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We present a new laser-cooling scheme based on velocity-selective gptical pumping of atoms into a
nonabsorbing coherent superposition of states. This method has aliowed us to achieve transverse cooling
of metastabie *He atoms 1o a temperature of 2 uK, lower than both the usuai Doppler cooling limit (23
#K) and the onc-photon recoil energy (4 gK). The corresponding de Broglie wavelength (1.4 um) is

larger than the atomic-transition optical waveiength.

PACS numbers: 32.80.Pj, 42.30.Vk

The lowest temperature 7 which can be achieved by
the usuzl laser-Doppler-cooling method is given, for a
1wo-ievel atom, by kpT/2=AT/4, where [ is the sponta-
neous-ernission rate from the excited atomic state (for
Na. T=240 pK).! In order to reach lower tempera-
tures, proposals based or Raman two-photon processes in
a three-level atom have been presenw:t:l.:'J but the
efciency of Raman cociing has not yet been demor-
sirated.  Recently, surprisingly low  temperatures
(aroend 40 uK) have been measured for sedium® and
*entamc‘v interpreted in terms of a new friction mecha-
nism.” The recoil energy (2k)?/23f for an atom wilh
mass M emitting a photon with momentum £k repre-
sents another landmark in the energy scale for aser cool-
ing. 1t has been suggested that optical pumping in
transiation space might be used 1o ¢ool the translational
degrzes of freedom below this so-cailed recoil limit, by
veiocitv-selective recveling in a trap.® 1a this Letter, we
present a mechanism of laser cooling below the one-
photon recoil energy, based on optical pumping of both
internal and translational atomic degrees of freedom.
This velocity-selective process is based on coherent trap-
ping of atomic populations’ and has allowed us to
achieve a one-dimensional cooling of *He atoms in the
triplet metastable state down to a temperature of about 2
4K. This temperature is lower than both the Doppler
cooling limit (23 uK for 1D cooling) and the one-photon
recoil energy (4 uK).

Qur scheme involves a closed three-level A configura-
tion where two degenerate ground Zeeman sublevels g ~
(m =% 1) are coupled to an excited level eg (m =0} by
two counterpropagating o+ and o - laser beams with the
same frequency w; and the same intensity (solid lines of
Fig. 1). For an atom at rest, two-photon Raman pro-
sesses give rise to a nonabsorbing coherent superposition
of g- and g-. If the atom is moving along Oz, the Ra-
man resonance condition is no longer fulfilled as a conse-
auence of opposite Doppler shifts on the two counterpro-
pagating laser beams. This simple argument explains
how the phenomenon of coherent population trapping

can be velocity selective for appropriate laser configura-
tions.® Our cooling scheme consists of accumulating
atoms in the zero-velocity nonabsorbing state where they
remain trapped. To populate this state, we take advan-
tage of momentum rcdistricb\Qon due to sponianecus
emission. which allows certain® atems to be opiically
rumped from the absorbing velocity ciasses 10 the
nonabsorbing state. Since the recoll of the last
spontaneous-zmission photon is part of the cooling mech-
anism. the one-pheton recoil energy is not a limit and the
final temperature is limited only by the coherent mierac-
1on time. Note also that, contrary to other ceoling
schemes, our mechanism, based cn a Raman resenance
condition. does not depend on the sign of the laser detun-
ing.

A more rigorous analysis requires the introduction of
both internal and translzaitonal quantum numbers. For
example, the state !eq.p. represents an atom in lesel ¢
with the value p of P2' (P* is the atomic momemum).
If we ignore spontanegus emission, |eq.p) is couples onlv
to lg-.p—hk) lor |g+.p+Hhk)) by stimuiated emis-
sion of a o+ (o) laser photon carrying a momzatum

FIiG. 1. (a) Two counterpropagating ¢+ and o- pahrized
laser beams interact with *He atoms on the 2°S-2°P) wansi-
ticn. {b} The Zeeman sublevels, and some useful Ckbdsch-
Gordan coefficients. Since the eg=—go transition is forbddern.
all atoms are pumped into g+ and g- after a few Auorerence
cycies. These two levels are coupled only to es 2nd a dosed
three-levei .\ configuration is realized (solid lines).
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+ak (—hk). We are thus led to introduce, for each
value of p, a family F(p) of three states {[eo.p),
{g+.p+hk) and |g-.p—hk} which are coupled by
the interaction Hamiltonian ¥ (Ref. 9):

(g=.p=hkiViewnp) =7F (ha/Dexplivgr),

where w, is the Rahi frequency associated with each
jaser and where the = signs come from the Clebsch-
Gordan coefficients eq—g + and eo—g - (Fig. 1). Note
that for p=0, the kinetic energy (prhi)/2M of
|g+.p+hk) differs from the kinetic energy (p—hik)?/
M of tg—.p—hk) by an amount 2akp/M (ie., the
Doppler shift introduced above for the two-photon Ra-
man resonance).

We can now write the expression of the nonabsorbing
trapping state considered above:

lunaON=[lg-, —hki+ |gs. +hkI/NT.

This state is stationary since the {wo states lg-. = hi
have the same internal and kinetic energies..and since
“una 001V eq,00=0. These properties are nol modified
when sporlaneous emission 1is taken inio account
[]wwa(0)) 1s radiatively stable], so that an atom pumped
in this state remains trapped there indefinitely (coherent
popuiation trapping). Note that |yns(0) 1s not an
cigensiate of P&, so that. for atoms trapped in
| wnal0)). the atomic momentum distribution presents
two peaks at eigenvalues p, = = hk.

For the families F{p=0}. we can introduce two or-
thogonal linear combinations of [ g=.p = hk::

r!

wnalp =g p—hk +Higop=hi 112

walpli=lgop—hki=lgo p=RkIINT

The first one. | w~alp )i, is not coupled to jeg.p/. while
| walp)) is coupled to jep.p) with 2 Rabt frequency
V2w, However. the nonabsorbing state :w~a(p)?is not
2 trapping state. because 1t is not statienary (the energies
of ig= p=hk) differ by 2hkp/M ). More preciseiy. if
an atom is in 1 wNalp ) at 1 =0, it will osciilate between
{wnalp)) and the absorbing state fwalp)’ at the fre-
quency 2kp/M. One can then show that for small vaiues
of p [kp/M «T" where ['=ef/T is the absorption rate
from | walp)) for @< T and zero detuningi. the absorp-
tion rate from |wna(p)) is of the order of T ={kp/
M)YT’. The smailer p, the longer the time spent in
| wnalp)). We have thus achieved a velocity-selective
coherent population trapping. '

So far, we have only considered the evolution of a
given p family. Spontaneous emission can actually redis-
tribute atoms between different families since the one-
photon recoil momentum along O due to such a process
is a random variable between — Ak and +hk. Such a
random walk in momentum space is esseniial for the
cooling discussed here. It provides the mechanism for
the pumping and accumulation of atoms into the nonab-

sorbing superposition of states |yna(p)? with p=0 or
very small. The longer the interaction time ©, the nar-
rower the range & 8p of values of p around p=0 for the
states | wna{p)) in which the atoms can remain trapped
during @, and the greater the number of fluorescence ¢y~
cles which can bring them into these states. For 8 large
encugh so that §p =< hk, the final atomic momentum
distribution P(pa} ajong 0r will exhibit two resolved
peaks emerging at = Ak above the mmitial distribunion.
This will be the signature of cooling by velocity-selective
coherent trapping.

We have performed a quantitative caiculation of such
a “‘generalized optical pumping cycle” (in both internal
and momentum spaces) which confirms all the previous
predictions. Such a calcuiation is based on three-ievel
generalized optical Bloch equations involving internal
and external degrees of freedom.'' Because of spontane-
ous emission. these equations are finite-difference equa-
tions. [t must be emphasized that. since the width ap
can become smaller than Ak, most of the stanaard ap-
proximation methods used in laser-cooiing theories 3
break down: Especially, it is no longer possible to derive
2 Fokker-Planck equation. Figure 2 shows the finai dis-
tribution P{p,) of atomic momentum deduced from 2
numerical integration of Bloch equations {or parameters
corresponding to our experimental conditions. As ex-
pected. one clearly sees two narrow peaks emerging
above the background around = Ak, Note that the
half-width of sach peak is narrower than the one-photon
recoil energy. We have checked that an increase of the
interaction time @ increases the height and decreases the
width of these peaks. The value of 8 leading to the larg-
est area under the peaks depends on the shape of tne 1n:-

L
0 Pat

FIG. 2. Caiculated transverse atcmic momentum distribu-
tion resulting from cooling by velocity-selecuive coherent papu-
lation trapping, for parameters close to our experimental situa-
tion (zero detuning, Rabi frequency wn =0.€T. interaction time
©=350T ~!). The initial distribution is represented by a dot-
ted line.
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tial distribution.

This cooling process has been demonstrated with the
experimental setup shown in Fig. 3. A supersonic helium
beam, '? liquid-nitrogen cooled, is excited by counterpro-
pagating electrons at 40 V. The metastable He* atoms
in the 2'Sy state are optically quenched, and we obtain a
beam of He* in the 2°S, state, with an intensity larger
than 10" atoms s ' sr ! and an average velocity of
1100 m s ~'. The He* atoms interact on the 235,-2°P,
transition (1.083 um) with a home-made single-mode
ring version of a LNA laser'? pumped by a 4-W Ar?
laser. The laser frequency is locked to the atomic transi-
tion in an auxiliary discharge, by saturated-absorption
techniques, and the laser linewidth is less than 1 MHz.
After spatial filtering, the laser beam is expanded, passed
through two quarter-wave plates (Fig. 3}, and retrore-
flected. yielding two counterpropagating plane waves
with opposite circular polarizations, with an almost uni-
form intensity in the 40-mm-diam interaction region
{Rabi frequency o, =06 with [/2x=1.6 MHz).
There are stringent requirements for this experiment.
First, the Zeeman, sublevels g+ and g - must remain de-
generate in the whole interaction region. This condition
is fulfilled by compensation of the magnetic field to less
than | mG by Helmholtz coils and a Mumetal shield.
Second, the refative phase between both laser beams
must remain constant in the whole interaction region.
This is achieved by our deriving both waves [rom the
same laser beam and by using very high quality optical
components for the second quarter-wave plate and for
the retroreflecting mirror (wave-front distortion less than
#/8). Also. the exact overlap of the two beams is adjust-
ed to 107° rad by autocollimation techniques. The
transverse velocity distribution after the interaction zone
is deduced from a transverse scan of an electron multi-
plier (sensitive 1o He*) with a 100-um entrance slit,
placed downstream at 1.4 m from a first 100-um slit just
after the interaction region. The corresponding HWHM

LNA
LASER

Py s—
— —40mm

°+I '

He® L 1S
<:: ‘7

SOURCE
ol

)/Lq:::
i M

5 [ELECTRON

ULTIPLIER

'

FIG. 3. Schematic experimental setup. The atomic source
at 77 K produces a beam of metastable triple helium atoms
(2'81) at an average velocity of 1100 m/s. These atoms in-
teract with two o4+ and o - polarized counterpropagating waves
at 1.08 pym. The transverse velocity distribution at the end of
the interaction region is analyzed with two slits Sy and S». 100
pm wide. S; is the entrance slit of a3 movable He* detector.
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transverse velocity resolution is 4 cms ™.

Figure 4 shows the transverse velocity profiles with
and without laser. The two peaks at about = AA/M
(+£9.2 cm s ~') clearly appear well above the initial dis-
tribution. A measurement of the standard half-width at
exp{— ¥ ) gives 6 cm/s, which corresponds to a tempera-
ture of about 2 uK. This experimental curve is in
reasonable agreement with the theoretical prediction.
Finer details concerning, for example, the variauons of
the efficiency of the cooling effect with the detuning still
require further investigation.

We have performed supplementary tests to support the
theoretical analysis given above. First, we replaced the
o+ and o- circularly polarized beams by two crthogo-
nally linearly polarized beams, and we checked that the
final velocity distribution still presents two peaks at
+ hk/M. On the contrary, for paraliel linear polariza-
tions where the nonabsorbing atomic superposition 1s not
velocity selective, the two peaks a1 = Ak/M disappear.
Another test consists of our arranging the laser beams so
that they do not exactly overlap at the end of the interac-
tion region, the last acting laser beam being the o+ one.
One expects atoms 1o be removed from the [g-. — &k’
component of | wna(0)? and to be pumped after a few
cycles {1wo on the average) into g+ with a mementum
spread around + hk. Indeed, we have observed that the
peak at —hk disappears while the peak at + A&k in-
creases and is broadened.

We have thus demonstrated that this velocity-selective
optical pumping inio a nonabsorbing state is a very
efficient process to accumulate atoms in an estremely
narrow veiocity class. By increasing the coherent in-
teraction time, still narrower velocity distributigns could

D
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-
, e
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r
n
E .
=

3
=
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4

e
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FIG. 4. Transverse atomic momentum profile at the end of
the interaction region, with the laser on (solid fine}and off
{dashed line: this profile has been smoothed). The doithe-peak
structure at about X Ak and above the initial distribuion is a
clear signature of the cooling effect presented in this Later.
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be produced, allowing one to reach temperatures in the
nanokelvin range. Several deveiopments of this work can
be considered: extensions to other level schemes: direct
observation of the coherence between the iwo com-
ponents of | wna{0)) propagating aiong different direc-
tions; generalization to three dimensions.

Finally, let us emphasize that this coching mechanism
15 quite different from the previously demonstrated ones.
since it is not due 10 a [riction force but to diffusien into
the cooled velocity class. Another important feature is
that the cooled atoms no longer interact with the laser
field which then causes no perturbation, etther on exter-
na| degrees of freedom (no diffusion) or on internal de-
zrees of freedom (no light shifts). This particuiarity
may be essential for future appiications.
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zie 2u Centre Nartionai de la Recnerche Scientifioue.
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We present a theoretical analysis of a new one-dimensional laser-cooling scheme that was recently demonstrated on
a beam of metastable *He atoms. Both internal and translational degrees of freedom are treated quantum
mechanically. Unlike semiclassical approaches, such a treatment can be applied to situations in which the atomic
coherence length is of the same order of or larger than the laser wavelength, which is the case for atoms cooled below
the one-photon recoil energy. We introduce families of states that are closed with respect to absorption and
stimulated emission, and we establish the generalized optical Bloch equations that are satisfied by the correspond-
ing matrix elements. The existence of velocity-selective trapping states that are linear combinations of states with
different internal and translational quantum numbers is demonstrated, and the mechanism of accumulation of
atoms in these trapping states by fluorescence cycles is analyzed. From a numerical solution of the generalized
optical Bloch equations, we study in detail how the final atomic-momentum distribution depends on the various
physical parameters: interaction time, width of the initial distribution, laser detuning, laser power, and imbalance
between the two counterpropagating waves. We show that the final temperature decreases when the interaction
time increases, so that there is no fundamental limit to the lowest temperature that can be achieved by such a

method. Finally, possible extensions of this methed to two-dimensional cooling are presented.

t. INTRODUCTION

Laser cooling uses momentum exchange between photons
and atoms to reduce the kinetic energy of atoms. Since each
elementary momentum transfer is equal to the photon mo-
mentum hk, the one-photon recoil energy Eg = 22k%/2M (M
is the atomic mass) represents an important landmark in the
energy scale. Recent developments in laser cooling have
permitted researchers to reach the regime where the equilib-
rium atomic kinetic energy becomes of the order of a few Ep
(Refs. 1-3) or even smaller than Ep4 In this new regime,
where the elementary momentum transfer can no longer be
considered a small quantity, the analogy between atomic
motion in laser light and Brownian motion breaks down, and
the Fokker-Planck description of laser cooling is no longer
valid. A new theoretical treatment is thus required.

The purpose of this paper is to present a quantitative
analysis of laser cooling below the one-photon recoil energy
by velocity-selective coherent population trapping. A one-
dimensional laser cooling of this type was recently demon-
strated on a beam of metastable ‘He atoms.* Here we
present equations of motion that permit a quantitative in-
terpretation of such a cooling scheme, and we discuss their
physical content as well as their solutions. The theoretical
approach followed here can be also useful for the analysis of
other situations in which temperatures of the order of the
one-photon recoil energy are approached. For example,
similar equations can be found in the analysis of laser-cool-
ing schemes below the Doppler limit based on gradients of
laser polarization® or in the investigation of the lowest tem-
perature that can be reached by cooling with ultranarrow

0740-3224/89/112112-13802.00

.

atomic transitions for which AT < Eg, where T is the natural
width of the line.®

To describe atomic motion in laser light, one usually starts
from equations of motion that describe the coupled evolu-
tion of the internal and external (translational) atomic de-
grees of freedom as a result of resonant exchanges of energy
and momentum between photons and atoms. Because of
the discrete character of the photon momentum Ak, these
equations are finite-difference equations. They are usually
transformed into coupled partial differential equations
through an expansion of the density-matrix elements in
powers of Ak/Ap, where Ap is the width of the atomic-mo-
mentum distribution. For sufficiently slow atoms, one also
makes an expansion in powers of kKAp/MT (the ratio between
the Doppler shift and the natural width). Finally, after an
adiabatic elimination of the fast internal variables, one gets,
for the atomic Wigner function, a Fokker-Planck equation
that allows one to consider atomic motion in laser light as a
Brownian motion and that provides theoretical expressions
for the friction coefficient v and the diffusion coefficient I}
and consequently for the equilibrium temperature T (kgT ~
D/My)."

The previous theoretical scheme is valid only if the expan-
sion parameter hk/Ap is very small, i.e., if the atomic coher-
ence length A/Ap is small compared with the laser wave-
length A = 2x/k. When the energy kgT = p2/2M becomes of
the order of or smaller than the recoil energy Ep = h2k%/2M.
we reach a new regime where the coherence length h/Ap
becomes longer than the laser wavelength A. It is then no
longer possible to consider the atomic wave packet to be well
localized in the laser wave and to describe its motion by a

© 1989 Optical Society of America
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Fokker—Planck equation. We must return to the full guan-
tum coupled equations of motion. This is precisely what we
do in this paper.

The paper is organized as foliows. In Section 2 we give the
level scheme and the laser configuration that are used in the
new laser-cooling method, whose principle is briefly ex-
plained. We show in Section 3 that, for two counterpropa-
gating o+ and o_ circularly polarized laser waves, the ab-
sence of redistribution of photons between the two waves
allows us to introduce a finite number of states, labeled by
external and internal quantum numbers, and that are cou-
pled by absorption and stimulated-emission processes.
These closed families of states are the basic ingredient of this
paper. In Section 3 we give the equations of motion of the
density-matrix elements within such a family as a result of
absorption and stimulated emission, and in this way we
interpret the principle of velocity-dependent coberent pop-
ulation trapping. Spontaneous emission plays an important
role in redistributing atoms among the different families.
The corresponding equations are established and discussed
in Section 4. It is then possible to write in Section 5 the full
equations of motion as well as of the initial state and the
detection signal. Numerical solutions of these equations are
presented in Section 6, and the influence of the various
physical parameters is discussed in detail. Finally, a possi-
ble extension of this new cooling scheme is considered in
Section 7.

2. SIMPLE PRESENTATION OF THE NEW
LASER-COOLING SCHEME

The new scheme uses a three-level A configuration in which
two degenerate ground sublevels g, are coupled to an excited
level eg by two counterpropagating a4 and o- polarized laser
beams with the same frequency w; [Fig. 1{a)]. Inthe experi-
ment described in Ref. 4, g, are the two Zeeman sublevels m
= +1 of the 23 5, state of *He, whereas ¢, is the m = 0 Zeeman
sublevel of 2* P, [the Clebsch—Gordan coefficient between
23 8, (m = 0) and 2 P, (m = () vanishes, permitting us to
ignore the 23 5; (m = 0) state in what follows].

First consider an atom at rest. For such an atom the two
apparent laser frequencies are equal, and resonant processes
involving one interaction with each beam can take place
between g+ and g—-. We can then show that there is a coher-
ent superposition of £, and g- that is not coupled to € by the
laser excitation. Such a situation occurs when the two am-
plitudes for absorbing a o or a o— photon interfere destruc-
tively. For example, if the two excitation amplitudes g, —
eo and g. — e are equal, the nonabsorbing coherent super-
position of g. and g_ is just (|g..) — lg. ))/A2. Anatom put in
such a superposition of states remains trapped there indefi-
nitely since it can no longer absorb light. Such a mechanism
of echerent population trapping owing to destructive inter-
ference between two excitation amplitudes is actually quite
general and can give rise to narrow resonances. It was dis-
covered in 1976,% and several theoretical treatments based
on optical Bloch equations? or on the dressed-atom ap-
proach!®1! have been given.

Coming back to the scheme of Fig. 1{a), we suppose now
that the atom is moving along Oz. The Raman resonance
condition is no longer fulfilled as a consequence of opposite
Doppler shifts on the two counterpropagating laser beams.

Vol. 6, No. 11/November 1989/J. Opt. Soc. Am. B 2113
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Fig. 1. Three-level A configuration. (a) Two degenerate ground
sublevels g, are coupled to an excited level e; by two counterpropa-
gating ¢+ and o- circularly polarized laser beams with the same
frequency wy; the corresponding coupling matrix elements are K. /2
and K_/2 in frequency units. (b) Closed family of states coupled by
interaction with the two lasers. Each state is characterized by its
internal quantum number and its linear momentum along Oz.

It follows that the two excitation amplitudes g, — e, and g-
—= g, can no longer interfere destructively. This simple
argument explains how the phenomenon of coherent popu-
lation trapping can be velocity selective for appropriate laser
configurations.’? The new cooling scheme discussed in this
paper consists of accumulating atoms in the zero-velocity
nonabsorbing state where they remain trapped. To popu-
late this state, we take advantage of the momentum redistri-
bution due to spontaneous emission, which allows certain
atoms to be pumped optically from the absorbing velocity
classes into the nonabsorbing state, Since the recoil of the
last spontanecus-emission photon is part of the cooling
mechanism, the one-photon recoil energy is not a limit. and
the final temperature is limited only by the coherent interac-
tion time.)®* Note also that, unlike other cooling schemes,
our mechanism, based on a Raman resonance condition,
does not depend on the sign of the laser detuning.

However, the previous analysis is too crude. Since the
two laser waves propagate in opposite directions, the phases
of the two electric fields, and consequently the phases of the
two excitation amplitudes g- — e; and g+ — ep, vary as
explikz) and exp(—ikz), respectively. It follows that, for an
atom at z, the nonabsorbing superposition of states must be
written as

—% [explik2)lg,) - exp(—ikz}g_)) (2.1}
\

and depends on z. On the other hand, when the atoms get
very cold (Ap <« hk), their coherence length becomes large
compared with A, and it is no longer possible to restrict the
discussion to atoms localized at a given z. This shows that
the nonabsorbing state must actually be described by an
extended spinor or vector wave function of the type of ex-
pression (2.1}, which exhibits strong correlations between
internal and external degrees of freedom. A more rigorous
analysis thus requires the introduction of a ba~:- uf states
involving both internal and translational quantum numbers
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and that we expand the atomic state vector {or density ma-
trix) on such a basis. That is what we do in Section 3.

3. CLOSED FAMILIES OF STATES COUPLED
BY ABSORPTION AND STIMULATED
EMISSION

A. Physical Idea and Notation
Let us introduce the state leg, p), which represents an atom
in the excited state e; with a linear momentum p along Oz

i. = p, where py is the atomic momentum). Because of
angular-momentum conservation, the interaction with the
o4 circularly polarized wave (stimulated emission or absorp-
tion) can couple together only egand g-.  On the other hand,
because of linear-momentum conservation, such an interac-
tion with a wave propagating toward +0z involves the ex-
change of a photon of momentum +Ak and thus can couple
only leg, p) and lg_, p — #k). Similarly, the interaction of
the atom with the o_ circularly polarized wave propagating
toward —Oz can couple only leg, p) and lg., p + hk) [Fig.
1(b)].

We are thus led to introduce a family of three states
coupled by absorption or stimulated emission:

F(p) = llee, p), lg_, p — hk), lg., p + hk)). (3.1)

As long as spontaneous emission is not taken into account,
this is a closed family of coupled states.

When considering the evolution of the density-matrix ele-
ments due to absorption and stimulated emission, strong
selection rules appear. For instance, (e, p'loleq, p™) is cou-
pled only to {gs, p’ + hklkaleo, p”) and (eg, p'lolgs, p” + hk).
A further simplification happens because all the interesting
gquantities that we need to calculate {see Section 5 below) are
terms such as (eg, ploleq, p), (g4, plolg+, po, (8-, plolg-, p,
and (g-, p — hklalg,, p + hk). These terms are coupled only
to terms internal in the family. For example, {eq, ploleg, p)
is coupled only to (gs, p + hklsley, p) and (eq, plolgs, p £
hk). In summeary, the evolution equations relevant to the
problem under discussion will involve only density-matrix
elements defined inside a family #(p). For such elements,
we use the simplified notation,

au’(p) = (eD’ plo'leo»P>; (3.28)
0..(P) = (g,,p + hklolg,, p £ hk), (3.2b)
0,+(p) = {e,, plolg,, p £ hk), (3.2¢)

7..(0) = [0, (P)]*. (3.2d)

We show below that, although spontaneous emission couples
different families, it involves only coupling with terms of the
type defined in Eqs. (3.2). For instance, o..(p) can decay
only to terms such as o.+(p’) and e__(p’). The elements
defined in Eqs. (3.2) are thus the only ones that we have to
consider.

Remarks

(i) The notion of closed families of states is central in the
analysis presented in this paper. It must be emphasized
that closed families exist only for specific level schemes and
laser wave configurations.'¥ In the standard situation when
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a two-level atom interacts with two counterpropagating lin-
early polarized waves, le, p) is coupled to lg, p — hk) and |g, p
+ fik), which are themselves coupled to le, p3, le, p — 2hk,
and le, p + 2hk), etc. Insuch a situation, each family has an
infinite number of coupled states. Families of this type
have been already considered (see, for example, Ref. 15).

(ii) The quantity p appearing in Eq. (3.1) or Egs. (3.2} is
Just a label used to index a family. We will see below that it
can be interpreted as the total linear momentum {(modulo
hk} of the atoms + laser field system, which is an invariant
guantity of the family.

B. Evolution Equations

We now write the equations describing the evolution of the
atom interacting with the laser field, taken as a classical
field. Here we do not yet take spontaneous emission into
account, and we consider only absorption and stimulated-
emission processes. The corresponding Hamiltenian is the
sum of two parts:

H=H,+V, (3.3)

where H 4 is the Hamiltonian of the free atom and V is the
laser-atom coupling. H, is the sum of the kinetic and inter-
nal energies:

P2
HA = —2ﬂ + th|€0)(€{;|. (3.4}

In order to simplify the equations, we consider here the case
when the two ground states |g,) and |g_) have the same
internal energy, taken equal to zero. The formalism devel-
oped in this paper could easily be generalized tc the case
when the energies E,, and E,_ are different, and the physics
would be the same provided that the two laser frequencies
differ by (E;, — E, )/h.
The coupling Hamiltonian is

V=—-D:E(z¢), (3.5)

where D) is the electric-dipole-moment operator and Elz, t)
is the classical electric field:

E(z,t) = Yle E, explitkz — w t) + c.c))
+ Yhle_E_expli(~kz — w;t) + c.c]l,  (3.6)

(where c.c is the complex conjugate). The first term corre-

" sponds to a ¢, circularly polarized wave propagating toward

z > 0, while the second one corresponds to a «- circularly
polarized wave propagating toward z < ( [e; = F(e, + ie,)/
2] '
Vg

The coupling of the atom with each of these waves is
characterized by the Rabi frequencies K. and K.:

d.E
K, =~ *h =, d, = (egle, - Dlg.). (3.7a)
Note the selection rules
(egle, - Dlg,) = (ele_ - Dig_) = 0, (3.7b)

which can be interpreted in terms of conservation of angular
momentum. With the rotating wave approximation, V can
be written as
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hK, ) hK_
V= —2— ie())(g—l exp(lkZ) + ”““5““ [eu}(g-e-’
x exp(—lkg)} exp('-ih.‘Lt) + H.C. (3.8)

(where H.c. is the Hermitian conjugate).
Note that in Eq. {3.8) 2z is an operator acting on the exter-
nal degrees of freedom of the atom. Using the relation

expl&ikz) = z lpi¢p = hkl
P

we finally get
hK hK_ ,
vy [T+ le,, p){g_.p — hkl + 5 lew DY (gs P+ hkt}
I

X exp{—i« ) + Hee. (3.9)

1t clearly appears from Eq. (3.9) that le, p} is coupled only to
lg—, p~ hk) and ig., p + hk). Aswas already emphasized in
Subsection 3.A, the atom-laser interaction can induce tran-
sitions only inside the closed family 7(p). The evolution of
such a family is thus described by a closed set of equations
among the nine density matrix elements characterizing the
family at time ¢ [Eq. {3.2)].

In order to eliminate time-dependent coefficients. it is
useful to make the usual transformation

T..(p) = o, explic,t),
&, (p) = o, (p),

#:(p} = a,{p) (i=+4,—, e (3.10)

The evolution equations are then

; K.*
[% g__{p} =~ ; 3,.{p)+cc,
d . 1 _ K
a& G..(p) i i—- &..(p) + c.c,
d. ] (K, K_*
[a Foelp) " =i 2 g,_{p}+ zT 7,.(p) + cc,

d . ] . .
[E oe.,,(p)_ b 1(5,_ +k ]% + “’R) 7..(p)

Ko . K,
i— [aH(_p) 7..{P)] !—?U_J,(p),
4, i(é k2 4 Ve (p)
dt = Ham L M R)Ue—

K, K.
~i—[a_Ap) = &,.(p)) —i—_.*(p),

2 2
d . ) _ K, )+.Kv-,,
[dt 5-+(p :IHam_ g e p) + i 5 TP
+ 2ik%&“+(p), (3.11)

and three complex-conjugated equations.
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These equations generalize the usual optical Bloch equa-
tions by including external quantum numbers.!® We have
called wp = Bk%/2M the recoil frequency shift and & = «; —
wois the laser detuning. Note that kp/M is the Doppler shift
associated with the velocity p/M.

C. Velocity-Selective Coherent Population Trapping

The evolution equations [Egs. 3.11)] allow us to understand

how coherent population trapping is velocity selective in the

configuration considered here. Let us consider the follow-

li;lg two orthogonal linear combinations of lg.. p + bk and
—,p—hk)

| BW=———  —|g_,p— hk
¥nelp (K, B+ K B & p
K. |
-(lK BNPARE fg+,p+hkz. {3.1%a0
Welp)) = K | hk
clp (K17 + K17 £, P ‘
K-*

+————— g, . p+hk . 13.12b)
K2+ IK_I)?

The reason for introducing i¥xc(p)* is that, according to Eq.
(3.9), the transition matrix element berween K~e(pre and
leg, p) vanishes:

(e, plVliinc(p)y = 0. (3.13a)
Consequently, an atom in the noncoupled state I (p)
cannot absorb a laser photon, and it cannot be excited 1o
les, pb. A similar calculation gives

. h ks 2 . n - .
(e, piVI (p) = 3 (K, F+ K I - expi=iw; 11 ti15h

and shows that [¢c(p)) is coupled to the excited state.

We now suppose that an atom has been prepared at &
certain time in lincip);, and we study its subsequent evolu-
tion. Equations (3.11)and ¢3.12) lead to the following equa-
tion of motion for {Yne(pilelincip):

d lolyaclph) = -k & 22
3 Ynelp al¥ncip)) = i MiKg F+IK_J?

X (¢ncl@lolyc(p); + cc. (3.14)

Suppose first that p = 0. The right-hand side of Eq. (3.14)
then vanishes. This means that an atom prepared in
{¥ne(0)) cannot leave this state either by free evolution tef-
fect of the free Hamiltonian H 4} or by absorption of a laser
photon (effect of the laser-atom coupling V). Although we
have not yet taken spontaneous emission into account. it is
clear also that the atom cannot leave Wene(0)) by spontane-
ous emission since this state is, according to Eq. (3.12a), a
linear combination of two ground states {g+; and g . which
are both radiatively stable. To conclude. the state [ xct0)
is a perfect trap since an atom prepared in this state remains
there indefinitely.

On the other hand, if p > 0, Eq. (3.14) shows that thereisa
coupling proportional to kp/M (coming from the free Hamil-
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tonian H,) between [¥nc(p)) and l¢c(p)}. This means that
an atom initially in lync(p)) can be transferred by H. to
i¢c(p)) and from there to leg, p) by V isee Eq. (3.13b)]. The
state [yc{p)) cannot therefore be considered a perfect trap
when p s 0, since excitation by the laser can take place after
an intermediate transition to [Yc(p)). Interpreting p/M as
the atomic velocity in the excited state of the family F(p), we
thus see that coherent population trapping in l¢nc(p); is
velocity selective, since it happens only for p = 0.

The motional coupling between lync(p)) and [c(p)) ap-
pearing in Eq. (3.14) can also be interpreted by noticing that
when p »¢ 0 the kinetic energies of [g-, p — k) and lg,, p +
hk) differ by 2hkp/M. 1t appears clearly from Eqgs. (3.12)
that, in this case (p = 0), inc(p)) and |yc(p)) are not
stationary with respect to H4; consequently H, induces an
oscillation between these two states. It is easy to show that
the Rabi frequency of this oscillation is just 2kp/M, which is
also the beat note between the two Doppler-shifted laser
frequencies. The visibility of this oscillation is maximum
(equal to 1) when the intensities are equal ([K.| = |[K_]).

Remarks

(i) The various couplings between {c(p)), ¥nc(p)}, and
leg, p) due to H, and V are represented in Fig. 2. Wc(p))
and inc(p)) are coupled by the motional term kp/M:;
l¥c(p)) and leg, p) are coupled by the atom-laser interaction
K/\2 (here wetake K, = K_ = K). Although we have not yet
introduced spontaneous emission, we know that leg, p) has a
natural width I". It follows that for a resonant excitation (5
= 0}, and in the weak-intensity limit (K < I'), the Rabi
coupling K/\2 between |¢c(p)) and the broad state ley, p)
gives to the state |{c(p)) a finite width

I = 2K%T. (3.15)

The same argument shows that the motional coupling kp/M
between |¢nc(p) ) and the state lyc(p)) with a width T gives
to l¥nc(p)) a finite width I'”, which, in the limit kp/M <« T,
is equal to

_ 2(kp/MT

r“
K*

(3.16)

I'” is the probability per unit time of an atom’s leaving the
state [ync(p)). The smaller p, the longer the time an atom

€o.P
r
K
V2
kp/M .
ry P r
be(p) byelp)

Fig. 2. Couplings and level widths for the three states e, p},
[¥cip)y, and [¥nc(p)) of the family F(p). l¥c(p)i is coupled to leg,
p) by the laser {coupling matrix element K/\2). [ync(p)) is coupled
to [¥c(p)) by the motion {coupling matrix element kp/M). As a
result of these couplings, lfc(p)} and [¥~nc(p)) acquire finite widths
I'" and T'”, respectively (departure rates). T is the natural width of
leg, pi.
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can be trapped in lxc(p):. Consider an interaction time ©.
Only atoms with p such that I'’® < 1, i.e., such that

kp\?  K? -
(M) < 2er! (3.1#;‘
can remain trapped in the noncoupled state during 9.

{(ii) One can give a classical picture of velocity-selective
coherent population trapping for the situation considered
here. The electric field [Eq. (3.6)] is linearly polarized at
every point, with the direction of polarization changing with
z as a helix of pitch \. On the other hand, for a state
Knc(p)) the transition electric-dipole moment between the
state [nc(p)) and the excited state le,, p) also makes a helix
with the same pitch A, orthogonal everywhere to the electric
field, so that the coupling is zero. For a state |[yc{p); the
transition-dipole moment makes a similar helix shifted by A/
4, and it is parallel everywhere to the electric field, so that
the coupling is maximum, Suppose now that an atom is in
the state l¥nc(p)) at a given time; the transition-dipole-
moment helix will move along Oz with a velocity p/M, so that
the probability of the atom’s being in [yc{p)} (ie., to be
excited to leg, p)) will be modulated at the frequency 2kp/M.
If p = 0, the transition electric-dipole-moment helix does
not move. It remains orthogonal to the electric-field helix
indefinitely, and the atom cannot be excited to leg, p): it is
thus trapped in f¢nc(0)).

4. SPONTANEQOUS EMISSION

A. Redistribution among Families

In Section 3 we showed that an atom prepared in |y ~-(0);
cannot leave this state by any process. We now have to
explain how atoms can be prepared in such a state. In this
respect, spontanecus emission plavs a basic role since it
allows atoms to jump from one family to another one. In
particular, atoms can be optically pumped from afamily 7 (p
# 0) into the family #(p = 0) where they may get trapped in
the [Ync(0)) state.

Consider an atom in the excited state le,, p’ of the family
F(p). It can emit by spontaneous emission a fluorescence
photon in any direction. Suppose that the fluorescence
photon has a linear momentum u along Oz (u can take any
value between —hk and +hk). Because of the law of mo-
menturn conservation, the atomic momentum changes by
~Uu, so that, in such a process, the atom makes a transition
from leg, p) to lg+, p — u) [Fig. 3(a}ortolg_, p = u3 [Fig.
3(b)] or to a linear superposition of these two states. Note
that the two states g, p — u} do not in general belong to the
same family as leo, p): lg4, p ~ u) belongs to F(p — u - hk)
and lg_, p—u) to F(p — u + k) (see Fig. 3). Spontaneous
emission can thus redistribute atoms from the family Fiplto
any family F(p’), with

P —2hk <p'€p+ 2hk. (4.1)

This diffusion in the family space provides the mechanism
for accumulating atoms in the family F(p = 0).

B. Corresponding Terms in the Master Equation

The first effect of spontaneous emission is the usual damp-
ing of populations and coherences invelving the excited
state!?
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eD:p'U'ﬁk €o.p
Flp-u-hi) ™ 5p
L \\ @
g,,p-tj-2ﬁk gp-hk g,p-u g.pshk
eqp  €gp-ushk
¢ \\g:(p-U#lk) -

g-p-hk  g-p-u g, prhk g+,p-u+27{k

Fig. 3. Redistribution among families by spontaneous emission.
Spontaneous emission of a photon with linear momentum u along
Oz (wavy lines) can bring an atom from the family F(p) {(solid lines)
to the family 7 (p — u — #tk) [dashed lines in (a)] or to the family Z(p
= + hk) [dashed lines in (b)]. Each state is represented by a point
with an abscissa equal to its atomic momentum along Oz and by its
internal quantum number ¢; (upper horizonta! line) or g4+ (lower
horizontal line). The label of a family is the atomic momentum of
its excited state.

d

[ % aﬂ,(p}]sp = —Ta,,(p), (4.2a)
d r

[5 cn,+(10)]sp ==5 o,+(D), {4.2b)
d T )

[a 60_(‘0)]@ = E 6, {pl. (4.2¢c)

The corresponding feeding terms in the ground state must
take into account the redistribution among families intro-
duced above. Consider, for example, [do..(p)/dt),,. which
gives the rate at which ig,, p + hk) can be populated by
spontanecus emission. Such a state is populated from ieg, p
+ Ak + u) [see Fig. 3(a}] with a rate T H{u}, where H{u) is
the normalized probability

+hk
f duH(w) = 1
—hk

that the emitted photon has a momentum u along Oz and I,
is the deexcitation rate from the excited state ¢, to the state
£+; the oscillator strength of the transition e — g, having
been taken into account:

T, =T/
Summing over u, one gets!”
d T [+h* ’ ’
2 o] = uj duHW)o, (p + Bk +u).  (4.38)
dt i 2 g

A similar argument {see Fig. 3(b)] gives

d T +hk
S @] =1 j duH(u)o, (p + u ~ k).  (4.3b)
sp

2 jn

The kernel H{u) depends on the radiation pattern for the
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leg) -~ lgs) transitions.!® For instance, inthe |/ = 1.m = 0"
— | =1, m = £1) transition considered in Ref. 4,

31 u”
N=——01+ . 4.3¢)
H(D S hE ( hzk:) (4.5¢

The possibility of feeding the coherences of the ground
state 0._(p) must also be considered. Infact, we are dealing
here with Zeeman ground sublevels, and it is well known that
such coherences can be fed only by corresponding coher-
ences in the excited state. But here there is only one popu-
lated excited state, so we have no feeding term for these
ground Zeeman coherences. More precisely, spontaneous
emission of a photon Ak in a well-defined direction (and with
a well-defined polarization) from the excited state fe,, p » will
give rise to a well-defined coherence between lg., p — Ak:
and l[g—, p ~ hk). But, if we average over the azimuthal
angle ¢ of k, keeping the angle # between Oz and k constant.
and if we trace over the components of the atomic momen-
tum perpendicular to Oz (which are not observed), we find
that the coherence between lg,, p — u) and lg., p — u}
(where p = p, and u = hk cos ) vanishes. This is a conse-
quence of the invariance of spontaneous emission in a rota-
tion around Oz.

We mnust also discuss the question of external coherences,
i.e., terms such as

(g_, p'lalg_, p».

We can show that because of translational invariance for
spontaneous emission in free space, such a term could be fed
only by a corresponding coherence in the excited state, i.¢.,
by a term

ce,p’ = uldle, p — u,.

In the problem considered here, we start from an initial
distribution of atoms in the ground states lg_, p’) and lg..,
p”), without any coherence between such terms. The cou-
pling [Eq. (3.9)] cannot create external coherences in the
excited state from such an initial state, and we can thus
conclude that spontaneous emission will not feed external
coherences in the ground state.

We have thus justified the statement of Subsection 3.A
according to which the only density-matrix elements rele-
vant to our problem are the elements defined in Egs. (3.2),
i.e., density-matrix elements defined inside a family F(p).
We can also conclude that Eqs. (4.2) and (4.3) describe
correctly the effect of spontaneous emission for the problem
discussed in this paper.

C. Mechanism for Accumulating Atoms in the Trapping
State

As is shown by Eqgs. (4.32) and (4.3b), spontaneous emission
provides the mechanism for accumulating atoms in the trap-
ping state: indeed, an atom in the excited state |ey, p> with 0
€ p € 2hk can decay by spontaneous emission into lg., +kk ;.
which increases o+4(p = 0) [see Fig. 3(a)]. Similarly, |g_.
—hk} [corresponding to - _(p = 0)] may be populated from
any excited state e, p} with —2hk < p<0.

Note, however, that although each of these ground states
belongs to the #(p = 0) family, an atom in lg.. +hk} orin ig-,
—#k) is not yet in the trapping state ¢ nc(0)). This requires
a further step, namely, filtering in the state space. Take. for
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instance,anatom in |g_, —hk}. It can be considered as being
in a linear superposition of i¥nc(0)) and lyc(0)):

lg_, —hk) = % (N0 + ()] (4.4)
¥

[see Egs. (3.12) in which K, = K_* and p = 0]. While
l¥nc(0)} is perfectly stable, Wc(0)) is not, since it may get
excited through interaction with the lasers at a rate I [Eq.
3.15]. After & time long compared with I'"-, the atom will
either be in lync(0)), where it will remain trapped, or it will
be involved in some new fluorescence cycles. This filtering
process thus leaves 50% of the atoms in the trapping state
l¢nc(0)), while the other 50% resume a sequence of fluores-
cence cycles. The physical mechanism involved in this fil-
tering is the Raman interaction that builds up the coherence
between |g., —hk) and |g,, +hk) that is characteristic of
I¥nc(0)).

The reason why |ycn(0)) cannot be directly populated
from |eg, p) by spontaneous emission is related to the conser-
vation of linear momentum., Just after the spontaneous
emission of a photon with momentum v, along Oz, an atom
starting from leg, p) has its momenturn changed from p to p
= . On the other hand, [¢nc(0)) is not an eigenstate of the
atomic momentum P;,. It follows that the spontaneocus
emission of a photon with momentum u along Oz cannot
connect leg, p) to both states lg+, +hk) and lg_, —hk).

One may wonder how to deal with linear-momentum con-
servation during the second step, i.e., during the filtering
process. In fact, the laser fields have been considered here
as external classical fields, and there is no isolated system in
which one can look for momentum conservation. We could
indeed generalize our treatment by quantizing the laser
fields. Insuch atreatment, one finds that the three states of
a given family have the same total linear momentum (sum of
the atomic and laser field linear momentum) equal to the
label p of the family, modulo Ak. The filtering process,
leading from |g_, —hk) with the laser field in a certain quan-
tum state to lync(0)) with the laser field in a different state,
conserves the total linear momentum.

5. EVOLUTION OF THE ATOMIC
MOMENTUM DISTRIBUTION

A. Initia] State

For the initial atomic state, we take a statistical mixture of
the two ground states g+ and g- with the same momentum
distribution along Oz:

P.Oop%) = P_%p2). (5.1)

The initial density matrix elements are thus equal to zero,
except for o4 and o__:

ae4(D) = P,p + Ak),
o..(p) =P_*p - hk),
7(P) = 0,
o (P) = e py=o0,_(p) =0, (5.2)
The assumption that there are no coherences and that the
momentum distributions are the same in the two ground-

state sublevels is quite natural for atoms in an atomic beam
emerging from a nozzle. However, in the real experiment*
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there is also an initial population in the m = 0 ground
sublevel that will be optically pumped into g. and g_; in
some circumstances (laser detuning different from 0) the
resulting distributions may be dissymmetric, and eondition
(5.1) may not be fulfilled in some experiments. However, we
keep such a condition in the subsequent calculation since it
allows us to extract simply the most important features of
the new cooling process.

B. Master Equation: Generalized Optical Blodk
Equations

Adding the terms found in Section 3 and Subsection 4.B, we
get the equations governing the evolution of the density-
matrix elements:

do _(ds do i
dt (dt )Ham * (dt ),p’ (5-3)

where the first term {Egs. (3.11)] is the Hamiltonian evolu-
tion corresponding to free evolution and atom-eser cou-
pling. The second term [Egs. (4.2) and (4.3)] corresponds to
spontaneous emission.

In spite of the fact that internal and external degrees of
freedom are treated completely quantum mechanigally, this
set of equation is remarkably simple, and it is wal adapted
for a numerical step-by-step time integration. Naste in par-
ticular that the finite momentum exchange hk secoil) is
accounted for in all atom-field interactions, although it does
hot appear explicitly in the atom-laser interaction because
of the concise notations [Eqgs.(3.2)).

C. Final Atomic Distribution

We are interested in the atomic linear-momentumdistribuy-
tion along Oz at the end of the interaction with fhe lasers,
whatever the internal state of the atoms mayv %e. This

distribution is!?

P(p:[) = U++{pit - hk) + 0_—(p:l + hk) + aee(pffn'. (5,4)

We can predict the shape of this distribution by wsing the
results of Sections 3and 4. Velocity-selective coheent pop-
ulation trapping consists in accumulating atoms arsand the
trapping state:

Wnc(0)) = —%— lle_, ~hk) — lg,, +4£)] (5.5)
A

[see Eq. (3.12a) with K, = K_ and p=0].

First consider atoms trapped in lYne(0)). This state is
not an eigenstate of the linear-momentum operater, and a
linear-momentum measurement will vield either D= +hk
or p;; = —hk with equal probability (case |K,| = |k j. The
corresponding atomic-momentum distribution Pli) is a
double Dirac peak at +hk [solid vertical lines of Fg. 4(a)].
For such atoms, the distribution of the populatias of the
noncoupled states (Ync(p)lelync(p)) is a single Dime peak
at p = 0 [solid vertical line of Fig. 4(b).

Now consider atoms in lYne(p)) with p close to Q. Their
atomic-momentum distribution P(pZ,) is a shifted double
Dirac peak at p%, = p & Ak [dashed vertical lines of Fi: 4(a)].
The corresponding distribution of [¥ne(p)) exhibitsasingle
Dirac peak with the same shift [dashed vertical lineof Fig.
4(b)].

We can then predict the atomic-momentum distrbution
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Fig. 4. Expected shape (a) of the atomic-momentum distribution
P(p,) and (b) of the population in the noncoupled state
(¢ncplahncip)y. The vertical solid lines indicate the positions of
the Dirac functions representing the contribution of the atoms in
{¥nc(0)). The dashed vertical lines indicate the positions of the
Dirac functions representing the contribution of atoms in [{nc(p)?.
For atoms aceumulated in noncoupled states [¢~c(p)) with pin a
narrow range 3p around p = 0 (b), the expected atomic-momentum
distribution consists of twin peaks centered at £hk, with the same
shape and the same width 4p (a).

after an interaction time 4. As a consequence of inequality
3.17), atoms are accumulated in states [ xe(p): with pina
narrow band around p = 0 with a width ép of the order of
M K
ép o (56)
R\T 8

The corresponding atomic-momentum distribution Pipy)
will thus exhibit two peaks of width ép around pi, = +hk
(Fig. 4(a)]. Finally, these two peaks will emerge over a broad
background corresponding to atoms in the states Wcip;.

6. NUMERICAL ANALYSIS AND DISCUSSION
OF THE RESULTS

We have obtained numerical solutions of the generalized
optical Bioch equations with internal and external degrees
of freedom [Eq. (5.3)], making use of the convenient p family
basis introduced above. We have used the parameters cor-
responding to the experiment? on the transition 2 25,-2 3P,
at A = 1.083 um of ‘He atoms (I'/2x = 1.6 MHz).

A. Numerical Procedure

The time evolution of the density-matrix elements is ob-
tained by incrementation starting from the initial condition
of Eq. (5.1). The time increment is typically 0.05 I'!, small
enough to have no artificial instabilities introduced by the
Incrementation.

The p variable is discretized in intervals ¢ = £k/30, be-
tween —~pma and +pq.; (typically pr., = 30 #k). These
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values have been chosen in order to fulfill the following
requirements: First, ¢ must be small compared with the
narrowest structure appearing in the p dependence of the
solution of Eq. (5.3). Second, pp., must be large enough
that the interesting part of the solution (near p = 0) is not
affected by the truncation of the p range. We have chosen
Pmax = 30k so that, for the largest value of 6 considered here
(f = 1000T ), the effect of momentum diffusion from p
values larger than pp,, to p = 0 is negligible.

B. Time Evolution of the Momentum Distribution

Figure 5 represents the final atomic-momentum distribu-
tion P{p},) for four different interaction times (61" = 50, 150.
400, 1000). We have taken a zero detuning (6; = w; — w. =
0), a Rabi frequency K = |K,| = [K_| = 0.3T, and a Gaussian
initial distribution with a standard half-width at exp(—1/2);
Apg = 3hk. For 6 large enough, P(pZ,} exhibits two resolved
peaks emerging at +hk above the initial distribution. This
is the signature of the new cooling scheme. 1t is remarkable
that, for § = 150 T—%, the cooling effect already appears.
When the interaction time increases, the two peaks become
narrower and higher.

Figure 6 shows on a larger momentum interval the shape
of the right wing of P{(p) (the curve is symmetrical} at the
initial and final times. Besides the cooling effect, one sees
that a fraction of atoms has diffused toward higher momen-
tum values, which is in agreement with the physical picture
of a diffusion in momentum space produced by spontaneous
emission.

In order to visuatize the accumulation of atoms in [¥xc(p)
with p close to 0, we have also calculated the populations
(ne(plolyncip)y and (Yo(pllalyc(p),. Figure 7 shows the

2 —
(‘P(Pai) g.sor-! @ | | @150 I
A l. P |
e O +h Pal
g-400r"! (el

I
Sk O +hi Pat
Fig. 5. Time evolution of the atomic-momentum distribution
#(pi).- The dashed curves with half-width Ap, = 3h% show the
initial distribution. As the interaction time # increases. the height
of the double peak at +hk (characterizing the new cooling process)
increases, and its width decreases. Conditions for these figures:

laser detuning é; = 0; Rabi frequencies of the atom laser coupling
K, = |K_| = 0.37.
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‘Fig.6. Half of Fig. 5(d) with a different scale showing the diffusion
of a fraction of the atoms toward large values of the momentum,

8:1000r"!

<¢NC (p)ial q)NC(P)>

AN

" |
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Fig.7. Atomic population in the noncoupled states [ync(p)) in the
same situation as for Fig. 5(d). The peak height is twice as large,
and the width is the same as in one peak of Fig. 5(d). At this scale,
the population in [¢c(p)) would not be visibie.

o P

resulting distribution of (Ync(p)lol¢nc(p)) for the same pa-
rameters as in Fig. 5(d) [at this scale, (¢c(plolyc(p)) is so
small that it would not be visible]. The sharp peak near p =
0 appearing in the lync(p)) population is clearly related to
the double peak with the same width in the atomic-mo-
mentum distribution. The big difference between
(¥nc(P)lelgncp)) and (Yo(p)lolyc(p)) near p = 0 shows
that the coherence between WWnc(p)) and l¥c{p)) is very
small. In such a situation, the atomic distribution in the
peaks can be considered a statistical mixture of [{nc(p)) and
léc(p)). Wehave checked that, outside the peak of Fig. 7, of
the populations } and [¢c(p)¥nc(p)) are almost equal.

C. Peak Width, Temperature

In order to characterize the cooling process, we define a
temperature in terms of the width of a momentum distribu-
tion. According to the discussions above, the cooled atoms
are in states |¢Nc(p)) with a distribution of p values shown in
Fig. 7. We use the width of this distribution, which is also
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the widsh of each of the two peaks of Fig. 5(d). to define a
temperature. Since we do not address the question of a
Gaussian shape for this distribution, we will not give a pre-
cise value for the temperature. We can nevertheless note
that the peak half-width may become much smaller than the
one-photon recoil, corresponding to a temperature below the
recoil energy.

We have plotted the half-width Ap [taken arbitrarily at
exp(—1/2) after subtraction of the broad background] as a
function of the interaction time 4 [Fig. 8(a)] and of the Rabi
frequency K [Fig. 8(b)]. The results obtained are in good
agreement with a simple model based on relation (5.6)
which predicts a width varying as K#-12,

Remark

To characterize the temperature, one could also caleulate
the mean kinetic energy of the momentum distribution. We
do not think that such a quantity would be appropriate for
defining a temperature since, even if all atoms were in the
pure state {¢nc(0)), their kinetic energy would be nonzero
and equal to the recoil energy Ep, although this situation
obviously corresponds to a zero temperature.

D. Unbalanced Laser Beams

Figure 9 shows the atomic-momentum distribution for un.
equal Rabi frequencies (K, = 1.5K_). The peak height
difference is easily interpreted: when K, = K_, the coeffi.
cients of the expansion of the trapping state |y¥nc(0) ) on lg+,
+hk) and lg—, ~hk) [Eq. (3.12a))] have different moduli.

Ap @ |
Tk | B
025 /9’/
I -
T 1

0 004 008 1\T6
Bp -
fik [ s
03 c/0/"/‘:’
0.2 -

/%
01t »
1 ! 1 { f
0 0.4 08 K/T

Fig. 8. Half-width of the peaks (initial half-width Apo = 3k laser
detuning &, = 0}: (a) Ap for various interaction times # fors. Rabj
frequency K = 0.3T; (b) Ap as a function of the Rabi frequemy K =
K, = K_ for an interaction time §# = 1000I'~'. These resulteshow
that Ap in proportional to 6~/ and to K (dashed lines) ard: thus

confirm relation (5.6) for 6 large enough that the two peaks awe wel}
separated. ’
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Fig. 9. Atomic-momentum distribution for unbalanced laser
bearmns. Same conditions as for Fig. 5(d) except for the Rabi fre-
quencies: K. =0.3I K_=0.2I.

g)(p:t) =0 @

5.

|- n 1 " L " .z
fk O +hk Pat

Fig. 10. Atomic-momentum distribution for varicus detunings.
Same conditions as for Fig. 5(d) except for the detunings &, £T
(a}, corresponding to §; = 0, is the same as Fig. 5(d}]. Cooling is
efficient for any sign of the detuning.

One predicts that for atoms trapped in [Ync(0)) the proba-
bility for 8 momentum +hk is |[K./K_|? times greater than
the probability for —hk. This is in good agreement with the
ratio of the two peaks of Fig. 9, which is found equal to 2.25
(theoretical value, 9/4).

E. Dependence on Laser Detuning

Figure 10 shows the atemic distribution at a given interac-
tion time # = 1000T'~! for three different laser detunings (5,
= 0,8, = £T) and for the same laser intensities (Ki=K_=
K). Note first that the new cooling mechanism is efficient
for the three values of the detuning and particularly that it

b | O =+l (© F
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does not depend strongly on the sign of §;. This has to be
contrasted with other schemes such as Doppler cooling.
stimulated molasses, and polarization gradient cooling,
which have a dispersionlike behavior.

The variation with é; of the height and width of the peaks
can be interpreted by an extension of the perturbative calcu-
lation of Remark (i}, Subsection 3.C, to & nonzero detuning.
In this case, the width T of lc(p)) is changed [from E.
(3.19)] to

I = (K%/2) _1“? {6.1)
8% + T
In addition, lyc(p)) undergoes a light shift2
& = (K¥/2) —ELT (6.2)
5,7+ "

With these modifications taken into account, the motional
coupling kp/M between |ync(p)) and l¢c(p)) now gives to
iWnc(p)) a width I'”:

"= (kp/M)z—rr.E.
&7+ —
4

Inserting Eqs. (6.1) and (6.2) into Eq. (6.3), we find that

(6.3}

I = (kp/M)? }25/5 6.4)

which coincides with Eq. (3.16), showing that T does not
depend on the detuning 6;. This explains why the peak
width, which is determined by I'” [Remark (i} of Subsection
3.C], keeps the same value for the three curves of Fig. 10. On
the other hand, Eq. (6.1) shows that T’ decreases when the
detuning increases: the absorption rate for atoms in Betp
is then weaker, yielding a lower optical pumping rate into
lync(0)). This explains the smaller peak heights in Figs.
10(b) and 10(c).

Note finally that there are small differences between the
curves corresponding toé; = 4T and 6, = ~TI'. These differ-
ences have not yet been interpreted.

F. Efficiency of the Cooling Process

The cooling process is characterized not only by its ability to
yield atoms in a narrow p range but also by the accumulation
of atoms in this range, leading to a final density (in P space}
larger than the initial one. The density at the center of the
cooled distribution (near p = 0} is measured by the peak
height.

We first considered the case of nharrow initial distributions
centered on p = 0. Figure 11(a) shows the evolution of the
peak height as a funetion of the interaction time for an initial
width of the momentum distribution Apo = hk. We have
checked that, for the same total number of atoms, the evolu-
tion is almost independent of the width of the initial distri-
bution, provided that this width is smaller than 2hk. An
immediate interpretation is that each fluorescence cycle
produces a redistribution in p space over an interval 24k,
After a few fluorescence cycles, there is no memory of struc-
tures narrower than 2kk. In agreement with the interpreta-
tion of this new cooling scheme, the peak height increases
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Fig. 11. Accumulation of atoms in the peaks as s function of time.
The height of the peak {a) is a measure of the maximum atomic
density in the pspace. (b) Shows the fraction of atoms in the peaks.
Conditions are the same as for Fig. 5 except for the initial distribu-
tion (Apo = hk).

Peak area/total area

with time. The decrease of the siope can be related to a
depletion of the background of untrapped atoms that consti-
tute a reservoir for the accumulation process. It is also
interesting to study the evolution of the total number of
atoms in the peaks, since this results from opposite varia-
tions of height (which increases) and of the width (which
decreases). Figure 11(b) shows that a large fractions of the
atoms can be trapped in the peaks of cooled atoms.

We also investigated the case of broad initial distribution
{Apg > 3hk). For small interaction times #, the evolution of
the peak height versus # is linear and depends only on the
initial atomic density at p = 0. But a decrease of the slope
appears at an interaction time that is longer when the initial
distribution is broader. As a consequence, the peak height
(normalized by the initial density at p = 0) is larger for
broader initial distribution when # is long enough. For ex-
ample, for Apy = 10 kk and # = 1000I'~! the normalized peak
height is 1.7 times larger than the one of Fig. 5(d) (corre-
sponding to Apy = 3hk, 8 = 1000I'"1}). This behavior can be
interpreted by considering the diffusion of atoms in momen-
tum space, from the edges of the initial distributiontop =0,
where they can be trapped. Note finally that for Ap, large
enough (and for &, = 0) the Doppler detuning can decrease
the diffusion rate at the edges of the momentum distribu-
tion, which introduces a natural cutoff that is independent
of Ap()

This discussion clearly raises the question of the asymp-
totic behavior at long interaction times. One can hardly rely
on a numerical calculations to answer this question. Note
that a double Dirac peak (corresponding to [ync(0}}) is a
steady-state solution of Eq. (5.3), but we do not know wheth-
er such a solution can be reached by starting from realistic
initial conditions. This question is still unresolved.
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In order to increase the fraction of cooled atoms, we have
considered schemes in which atoms with large p would be
reflected toward p = O by interaction with another laser
bearn. With such walls in p space, it is clear that the accu-
mulation process into lne(0)) will continue indefinitely.

7. GENERALIZATION TO TWO DIMENSIONS

So far we have dealt only with one-dimensional cooling.
Now we explain how velocity-selective coherent population
trapping can be extended to two dimensions. We consider
the same atomic transition J, = 1++J, = 1 asthe one used in
the experimental demonstration of one-dimensional cool-
ing.4 Figure 12(a) represents the various Zeeman sublevels
in the ground state and in the excited state and the Clebsch-
Gordan coefficients of the various transitions g, «* e,’ (m,
m' = —1,0, +1). The laser configuration consists of three
laser beams [Fig. 12(b)] with the same frequency and the
same amplitude. As above, there are two counterpropagat-
ing beams along Oz, one o, polarized with a wave vector ké,
one o_ polarized with a wave vector ~ké, (k is the wave
number; &, is a unit vector along Oz). In addition, there is a
third laser beam along Ox (wave vector ké,), linearly polar-
ized along Oz (r polarization). Each of these beams excites
only one type of transition: gm, ** en+1 for the o, beam, g,
++ ¢, for the ¢- beam, and g, ++ €, for the = beam.
Consider the state

1 3 »
l¥nc(P)) = = (lg_;, p — hke,) + lg, p + Bke,)
J

+lg,y, p 4 BREH, (1D

which is a linear superposition of three states differing not

€ €p €49

: - RV~ K- AV~ : @
v o/ \[2
9. 90 941

0.

ke, / T (o)
b
' ke,

Fig. 12. Configuration for two-dimensional velocity-seketive co-
herent population trapping. (a} The J = 1 « J = 1 atomic transi-
tion with the corresponding Clebsch-Gordan coefficients. (b) The
three laser wave vectors and polarizations for which thestate de-
fined in Eq. (7.1) is trapping and velocity selective along Gk and Oz.

ez ¥
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Fig. 13. Closed family of states coupled by interaction with the
lasers of Fig. 12(h]. Each state is characterized by its internal and
external quantum numbers.

only in their internal gquantum numbers but also in their
momenta. We are going to show that such a state cannot be
coupled to any excited state in the same way as the [¢nc(p):
states introduced in Subsection 3.C. For that purpose we
first determine to what excited states each component of Eq.
(7.1} is coupled (Fig. 13). Because of the conservation of
angular and linear mormmentum, an atom in |g_;, p — hk2,} is
coupled only to le_, p — hké, + hké,) by absorption of a {,
ké.) photon and to leg, p) by absorption of a (o, k&) photon.
In the same way, lg.. p + hké,) is coupled only to le_;. p —
hké, + hké,) (respectively, le.i, p + hké, + hké,)) by ab-
sorption of a (o, —ké,) [respectively, (¢4, ké,)] photon, and
lgs1. p + hke.) is coupled only to le,;, p + hké. + hké
(respectively, ie,, p)) by absorption of a (r, ké,) [respective-
ly,{o_, — ké,)] photon. AsinSection 3, we thus find a family
of six states (instead of three) {lg_,, p — hké.3, lg0.p + hké,),
lg<y. p + hkéd ey, p - hké.+ hké,), le., pd.lesy, p + hké. +
hké,)| that remains closed with respect to absorption and
stimulated-emission processes. The important point is that
all transition amplitudes starting from Eq. (7.1) and ending
in any of the three excited states of the familyv interfere
destructively. This is because each of the three excited
states of Fig. 13 is coupled only to two ground states (because
of the zero value of the Clebsch-Gordan coefficient for e,
£o) by two transitions having opposite Clebsch-Gordan coef-
ficients [Fig. 12{a}]. Since the state [Eq. (7.1)] is completely
symmetric, the six excitation amplitudes from such a state
interfere destructivelv two by two.

Consequently, an atom in Eq. (7.1) cannot leave this state
by interaction with the lasers. Since it contains only ground
states, it cannot decay by spontaneous emission. It remains
to see under what condition it is stationary with respect to
the free evolution Hamiltonian H,. We must write that the
kinetic energies of the three components of Eq. (7.1) are the
sare (as above, we suppose that there is no static magnetic
field), which gives

(p — hké,)” = (p + hké,)" = (p + hke,)%. (7.2)
We conclude that [¥nc{p)) is a perfect trap only if
p-é.=p-¢ =0 (7.3)

This shows that optical pumping into the states [Eq. (7.1)]
satisfying Eq. (7.3) could provide a two-dimensional cooling
for the components of p perpendicular to é,.
Experimentally, one could send an atomic beam along Oy
in the laser configuration of Fig. 12(b). Accumulation of
atoms by optical pumping into the trapping states Eq. {7.1)
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satisfying Eq. (7.3) could be revealed by measuring P}, and
P after the interaction zone. From Egs. (7.1) and (7.3) we
then predict that the surface giving the atomic-momentum
distribution in the {p,, p.) plane should exhibit three narrow
peaks, at

pi =0 pe.=0 Ps: = thk (=4
N N . i.4)
Py = thk Py = —hk P, =0

Remark

Note that in such an experiment there must be no force
acting along the velocity-selective directions Ox and Oz. In
order to avoid the effect of gravity, we should thus align the
atomic beam vertically.

In this section we have demonstrated that there is a per-
fect trapping state that is velocity selective in two dimen-
sions. However, in order to evaluate the efficiency of the
cooling process, one should also solve the generalized aptical
Bloch equations corresponding to this situation. This
would allow one to evaluate how leng it would take for
momentum diffusion in two dimensions to accumulate many
atoms into the trapping state.

It is tempting to try a further generalization to three
dimensions. We have found no scheme that allows accumu-
lation of many atoms into a noncoupled state that is velocity
selective in three dimensions. We have found such states
for more-complicated level schemes. Unfortunately, in the
situations that we have investigated, there is always another
trapping state that is velocity selective in a smaller number
of dimensions {two or one). The atoms are then rapidly
trapped into this less-selective noncoupled state, where thev
are no longer available for the three-dimensional trapping.

8. CONCLUSION

We have presented a full quantum theoretical treatment of a
new one-dimensional laser-cooling scheme permitting trans-
verse temperatures below the one-photon recoil energy to be
reached by velocity-selective coherent population trapping.
Unlike semiclassical approaches, this treatment can be ap-
plied to situations in which the atomic coherence length is
comparable with or larger than the laser wavelength. It is
based on the use of families that contain a finite number of
states defined by translational and internal quantum num-
bers and that remain closed with respect to absorption and
stimulated emission. Redistributions among these families
occur through spontaneous emission. We have established
generalized optical Bloch equations for the density-matrix
elements corresponding to these families, and we have pre-
sented numerical solutions of these equations.

This theoretical study has allowed us to exhibit the essen-
tial features of the new cooling process and to support the
underlying physical ideas. The main differences from other
cooling methods are the following:

(i} The cooling exists for both signs of the detuning and
for zero detuning;

(i) The width of the final momentum distribution,
which characterizes the temperature, decreases as 37,
where ¢ is the interaction time. There is no fundamental
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limit to the lowest temperature achievable by this method:
in particular, the one-photon recoil is not a limit;

(iii) The basic cooling mechanism relies not on a friction
force but on a diffusion process in momentum space, which
pumps atoms into nonabsorbing states corresponding to a
small region of the momentum space;

{iv) Since the cooled atoms no longer interact with the
Iaser field they suffer no perturbation either on the external
degrees of freedom (no diffusion) or on the internal degrees
of freedom (no light shifts),

We presented in Section 7 a possible extension of this new
cooling scheme to two dimensions. The method of families
used in this paper could easity be applied to such a situation.
It would also be interesting to add a supplementary interac-
tion for reflecting toward p = 0 atoms that have diffused at
large p values; such walls should improve the cooling effi-
ciency at long interaction times.

The fundamental property on which the new cooling pro-
cess is based is the quantum coherence between lg., p— &)
and g4, p + hk). A remarkable feature associated with this
coherence is the total coherence between states of different
linear momentum p — hk and p + hk. Since p is distributed
in a narrow interval around 0, such coherence gives rise to
two coherent wave packets propagating along different di-
rections. Another interesting feature is the complete corre-
lation between the internal state and the direction of propa-
gation, as in a Stern-Gerlach experiment. The calculations
presented in this paper permit a quantitative treatment of
all these coherence effects by use of the nondiagonal terms
a+_(p) of the density matrix. These results could be useful
in the analysis of atomic interferences based on this scheme.
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degrees of freedom by velocity-selective recycling ina trap. See
D. E. Pritchard, K. Helmerson, V. S. Bagnato, G. P. Lafyatis.
and A. G. Martin, in Laser Spectroscopy VIII, 8. Bwanberg and
W. Persson, eds. {Springer-Verlag, Heidelberg, 1987), p. 68.
Closed families exist only when the two counterpropagating
waves have polarizations such that they cannot botk excite the
sarme atomic transition |g, m) < le, m’'). This is always the case
for a 0,—v- configuration because of angular-momentum con-
servation, In the particular cases of J, =1+~ J. =6and J, =1
«+ J, = 1 transitions, closed families alsc exist when the two
counterpropagating waves have orthogonal linear pofarizations.
This is easily seen by use of new bases of sublevels for g and ¢,
such as |lg, m = 0}, [f;', m= -1} % |g,m = 1)]/12]. Using these
new bases, we find that the two waves cannot excige the same
transition. This explains why cooling by velocity-selective co-
herent population trapping has been also observed on the 2 °5,-
23p, transition of ‘He with the orthogonal linear coafiguration
Ch. J. Bordé, in Advances in Laser Spectroscop> F.T. Arrechi.
F. Strumia, and H. Walther, eds. (Plenum, New Yerk, 1983); 5.
Stenholm, Appl. Phys. 16, 159 (1578,

R. J. Cook, Phys. Rev. A 22, 1078 (1980).

Balian, S. Haroche, and S. Liberrman, eds. (North-#sliand, Am-
sterdam, 1977), p. 1. For an extension of these sguations in-
cluding translational quantum numbers, see 8. Steshiolm. Appl.
Phys. 15, 287 (1978).

In fact, the exact shape of H(u) is not important, provided that
it has the correct width 2kk and it is normalized. We have
checked that a constant value over 2hk [H(u) = 1/2% for —hk <
u < hk] vields almost identical results after only.afew fluores-
cence cycles. We have thus taken the constant fom for Hiu),
simpler for the calculations, for all the interactiontimes longer
than 1071

In an experiment like ours,! the atoms are allowedl to fly a long
distance without any interaction until they are deected. Ex-
cited atoms will then decay to one of the ground states, and the
recoil of the corresponding photon bas to be taken.ntie account.
The last term of Eq. (5.4) must then be convoluteddy the kernel
Hiu) introduced in Section 4. Note that this anounts 1o a
convolution of g..(p) by a function with width 2hk. In the case
of a high light intensity (for which our calculation:i-still valid),
de{p) assumes values comparable with those & o..(p} or
o__(p), and this convolution will produce a widming of the
narrow structures of a..(p). In the case of a weak intensity, this
correction is negligible.

These results are readily obtained by following the method
presented in C. Cohen-Tannoudji. Metrologia 13, ¥1 (1977).



