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We consider a homogeneously broadened ring laser with spherical mirrors in which the atomic line is resonant with three
degenerate transverse modes of the resonator. Upon increasing the pump parameter. the cylindrically symmetric single-mode
configuration becomes unsiable and the svstem approaches a new stationan state characterized by three coexisting modes and an
asymmetric field distribution thal emerges continuousiy at the instability threshold. We also show that the injection of a suffi-
ciently sirong external signal with the same spatial profile as the cvlindricathy symmetric mode of the cavity can restore the original

svmmetry of the output field.

The phenomenon of spatial symmetry breaking in
systems far from thermal equilibrium is common to
many fields of science and is basic to our under-
standing of spatial patterns. It is currently the sub-
Jject of active investigations in Synergetics [1] and
in the theory of dissipative structures [2]. Recent
studies have predicted the appearance of transia-
tional symmetry breaking phenomena in passive [3]
and active [4] nonlinear optical systems and traced
their origin to the loss of stability of the spatially ho-
mogeneous stationary state in the presence of dis-
sipation. These effects are examples of Turing
instabilities [5]. even if the operating mechanism is
diffraction rather than diffusion. Related spatial pat-
tern formation phenomena have been identified also
in other optical systems characterized by gaussian
intensity profiles [ 6], although in these instances the
emerging patterns ar¢ not the consequence of sym-
melry breaking in the strict sense of the word.

novelty of our investigation is the development of a
sufficiently simple dissipative model that allows an
analytic characterization of the symmetric station-
ary state and of the mechanism leading to the loss of
stability. We consider a ring laser with spherical mir-
rors and assume that the length of the acuive region
1s much smaller than the Rayleigh length of the cav-
ity field. Actually, this restriction is not essential for
the purpose of producing the required results. but it
is convenient in order 10 keep our calculations as
simple as possible. In fact, it allows us to neglect the
longitudinal variations of the beam width and field
phase along the active sample so that the transverse
profile of the cavity modes is described by the or-
thonormal functions [9]

Apolp, 9)=(2//21) LY2p%) exp(—p*) . (la)
A,ulp. 9)=(2/ /1) (2p7) 17

172
; ; r ” .. fcosi
In tpls gaper we analyzc‘: the spoqtaneous l?reakmg X (—1) Lj, (2p7) exp(—p7) { \ ¢
of ¢ylindrical symmetry in a nonlinear optical sys- (pt1)! sin fp
tern, an effect that was discovered numerically in ref. p,1=0, 1,2 (1k)
[7] and observed experimentally in ref. [8). The oo T
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where p 1s the radial and / 1s the angular index: p de-
notes the radial coordinate. r=(x"+3»7)' " nor-
malized 1o the beam waist w. and L’ are Laguerre
polvnomials of the indicated argumeni. The cavity
resonances depend on the sum of the indices 2p+1.
a situation that produces modal degeneracy.

We assume that the acuve medium is a homoge-
neously broadened system of two-level atoms and
that the excited region has a gaussian transverse shape
of radius r,. i.e. the equilibrium population differ-
ence 15 described by the function

x(py=exp(=2p%/y"). w=2r/w. (2)

We also assume the atomic line 1o be resonant with
three cavily modes characterized by the same lon-
gitudinal index and by the transverse indices: (i)
p=1L1=0, (i1) p=0./=2. cosine angular profile. and
(iii) p=0. I=2. sine angular profile. We label with
A, (i=1: 2. 3) the transverse profiles of these three
modes. given by eq. {1). In addition. we stipulate
that:

(a) All the other cavity modes erther suffer from
large losses. or their frequency separation from the
atomic line is much larger than the alomic linewidth.

(b} The uniform field condition

al ]l T«l,
with C=al /2T=arbitrary . (3

is satisfied, where « is the gain coefficient per unit
length, L is the length of the active region, 7 1s the
transmissivity coefficient of the mirrors and C is the
pump parameter,

Under these conditions we can show that the dv-
namics of the svstem is governed by the three-mode
model

i s

)
% =-K(.r?—2Cd dcﬂjdppA,(p.w)P(p, w-r)).
0 ]
(4a)
oP/at=7_[Flp.p.t) Dip.¢. 1) —Pi(p.p, 2)] .
{4b)
aDfor=~7 [Re(F*(p.op.1) P(p.g. 1})
+D(p.o. 1) —x(p)]. (4¢)
Flp.g.= Y A(p.9) /(1) . (5)

388

OPTICS COMMUNICATIONS

13 January 1989

where F is the normalized slowlv-varving envelope
of the electric fieid, £ (f=1. 2, 3) arc the complex
mode amplitudes. P and D are the normalized atomic
polarization and population inversion. respectively.
The cavity damping constant, or cavity hinewidth. x
is given by

k=c¢cT /A, (6}

where A 1s the total cavity length. y_ and 3, are the
relaxation rates of the atomic polarization and pop-
ulation inversion, respectively. ;. coincides with the
atomic linewidth.

The set of equations {4), in addition to the trivial
stationary solution =0 (i=1. 2, 3), admits a set of
single-mode stationary solutions governed by the
steady state equations (i=1, 2, 3)

2n o
1=2C Iq,dqa [ dep

0 o

A (p.p—go) eXp(—=2p7 /")
1+A(p. p— ) 1|7

1f1=0, forj#i.
corresponding 1o the stationary outpul intensity

VF(poo) S=A] (o p—p ) I N1

for each single-mode steady state. The phase of F is
arbitrary. The appearance of the parameter g, in-
dicates that. for a fixed value of the index i. eq. (7)
describes an infinite class of stationary solutions that
can be obtained by a rotation around the longiiu-
dinal axis. In particular, the solution for i=1 is cv-
lindrically symmetric (see fig. 1a}, and the class of
solutions defined by eq. {7) for i=2. under vana-
tion of ¢,. coincides with that obtained for i= 3. The
lasing threshold values for the symmetric and asym-
metric singie-mode stationary solutions are given by

(1+¢*)* (1+¢7)°
wil+yt)’ ©
Hence the symmetric solution has the lowest
threshold.

Now we perform an exact linear stability analvsis
of the single-mode stationary states. In the resonant
configuration. the linear stability analvsis of each
nontrivial solution leads 10 a pair of eigenvalue
equations, one for the amplitude fluctuations. the
other for the fluctuations of the phase. An analysis

(2C) = Q0= (8}

FE
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' (b)

of these equations yields the following results:

(a) The asymmetric singie-mode stationary solu-
tions are unstable already at threshold [i.e. 2C=
(2C¥ )

{b) The symmeitric stationary solution becomes
unstable when the pump parameter exceeds the in-
stability threshold (2C)! defined by the condition

A3(p, @) exp(—2p*/y?)
I+A3@AE ()

l=(2C')'Td¢Td10P
0 0

where |f 17 is the intensity of mode 1 in the sym-

Fig. 1. Transverse profiie of the output intensity | F{p. @}|" for
w=1.5: (a} the unsiable nonirivial single-mode stationary solu-
tion for 2C/ (205, = 1.5; (b) the multimode stationary state for
the same value of ( as in (a). (c) same as (b) but for
2C/(2C) =1.91.

metric stationary state, and 4, can be replaced by 4,
Eq. (9} results from the eigenvalue equation for the
phase fluctuations. The physical meaning of condi-
tion (9} is that the symmetric steady state becomes
unstabie when the residual gain experienced by the
asymmetric modes exceeds their losses. Fig. 2 illus-
trates the behavior of the ratio (2C)'/(2C)5, as a
function of y; this ratio approaches unity for in-
creasing values of w, and increases markedly when
decreases, t.e. when the active medium is confined
10 a narrow region around the axis where the strength
of the modes with /0 vanishes.
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Fig. 2. Variation of the instability threshold with the pump waist.
The ratio of the instability threshold to the laser threshold 1s plot-
ted as a function of  which is twice the ratio of the pump waist
to the beam waist.

We have solved numerically egs. (4) and (5) for
20> (20, k/y_ =7, /y_=1.starting from an initial
condition in which |f;|® is given by the symmetric
stationary solution. while f; and ; are very small to
simulate the fluctuations that trigger the instability.
An example of the type of solutions that resuits by
this procedure is shown in fig. l1a. In the course of
time the modes 2 and 3 grow and the system ap-
proaches a multimode stationary state which is. of
course, asymmetric (fig. 1b. ¢). In steady state. the

1 15 2 2¢
(2c)!
Fig. 3. Variation of the multimode stationary state with the pump
parameter. with = 1.5. Curve (a} shows the behavior of (2/nm}
{117+ 1f31%). curve (b} shows the ratio ( |+ 1517} /1617
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Fig. 4. Variation of the total output intensity / {eg. (13)] with
the pump parameter. for w=1.5 The solid curve refers to the
svmmetric single-mode stationary solution which becomes un-
stable for 2C > (2C)"; the broken curve refers 10 the multimode
steady state which emerges comtinuousty for 2C=(2C}'.

field F(p. @) acquires the form
Fip.)y=(2/my'"2 (1 =0)f,
+r]fcos 2p+fisin 29 exp(—v/2) . (10}

where we have set r=2p" and we have 1aken into ac-
count the explicit expressions of the Laguerre poly-
nomials. The phase of £, and the moduli |f-]. and ||
depend on the initial fluctuations with the following
features:

(i) The difference between the phases of /> and f;
is equal te O or z. while the difference between the
phases of /, and f> 15 equal to T x/2,

(ii) The combination |f>|*+ |f31* is independent
of the itial fluciuation.

With this in mind. it is easy to obtain from eq. {10)
the following expression for the intensity of the mul-
timode steady state

|F(p.@))?
=2/ { (1= A 1P+ [ (L1 +1A17)/2]
x [+sin(4p+8) ]} exp( =), (11)

where we set

AP A1

214115
Wl cosg==
A TAEE

T LRP+IAET

sin =

(12}
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and where the + (or —) sign 1s selected when the
phase difference between f, and f; is equal to 0 (or
) and 8 represents the global phase of the output
laser field. Hence, as expected, we find an infinite
class of multimode stationary solutions obtained by
rotation around the longitudinal axis; the initial fluc-
tuation selects the angle 6. The total intensity is given
by

Vi
1

—
il
o ——,_.

dpp Flp, @) 1°= L 17+ L1+

o'w-—-—fi

(13)

On increasing the pump parameter beyond the in-

(a)

L0000

{b)
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stability threshold. the contribution from the asvm-
metric mode increases. as one can see from fig. Ic
and fig. 3. On the other hand. the ratic
(12 + 1417 /14 1 seems 1o approach a constant
value (fig. 3). Finally fig. 4 shows the variation of
the total cutput intensity given by eq. (13) and 11
compares i1 with the intensity of the symmetric sta-
tionary solution. Clearly, the multimode configura-
tion has a better change to exploit the available gain
and gives rise 10 larger power cutput, Both figs. 3 and
4 suggest that the asymmetry emerges continuousiy
at the instability threshold (2C)".

In conclusion we have shown explicitly that be-
vond the instability threshold the system approaches

{c)

:L:’..-‘-\a“\\\\\"
‘\\\\s}:‘-\
e

(d)

v
FOl)e

sessat
3
it

i

A

Fig. 5. Transverse intensity profile | F(p, @) at the output of the laser, initially in the stable symmetry broken configuration, under the
action of an injecied signal which is mode matched 1o the p=1. /=0 configuration, Figures (a) through (d) show the restoration of the

symmetric state for growing sirength of the injected field.
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a new steady siate in which symmetnic and asym-
metric modes coexist and produce a spontlaneous
breaking of the cvlindrical symmetry. We believe that
a detailed experimental observation and comparison
with theory is possible and would be of significant
value in the context of the subject of Turing insta-
bilities and spatial pattern formation.

It is interesting to observe that the stable asym-
metric stationary state can be destabilized, in turn,
by the injection into the laser of a coherent external
signal of sufficient sirength and a transverse shape
which 15 mode-matched to the symmetric p=1, I=0
configuration. This effect s illustrated in figs. Sa-d
for progressively larger amplitudes of the injected
signal. We note that the restoration of the original
cylindrical symmetry is a threshold effect that
emerges for finite values of the injected signal
strength.

We conclude this paper with two additional
remarks:

(i) The same cvlindrical symmetry breaking phe-
nomenon can be observed starting from different
svmmetric configurations. for example from the
mode p=2, /=0 this imitial state. after destabiliza-
tion, also turns into a stationary multimode config-
uration in which the symmetric and asvmmetric
modes coexists.

(i1) We have examined the same probiem for ab-
sorptive optical bistability with an input field
matched to the p=1. (=0 mode, and found that in
this case the instability occurs only in the unphysical
negative slope branch of the steady state cycle of
transmitted versus incident power.
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