 1982;
Johnson et al 1983; Paliwal 1984c, 1985a, b; Jain & Atal 1985).

3. Parametric representations used in ASR systems

As mentioned earlier, the central component of all ASR sys-
tems is a pattern classifier which essentially recognises the in-
put speech, segment by segment, by assigning a label to each seg-
ment {these labels are names of the elements of the vocabulary:
permitted words in a word recognition system, phonemes in a
phoneme-based system and so on). It does this by comparing the
parameter vector assocociated with that segment with reference
(prototype) parameter vectors representing different elements of
the vocabulary. The test segment is recognised as the element
which gives the best match.
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Selection of an appropriate set of parameters and a proper
classification technique are most important for <correct
classification. A number of parameters can be extracted - either
directly from the speech signal or from its power spectrum. For
classification, only those parameters shculd be chosen that are
useful for discriminating between the classes efficiently.

For obvious reasons, the number of parameters must be kept
small, It would therefore be desirable to choose uncorrelated
parameters; alternatively, a feature selection method has to be
used which takes advantage of statistical analysis techniques,
such as principal component analysis and the analysis of
variance, to reduce the dimensionality of the original space (Rac
& Deodhar 1978; Paliwal et al 1978). It is easy to see that the
following properties are desirable in these parameters: 1) they
should convey information about class identity of the segment and
should provide adequate separation between different classes 2)
computing their wvalues should be simple and easy, and most

important, not prone to errors; 3) they shculd be stable over
time and context, i.e., intra~class variations should be minimal;
4) their values should be insensitive to ambient noise; G5}

ideally, their values should be speaker independent {at least for
multi speaker ASR systems).

Formant frequencies (pole freguencies of the wvocal tract
transfer function) are the most fregquently used parameters for
ASR systems {(Martin 1976; Reddy 1976; Paliwal & Rac 1982). This
is for the following reasons : 1) formants have physical
significance-they represent the vocal tract resonances. Formant
trajectories manifest the dynamics of articulation fairly
directly and to a fair degree of detail. For this reason, formant
transition information is useful even for segmenting the speech
signal (Broad 1972); 2) formant frequencies for given utterances
by single speakers display remarkable inter-repetition stability
(Peterson & Barney 1952); 3) formants provide a reasonalbzle degree
of the inter-class separatiocon. It is possible to achieve a recog-
nition accuracy of more than 80% in a speaker-dependent vowel
recagnition task using the frequencies of the first two formants
alone as parameters (Forgie & Forgie 19%59}; 4) a large amount of
data is available in a well-documented form from acoustic-
phonetic studies aimed at characterising different speech sounds
in terms of formants. This is a major incentive for using for-
mants as the main parameters for ASR.

Many methods are available in the literature for automatic
extraction of formants from the speech signal. Two recently
proposed methods of formant extraction use heuristic methods for
picking the peaks in the smoothed power spectrum {Schater &
Rabiner 1970; Markel 1972; McCandless 1974) . The proklem of
automatic formant extraction is, however, far from solved. It is
difficult to extract formants in the following situations: 1} two
adjacent formants are so close that they merge into a single peak
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in the smoothed spectrum (e.g. the second and third formants of
the vowel /i/ and the first and second formants of wvowel /u/}; 2)
one of the formants is either very weak or totally absent (e.g.
the second formant for nasals /m/ and /n/, due to the presence of
a zero in the same regicn of the spectrum); 3) spurious peaks ap-
pear in the smocthed spectrum.

There can be gross errors in automatic formant extraction in
such sgituations. A vowel-recognition experiment was conducted
{using continuous speech) to determine the severity of this
problem and the extent to which it affects the performance of ASR

systems (Paliwal & Rao 1980). Vowel recognition was first at-
tempted wusing the automatic formant extraction method of Markel
(1972) . It was then repeated after manually identifying and cor-
recting the gross errors in formant frequency estimates. Manual

correction of gross errors improved the recognition performance
by as much as 30%.

Because of such problems, LP parametric representation
(which is not prone to such gross estimation errors) is slowly
gaining ground over formant representation. In an experiment com-
paring the performance of formant and LP parametic representation
(91.4%) were found tc be better than for formant representation
(B4.4%) . (Formant frequencies were corrected manually for gross
errors in this experiment). While it may be possible to argue
that such experiments, limited as they are in scope, are not
necessarily conclusive, the trend is quite clear.

Several different LP parametric representations have been
proposed in the literature (Viswanathan & Makhoul 1975; Gray and
Markel 1976b) and are related to each other through nonlinear
transformations. Though these representations provide equivalent
information about the smoothed power spectrum, their recogniticn
performance can be and is different. Table 5 summarises the
results of an experiment aimed at comparing different LP
parametric representations as to their performance in a wvowel
recognition task wusing a Euclidean distance measure (Paliwal &
Rao 1982c; Paliwal 1982c). It can be seen from this table that
the cepstral coefficients derived through LP analysis yield the
best recognition performance (91.4%). A similar experiment. was
reported earlier regarding some of the LP parametric repre-
sentationg in an isolated word recogniticn task {Itchikawa et al
1973). Results from this experiment are also listed in table 5.
These results confirm the superiority of the cepstral coeffi-
cients representation over the other LP representations.

When these cepstral coefficients were multiplied by their
respective quefrencies, vowel recognition performance improved
further (Paliwal 1982a). In a recent study (Davis & Mermelstein
1980) LP cepstral coefficients, linear-frequency cepstral coeffi-
cients and mel-frequency cepstral coefficients were campared in a
speaker-dependent word recognition task; the mel-frequency
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cepstral coefficients representation was found to give the best
performance.

Various other parameters have been reported in the litera-
ture for ASR. For example, energies and zero crossing rates in
different frequency bands have been used by Reddy et al (1973)
for ASR. Zero crossing parameters have the problem that they sen-
sitive to the DC level of the signal and to ncise in the siynal.
Some ASR systems, such as the IBM system {Dixon & Silverman
1976), used as many as B0 parameters covering the whole log-power
spectrum,

Table 5. Speech recognition performance of different LP
parametric representations.

Performance (%) in

LP parametric Vowel Isolated-word

representation recognition recognition
task task

Predictor coefficients {an] 70.3 77.0

Impulse response [h ]

of the all-poll filPer 87.4

Autocorrelation coeffi-

cients of [an] 60.7

Autocorrelation

coefficients of [hn] 80.0 92.0

Cepstral coefficients 91.4 100.0

Area coefficients 55.4

Reflection coefficients [kn] 82.6 98.0

Log area ratics 85.1

Log error ratics 76.7

Inverse sine of [kn] 83.2

Poles of the all-poll filter 60.6

(Sources: Paliwal & Rao 1982c; Paliwal 1982c; Ichikawa et al
1973}

9. Pattern clasgification techniques used in ASR systems
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As mentioned in 3, it is important toe choose the right type
of pattern classification method for the front-end acoustic
processor used in the ASR  systems. A pattern classification
method provides an effective method of combining the contribu-
tions of a number of speech parameters which individually may not
be adequate to discriminate between the classes. A large number
of pattern classification techniques are available; these differe
from each other with respect to the technique used (statistical,
syntactic or based on fuzzy legic), type of training required
(supervised or unsupervised) and the type of density function
used (parametric or non-parametric). Though syntactic- and fuzzy
logic-based pattern classification techniques have been used in
some ASR systems, the majority take recourse to statistical pat-
tern classification techniques. Choice of a parametric technique
would be appropriate if there 1is adequate confidence in the
parametric model assumed feor the class-conditional probability
density.

Most of the speech parameters normally used in speaker-
dependent speech recognition systems follow a Gaussian distribu-
tion (Atal & Rabiner 1976; Paliwal 1978). A speaker-dependent
vowel recognition experiment wusing the first three formant
frequencies as parameters (Paliwal & Rao 1980) confirmed that
classifier performance improves as the amount of information used
increases) . The experiment assumed a multivariate normal dis-
tribution and studied the performance of three pattern class-
ification methods: 1) Bayesian classifier, 2) maximum likelihood
classifier and 3) minimum distance classifier with Mahalanobis
distance measure, Their vowel recognition performance scores were
77.8%, 77% and 75.9%.

Results of another vowel recognition experiment (Paliwal &
Rac 1982c; Paliwal 1982a) using the LP cepstral coefficients rep-
resentation are listed in table 6. This compares the performance
of minimum distance classifer with the following four distance
measures: 1) Euclidean distancfe measure, 2) correlation distance
measure, 3) Mahalonobis distance measure and 4) Itakura's log-
likelihood distance measure. It can be seen that the performance
of the Mahalanobis distance measure, which requires second-ocrder
statistics about the different vowel classes, is the best.
However, in many situations where the corpus of speech available
for training is wvery limited, it is not possible to use a dis-
tance measure which requires second-order statistics. It can be
seen from table 6 that among the three distance measures which
reguire first-order statistics, Itakura’s log-likelihood distance
measure gives the best performance. This is because this distance
measure is specially suited for comparing two speech segments
represented in terms of LP coefficients. The other distance
measures do not use any speech-specific property. Thus, it is ad-
vantageous to use distance measures, which use speech specific
properties, for ASR systems. Recently, Nocerino et al (1985) com-
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pared several such distance measures in an isolated word recogni-
tien task. These include the Itakura-Saito, the log-likelihocd
ratio, the likelihoed ratio, the cepstral, the weighted like-
lihood ratio and the weighted slope metric distance measures.
They found that the log-likelihood and the weighted slope metric
distortion measures give the highest recognition accuracy.

Table 6. Vowel recognition performance of different distance
measures.

Distance measure Recognition performance (%}

Euclidean 91.4
Correlation 9.8
Mahalanobis 96.0
Log~likelihood 94.2

{(Source : Paliwal & Rao 19B2c})

Though most of the better known ASR systems use the
parametric pattern classification techniques discussed so far,
some use nonparametric techniques. For example, some speaker-
independent isolated-word recognition systems use multiple
reference patterns to represent a single word (Rabiner 1978;
Gupta et al 1978). Clustering techniques are employed in such
systems to create these multiple reference patterns from the ut-
terances of a large number of speakers. 1In order to empleoy mul-
tiple reference patterns per word, these systems use a non-
parametric pattern classification technique using the k-nearest
neighbour decisgsion rule. Though the performance of the k-nearest
neighbour classifer depends on various factors, the most impor-
tant factor is the type of distance measure used (Paliwal & Rac
1983a) .

5. Isolated word recognition systems

As mentioned in 1, isolated word recognition systems are
the only type of ASR systems to have achieved commercial success
so far. The last decade has witnessed a large number of research
efforts which led to the develeopment of speaker-dependent, small-
vocabulary, iasolated-word recognition systems. In these systems,
the whole word is treated as the recognition unit; words are ut-
tered either in isclation or in connected speech but with pauses
between the words. There is thus no segmentation problem. Also,
there is no problem of acoustic variability resnlting from cear-
ticulation effects.

The only preblem which these systems face is the acoustic

variability resulting from fluctuations in speaking rates. Two
utterances of the same word may be dissimilar, even if spoken by
the same person, if the speaking rates are different. These ut-

terances exhibit warping along the time axis as shown in figure
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8a. 1t therefore becomes necessary to perform nonlinear time
normalisation. A dynamic programming algorithm for performing
this operation was first applied in isolated-word recognition
systems by Velichkc & Zagoruykco ({1970) and Sakoe & Chiba (1971)
and is commonly referred to as the dynamic time warping (DTW)
algorithm. It effectively eliminates the nonlinear mismatch be-
tween twc speech utterances by warping the time axis of one to
get the best alignment with the other. This is illustrategd in
figure 8b where the second utterance is time-warped using DTW al-
gorithm and plotted with the first utterance. Linear time nor-
malisation works reasonably well for the recognition of monosyl-
labic words (Paliwal et al 1982c; White & Neely 1976), but the
DTW algorithm becomes necessary for multisyllabic words (Itakura
1975; White & Neely 1976). This technigue is therefore of major
significance for isolated word recognition.

A typical isolated-word recognition system is shown in
figure 9. Here, the spoken word to be recognised is digitized and
its end points are detected. The values of recognition parameters
are computed from the speech signal. The pattern so formed is
time normalised using the DTW algorithm and compared with stored
reference patterns for all the words present in the vocabulary of
the system. The input pattern is recognised as the word whose
reference pattern is most similar to the input pattern. It might
be noted here that the DTW algorithm accomplishes both nonlinear
time alignment and pattern matching in one step.

Speaker-dependent, isolated-word recognition systems perform
with a recognition accuracy of 99% or more and have achieved
remarkable success in a number of real life applications.
However, they are of limited use in more general practical situa-
ticns because of the following main reasons: 1} the requirement
that pauses have to be deliberately inserted between words makes
them unusable with natural speech; 2) high speaking rates are not
possible because pauses with durations of 100 ms or more are
required. Because of this, individuals using voice input systems
¢ould achieve average speaking rates of 30 to 70 words per minute
only in factory environments (Martin 1976); 3} accurate detection
of end points of the utterance is another problem. Though there
are in the literature some algorithms for end point detection
{Rabinder & Sambur 1975); Wilpon et al 1984), a satisfactory
sclution to this problem is yet to be found; 4) the number of
words that can be recognised {the vocabulary of the system) has,
of necessity, to be quite small,

So far, we discussed speaker~dependent isolated-word recog-
nitien systems. Attempts have recently been made to make these
systems speaker-independent. Isolated-word recognition systems
developed at Ell Laboratories have used clustering algorithms to
find multiple reference pattexns for a single word from a popula-
tion of speakers (kabiner 1978; Rabiner et al 1979) . Rabiner et

Spoken word
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a2l {1979) have found that upto 12 different reference patterns
may be needed to represent the range of English pronunciations
for single words. Though this approach gave good results for
small groups of speakers, it could not be extended to a speaker
whose speech characteristics were significantly different from
those of subjects used for deriving the referecne patterns. In
addition, this approach needs several reference patterns per
word, i.e., more storage and computational power. Consequently,
the size of the vocabulary has to be rather small.

Paliwal & Ainsworth (1985) proposed another approach for
speaker-independent isclated-word recognition which requires only
one reference pattern per word. Motivated by the success of the
DTW algorithm for time normalisation, they tried dynamic
frequency warping for normaliging the differences between
speakers, Though this algerithm weorked well for speaker
adaptation, it did not perform satisfactorily for speaker-
independent isolated-word recognition.

6. Connected~word recognition systems

As we already saw, the isclated-word recognition systems
described in the preceding section have the drawback that the
speaker has to deliberately insert pauses between words,
Connected-word recognition systems do not have this limitation.
Though these systems treat the whole-word as a recognition unit,
they allow the input speech to be in the natural form of con-

nected words. Of course, even such systems permit only limited
vocabularies.

The whole-word pattern matching technique used for isolated-
word recognition systems has been extended for use in connected-
word recognition systems. This is done by trying out various
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sequences of words as possible matches for the input. speech and
finding the seguence which best matches the test pattern. The
following three different algorithms, all based on dynamic
programming, have been proposed for this 1) the two—level algo-
rithm (Sakoe & Chiha 1979}, 2} the level building algorithm
{Myers & Rabiner 1981), and 3} the one-stage algorithm {(Bridle &
Brown 1979; Bridle et al 1982; Ney 198B4). All the three algo-
rithms perform equally well (about 98% for a 10 digit vocabulary.
Sakoe & Chiba 1979), but differ in terms of their computational
and storage regquirements (see table 7). It can be seen from this
table that the one-stage algorithm is most efficient in terms of
computational load and storage requirements. In addition, unlike
the other algorithms, there is no restriction regarding the maxi-
mum number of words in the input string.

The three operations of word-boundary detection, nonlinear
time alignment and recognition are performed simultaneously by
the DTW algorithm in connected-word recognition systems. Because
of this, these systems do not face the end peint detection
problem. In addition, pauses are not required between words; in-
put speech can therefore be more natural and there is no limita-
tion on speaking rate. However, there is the problem of coar-
ticulation acress word boundaries which may modify the beginnings
and the ends of words. This is illustrated in figure 10. Since
the reference patterns used for pattern matching are concatena-
tions of isolated words, they do not incorporate word-junction
effects. This causes problems in recognition. However, if speak-
ing rates are not very high and the speech is not deliberately
slurred, these systems work reasonably well (Bridle et al 1982).

Connected-word recognition systems alsoc can operate only
with finite and small wvocabularies, and hence, cannct be used for
general purpose speech recognition.

Table 7. Computational comparison of dynamic programming algo-
rithms for connected-word recognition and typical com-
putational reguirements for voice-dialing (i.e., 12
digits in a string).

Level

Two—-level building One-stage

algorithm algorithm algorithm
Number of basic K.N K.M, K
time warps
Size of time warps J.{2R + 1) J.N/3 J.N
Total computation K.N.J. {(Z2R+1} K.M.J.N/3 K.J.N.
Storage 2.N. (2R + 1) 3.N.M. 2.{N + K.J)
Number of basic 3600 120 10
time warps
Size of time warp 875 4200 12,600
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Total computation 3,150,000 54,000 126,000
Storage 18,000 12,0001 1420

where J = 35 = average length of template;

K = 10 = number of templates;

M = 12 = maximum number of words in the input string, e.g., for
volce-dialing (5 + 7) digits;

N = 360 = length of the input string;

R = 12 = range parameter for time warping

{Scurce : Ney 1984)
7. Phoneme recognition systems for continuous speech

Word-based recognition systems, described in 5 and 6, can
operate on speech composed from a small and prespecified
vocabulary, it is not possible to extend these systems for larger
vocabularies because recognition scores fall as the size of the
vocabulary increases, Computational and storage requirements also
increase for a larger vocabulary. Using the phoneme as the recocg-
nition unit overcomes these limitations. Most languages have only
about 40 phonemes; this is not a very large number. A phoneme-
based ASR can operate on unlimited vocabularies even though it
has reference patterns for only forty or so phonemes. In this
sense, phoneme-based systems can be considered to be the ultimate
in generality, conceptually. They are therefore likely to cutlive
other types of systems, eventually.

In phoneme recognition systems, speech recognition is per-
formed in two stages: 1) the segmentation stage, and 2) the
labelling stage. In the segmentation stage, the speech signal is
divided into acoustic segments of phonemic length. This segmenta-
tion of continucus speech is a nontrivial problem because of the
acoustic wvariability in the speech signal. This acoustic
variability, as we saw earlier, cccurs due to three factors 1)
different speakers, 2) different speaking rates, and 3) different
phonemic contexts.

Since speaker-independent speech recognition is too dif-
ficult a prceblem, most phoneme recognitiocn systems reported in
the literature are of the speaker-dependent type. A majority of
these systems attempt segmentation and labelling without worrry-
ing about problems arising from different inter~-phonemic context
effects and speaking rates. However, there is growing realisation
among speech researchers (Fant 1374; Paliwal 1978: zue 1983} that
though the acoustic variability due to different phonemic con-
texts and speaking rates is large, it is systematic in ndture
and, hence, that some explicit rules can be applied to compensate
for this variahility. in order to provide a state-fo-the-art ac-
count on phonemic recognition of continucus speech, we briefly
describe three phoneme recognition systems developed at: 1) the
University of Erlangen, West Germany (Regel 1982}, 2} the IBM
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Research Laboratories, USA (Dixon & Silverman 1977), and 3) the
Tata Institute of Fundamental Research (TIFR}, Bombay (Paliwal &
Rac 1982b). A brief description of these systems is given in
table 8.

The Exlangen system (Regel 1982) does not provide any com-
pensation for inter-phonemic context variations and speaking rate
variations. The IBM system {Dixon & Silverman 1977) compensates
for inter-phonemic context variations, but not for speaking rate
variaticns. The TIFR system (Thosar & Rao 1971, 1976; Paliwal &
Rao 1982b) compensates for both inter-phonemic context and speak-
ing rate wvariations. It uses formant transitions for improved
recognition scores, Blso, it is synthesis based: it employs tran-
sition segments synthesised on the spot rather than prestored
templates for comparison with the test sample. In a clever way,
this prevents variations in the steady-state segment properties
from interfering with recognition of the transition segments, and
vields a significant improvement in the recognition scores. These
systems are compared in table B. The important point to be noted
is that compensation for phonemic context variations alone im-
proves the performance of the recognition system by 5.4% {Dixon &
Silverman 1977), while compensation for both phonemic context and
speaking rate variations improves the recognition performance by
9.7% (Paliwal & Rao 1982b). These differences, though smaill, in-
dicate that if explicit rules are applied to compensate for sys-
tematic variations in acoustic characteristics occurring due to
different phonemic contexts and speaking rates, the performance
of speaker-dependent phoneme recognition systems can be improved
significantly.

Recently, some experiments invelving human reading of
spectrograms have been reported in the literature (Cole et al
1%80). In these experiments, subjects were taught a set of ex-
plicit rules for reading spectrograms. Subjects so trained could
correctly identify upto %0% of the phonemes from spectrograms
{independent of the speaker). This performance level in some
sense 3gets the goal to be achieved by phoneme based ASR systems.
Thus, there is still a long way to go in this direction.

8. Speech understanding systems

Due to the substantial financial support provided by the Ad-
vanced Research Projects Agency (ARRPA), many research groups in
USA have worked towards the development of systems capable of un-
derstanding the meaning or intent of naturally spoken utterances.
Such systems should therefore be able to surmise the intended
meaning even if they are not able to correctly recognise every
phoneme or word. This requires "knowledge" of the world. Speech
understanding systems use a number of knowledge sources operating
at various levels: the characteristics of speech sounds (acoustic
phonetics), variability in pronunciation (phonology), stress and
intonation patterns of speech (prosodics), sound patterns of
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words (lexicon), grammatical structure of the language (syntax),
meanings of words and sentences (semantics) and context o©f the
conversation (pragmatics) (Reddy 1976). Such sources of knowledge
were used in combination in these systems to achieve higher per-
formance than would be possible by using only some of these.

Speech wunderstanding implies visualising, censideri.ng and
choosing from a number of possible alternative ways of interpret-
ing the signal at every stage (e.g., & phonemic segment may be
one phoneme or another) and eventually choosing the correct
sequence. It might appear that it would be safer to retain all
alternatives til the end and then choose the most appropriate one
from among these. This, however, would be impractical because of
the combinatorial explosion that would arise in such a case, For
example, if ther are 20 phonemes in a string and each of these
could be any one of thﬁﬁe phonemes, the number of pessible com-
binations would be 3® . It is therefore important to reject at
every stage, alternatives which, for some reason or the oiLher,
are inapproapriate. It is, however, most important to avoid hasty
rejection of wrong choices because ‘back-tracking’ would become
necessary 1if a rejected choice has to be resurrected and this is
quite messy.

A number of speech understanding systems have been developed
under the ARPA project. These systems have been described in an
excellent review article written by Klatt (1977). Klatt’s article
also describes the achievements of the ARPA programme and sug-
gests some guidelines for future development of speech under-
standing systems. With the completion of the ARPA project in
1976, research on speech understanding in USA has been on a some-
what low key. A few speech understanding systems have been
reported recently from Europe (Gillet et al 1982; Mariani 1982);
none of them, however, is as ambitious as the ARPA speech under-
standing systems.

In order to present the state-of-the art in the speech un-
derstanding area, three ARPA speech understanding systems
developed at Carnegie-Mellon University are selected here for a
brief description. These are the Hearsay-1l, Dragon and Harpy
systems.

Hearsay-1 (Erman 1974) was historically the first speech un-
derstanding system to be demonstrated live. Three sources of
knowledge (acoustics, syntax, and semantics) were used in the
system as cooperating independent parallel processes. The
processes used the hypothesize-and-test paradigm. The =system
worked in a particular task environment: voice-chess. The task
was to recognize a spoken "move" in a given board position. The
chess moves were expressible with a 31-word vocabulary and a
finite context-free grammar of 18 production rules which was
capable of generating about five million asentences. The syatem
followed the best-first search strategy. it was tested on 79 sen-
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Companson of thiee ;peaker-dependent phoneme recognilion systems for conlinuous speech

Table 4.

IBM system TIFR syslem

Erlanger system

Fotures

Yes

Yes

Na

Compensaton for phonemic context

varations

No Yes

No

Compensation for speaking rate

vanations

Recognition using steady-state and

ransitson segments

Recognition using steady-state segments Recognilion using sieady-state and

System structure

transinon segmenls

Oedinary office room

0 kHE 12 bi

-

Heaviy sound-treated room

20 kHz 13 bt
20:ms

Unprepared room

19 kHz 12 bt

Rocotding environment

Sampling

.2 m3 Hammung window

20 ms Hamming window

Frame window

0 ms

10 ms

11ms

Frame shilt

9 parameters (encrpes in different bands
formant frequencies. 6o crossing rate}

40-point spectrum

18 parameiers (energies in different

Bands, formants, LP erroe,

Parametric representation

autocorfelabon coefficients)

LP analysis

FFT and LP anatvss

FFT

Signal processing methods used

Classifier

Two-slage munymum distance classifier

Mean-corrected minemum distance

<lassifer

Two-siage Bayes classifier

Segmentation resulrs

347,

62°,69°%,
6.1%,-10.57,

6°,

missed segments

(313

€Xlra SeEments

Lahething results
without transeme classificnon

523%,
e

579*
63.3°,

[}

with transeme classification

DEC 10 (FORTRAN)

IBM 36091 (PLD)

PDP 1135 (FORTRANY

Computer used

35:1 {CPU nume} with Lranseme

classification

91 (CPLf trme) withoun transeme

classification

400:1 (ereculion timet

Real ume facor

Saurees Regal 1982 Dizon & Siserman 197% Patwal 1978, Pabwal & Rao 1982

tences comprising 352 words. A word recognition accuracy of 79%

was obtained.

In the Dragon system {Baker 1975), the knowledge sources
were modelled as probabilistic functions of Markov processes. The
system used a dynamic programming scheme of searching all pos-
sible paths in parallel to find the most optimal path. In other
words, the system searched all possible sentences in the grammar,
all possible pronunciations of each sentence and all pgssxble
dynamic time warpings of each such phonetic string to fit it best
to the acoustic observations. In comparison the the Hearsay-l
system, the Dragon system provided much higher accuracy, but was
found to be slower by a factor of 5 to 10.

The Harpy system (Lowrre 1976) used the best features of_the
Hearsay-1 and Dragon systems and additional heuristics to achieve
higher speed and accuracy. This system used a beam-search
strategy in which a restricted beam of alternatives around ?he
best scoring path was considered, thus reducing the search time
significantly without requiring backtracking. The Harpy §ystem
represented the syntactic, lexical and juncture knowledge in the
form of a unified network of 15,000 states. Phonetic cla§s~
ification was achieved by a set of speaker-dependent acoustic-
phonetic templates based on LP parameters which represen?ed the
acoustic realizations of the phonemes in the lexical portion of
the network. The Harpy system displayed the best performance
among the systems demonstrated as part cf the ARPA speech undgr—
standing project (Klatt 1977). It satisfied most of the deglgn
goals that were specified at the beginning of the ARPA project
(Newell et al 1973) and achieved a recognition score of 95% of
the naturally spoken test sentences composed from a 1011-word
lexicon. it ran in 6.8 MIPSS (millions of instructions per second

of speech}.

Though the ARPA sponsored speech understanding systems were
fairly successful and {some of them} fulfilled the goals
specified for them, these gystems were not adeguately general,
being constrained in terms of the syntax of the language, the
specificity of the task environment and so on. It would therefore
not be correct to term them as general purpose ASR systems.

9. IBM speech recognition system for dictation transcription

The system developed by the Speech Recognition Group at IBM,
Yorktcwn Heights, USA, is a significant landmark in the develop-

ment of ASR systems {(Jelinek 1985). This group implemented an
experimental, real-time, speaker-dependent, isclated-word, UEgech
recegnition system with a large vocabulary and unconstrained

syntax. This sytem can deal with a 5000-word vocabulary anq can
be used for dictating office correspondence. Figure 11 provides a
brier description of its functioning.

28



This system has been tested on five speakers (four male and
one female) and achieved remarkably high recognition accuracies
{98% for prerecorded speech, 96.9% for read speech and 94.3% for
spontaneous speech).

While it 1is a major achievement, the system still has the
following limitations: 1) it wuses speaker-dependent reference
patterns for acoustic processing; 2) it is an isolated-word
recegnition system, i.e. it requires pauses between words; 3) its
vocabulary at 5000 words is fairly large, but still limited.

10. ASR research in India

A number of research groups in India {(mainly at research and
educational institutions) are engaged in speech research. Unlike
in the west where speech research is prompted by potential for
practical applications, the interest in India has been primarily
academic. Some of the better known among these groups are: 1)
Tata Institute of Fundamental Research ({(TIFR), Bombay 2) Indian
Statistical Institute (ISI), Calcutta 3) Indian Institute of
Technology (IIT), Madras, 4) Indian Institute of Science (IISc),
Bangalore, 5) Central Electronics Engineering Research Institute
{(CEERI), New Delhi and 6) Aligarh Muslim University (AMU),
Aligarh. Out of these six, the first three have been interested
in ASR research.

The TIFR group has been engaged in speech related activities
for the last two decades. In preparation for work on ASR, this
group started its activities with studies in speech synthesis
{Raoc & Thosar 1968, 1974) and human speech perception {(Menon et
al 1974; Rao 1974). Subsequently, it extended its interest, be-
sides speech recognition, to speech coding (Paliwal &
Ramasubramanian 1985; Paliwal & Krishnan 1985), speech enhance-
ment (Paliwal 1984b, 1985¢), speech parameter reduction (Deodhar
et al 1974; Rao & Deodhar 1978; Paliwal et al 1978) and other re-
lated areas. The TIFR Group’s work on various aspects of ASR in-
¢luded contributions to synthesis-based recognition (Thosar & Rao
1971, 1976), pitch extraction (Sreeniwas & Rao 1978%a, 1981;
Paliwal & Rao 1983b), signal processing technigques {Sreenivas &
Rao 1979b, 1980; Paliwal 1981, 1982a; Paliwal 1984a), parametric
repregentations of speech (Paliwal & Rao 1982c; Paliwal 1982a),
pattern recognition techniques (Paliwal & Raoc 1982c, 1983a) iso-
lated word recognition system for Hindi digits (Paliwal et al
1982), and phoneme recognition system for continuous speech
(Paliwal 1978; Paliwal & Rao 1982b). These contributions have al-
ready been discussed in earlier sections.

The main interest of the ISI group has been the various pat-
tern recognition techniques used in the ASR systems. Datta et al
(1580) wused statistical pattern classification techniques to
study the effectiveness of different formant parameters Ffor 1Lhe
recognition of unaspirated plosives. Pal & Majumdar {1977) intro-
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duced the use of fuzzy logic-based pattern classification twech=-
nigques for speech recognition.

The IIT group made a number of contributions in the speech
recegnition field. Yegnanarayana et al (1984b) proposed a signal
processing method which reconstructs the signal from spectral
magnitude or phase using group delay functions. This method has
been extended to process noisy speech (Thomas et al 198%).
Recently, this group proposed the use of signal-dependent
parameter estimation and pattern matching for isolated-word
recognition (Yegnanarayana & Sreekumar 1984; Raman et al 1984).

The IISc group worked mainly on the speaker recognition

problem for which it developed several pattern recognition tech-
niques (Dante & Sarma 1979; Sarma & Venugopal 1377). These tech-
niques are equally applicable for ASR. In addition, this group
developed a formant extraction procedure from the LP phase
spectrum {Yegnanarayana 1978). Dattatreya & Sarma (1980) used an
LP distance measure for vowel recognition and Bharathi Devi &
Sarma {1980) have applied fuzzy sSet concepts in vowel
recognition.
CEERI group and the AMU group worked mainly on human perception
of speech (Ahmed & Agrawal 1969%; Gupta et al 1969; Agrawal &
Pavte 1980). These groups studied the importance of different
acoustic cues in the perception of speech with the hope that
these cues will be equally useful for ASR,

11. Future outlook and conclusions

Cur aim is to present an overview of the different aspects of
speech recognition by machine. Admittedly, this is a difficult
and risky venture for an area like ASR which is very much open
and where the last word is far from having been said. 'The mag-
nitude and depth of the problem is evident from the fact that
despite three decades of effort, a truly successful ASR system
capable of dealing with continucus speech o©of any arbitiarily
chosen speaker is far from realisation. To say this is not to be
little the significant advances achieved in ASR technology during
the last thirty years. Speaker-dependent, limited-vocabuliary,
isolated-word recognition systems have attained commercial
success and are practically in everday use. Though it is speaker-
dependent, the r ecently demonstrated IBM system has real-time
isolated-word recognition capability for a 5000-word vocabulary
and unconstrained syntax - no mean achievement. This system can
be used for automatic dictation applications.

A brief but adequate summary of the current status of ASR
research given in table 4. Columns 2 to 6 cover the milestones
reached in ASR technology so far. Columns 7 and 8 indicate future
trends.

One of the stated objectives of the Japanese fifth gener-
ation computer systems project is to develop a voice-operated
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typewriter, which can recognise words from a 10000—word
vocabulary and can work for hundreds of gpeakers, Considering the
problems associated with large vocabularies and speaker-
independent systems, it would seem unrealistic to seek to achieve
this objective by as e arly as 1990. That the Japanese goal is
not unachievable is clear from human spectrogram reading experi-
ments where, merely with the help of some acoustic phonetic
rules, human subjects could identify phonemes with 90% accuracy
(independent of the speakers). An advantage of the Japanese lan-
guage is the lack of ambiguity in spelling and pronunciation as
compared tc English.

Indian languages have the advantage of being phonetic and
are therefore well placed for speech recognition. The fifth gen-
eration computer system programme initiated by the Government of
India will provide a welcome incentive to speech research ac-
tivities in the country and a practical motivation for ASR re-
search in the country.
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