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Abstract

We discuss the emergence of spatial siructures in a ring laser model with transverse elffects,
The emphasis of 1his work is with the development of a description that can capture the essentiak
features of trangverse dynamics without the need for large-scale numerical effons. We introduce
an exiension of the yniform field limit and derive a set of modal equations which we solve with
conventional numerical methods. Our solutions show evidence of transverse mode competition in
the laser dynamics leading 1o both time-dependent and mulii-mede stationary (cooperative
frequency locking) behaviors. In the time-dependent regime we anlyze the resulting spatial

structures and suggest a scheme for the investigation and characterization of spatial complexity.

L. Introduction

Thi g.x.wm:ing prinviples thay eotueol the ganajiiuan Fromn disoraened io oraered staies d
trom order to complexity have been the focus of active investigations during the last twenty years.
Recent advances have clanfied some of the mechanisms by which spatial structures emerge from
annitialty homogencous state with a break of space-translational symmeiry, and have shown how
4 system with nme-independent parameters can develop oscillatory patterns and break the original
time-translational syrametry.l In addition, it is now well established that even system described by
a small number of ordinary differential equations can produce complex temporal panerns, such as
quasi periodicity, period doubling and chaos;2 these phenomena are characterized by simple
scaling laws that apply uniformly to large classes of nonlinear dynamical sysiems. Imponant
milestones in the aptical domain have been reached with the experimental abservation and
characterization of chaos in both passive? and active3 6 optical systems

Special echnigues, developed for the study of the fractal nawre of srrange atractors, have
provided useful 1oals for the identification of dynamical chaos and diagnostic tests 1o characterze
the chaotic behaviars of both computer simulations and experimenral data.7-8 Funhermore, these
methods have established links with the cumrent theories of fractats which are one of the main
avenues tor understanding the appearance of complexity from simple iteradve procedures.

Even if sometimes chaotic behavior has been tabelled as turbulent, we now recogmize that the
investigation of wrbulent phenomena and spatio-temporal complexity requires consideration of
both space and time evolution.? Much of the tecent research on the dynamics of aonlinear optical
systems his dealt with on the temporal behavior in the plane-wave approximation for the eleciric
field. Transverse effects, however, have begun 1w atract growing interest especially in passive
systems without population inversion. Intense radiation in a strongly absorbing medium can
undergo self focusing and produce spatial ring structures, 10 Moduladonal instabilities muodity the
transverse profile and produce period doubling and chaos. 11 Arrays of bistable systems cun
display punerns with remarkable spatial complexity. 12 An example of formation of stationary

wansverse structures from a homogencous configuration with spoatancous breakeng of the
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translational symmetry was demonstrated with the help of a simple analytic model; ! ¥ the same type
of instabitity is e “nonsible for the emergence of spatial soliton patterns on top of a broad Gaussian
profile. 14 The spontancous breaking of the cylindrical symmetry has been discovered
numcn'culIy,'5 described analytically, ] & and observed cxpcrimenwlly.”vig

Very recent studies have looked inta the problem of spatial pattern formation in laser
systemns, which is also the main subject of this contribution. Typically, these phenomena are

associated with a process calied cooperative frequency locking, 19,20 thi5 is a mode of operation of
the laser for which supporting experimental evidence was provided in references 21,22, Our aim
is 1o develop & convenient mathematical framewark for the study of transverse effects in 2
unidirectional ring laser with a suilable generalization of the gaditional Maxwell-Bloch equations
for a collection of hamogeneously broadened two—[_evc] systems, an approach that is well suited to
describe propagation and diffraction effects within the slowly varying envelope and paraxial
approximations. We assume that the laser operates as a unidirectional ring resonator capable of
supporting Gauss-Laguerre modes; these muy or may not have cylindrical symmetry, depending
upon the operating conditions and the geometrical parameters of the device, as summarized inan
extensive appeadix (Appendix A). The muxkel includes phenomenological diffraction losses o
account for the experimental fact that different wansverse field configurations escape at different
rates from the partally transmitting output couplers.

Our strategy is based on the derivation of appropriate madal equations for the field and the
atomnic amplitudes which are consistent with the field boundary conditions and allew the pussbihity
that the pump profile nury not be unifornm in the transverse direction. We solve the ume-dependent
madal equations for a variety of geometical configurations and operating conditions and danalyre
the transicnt and steady state behavior especially as we vary the frequency separation between the
transverse cavity mewdes. For the sake of simplicity with the numencal work, we develop a
suitable extension of the raditional uniform ficld limic which, in the fraimework of the plane-wave
theory, has already played a very useful rol2 in uncovering importint dynamical features of the

Jaser.23 Here 50, the imiform field Limit requires that both the mirror ransmituvity and the gamn

per pans of the uctive mediun be very simall, whale their ratio may be arbitrary but finite.

In an earlier study24 we considered situations where the wansverse mode frequency ¢ icing
was comparable to the longitudinal free spectral range and proved that, in this case, single-minde
steady state operation is possible. Now we are more interested in situations that favor a strong
dynamical coupling among the cavity modes and the development of space-time effects that have
no counterpart in the traditional plane-wave theory. The swong coupling emerges when the
ransverse modes have a frequency spacing which is comparable with the cavity linewidth. This
situation can be realized, for example, in a cavity with quasi-planar mirrors, where transverse
modes with the same value of the longitudinal index may have arbimrarily small frequency spacing,
or i quasi contocal cavities, where ransverse modes with different values of the longitudinal
index may be arranged o be quasi degenerate in frequency. In such instances the close proximity
ol the transverse modes favors swong interaction and competition and can yield a variety of spatial
and spatin-temporal phenomena such as, for example, cooperative frequency locking, mode
beating, quasi-periodic and chaotic osciltations.

Gur mondel predicts the appearance of low threshold instabihines, as already noted in Ref. 24,
but alse predicis the possibility that several ransverse modes with different empuy cavity
testinnees may develop synchronous oscillations. This phenomenan, which we call cooperative
frequency locking, s especially interesting because the excited cavity modes, as 4 result of their
mubnad nonlinear coupling, seek a common operaring frequency and lock orto it. Thus the output
of the Taser s phase and frequency locked regime eventually acynires a stationary
configuration, usually with a rather complex mansverse intensity protile.

A closely related phenomenon is the breaking of the spatial symmclry.l() Resonators with
sphierical mirrors can support frequency-de generate modes with different transverse shapes
andhnomadly, different threshiold values for laser action. Typically the spatial configuration with
the soallest modal volunie has the towest threshold gain and it becomes excited first. When the
gatn exveeds o certain eritical vatue, additonal degenerate modes hecame unstable and the

transvernse lensity protie of che laser breaks away from the original symimerry. At the same time,



because of the degenerate mature of the excited modes, no beat patterns can develop, so that the
laser undergoes a p' ¢ spatial symnetry breaking without temporal modulation,

Some early contributions23-28 have recently been brought 1o our attention n which the
concept of frequency tocking was inroduced along similar lines as developed in_caflicr papers of
ours19-21 without knowiedge of this prior discoveries. These papers provided both
theoretical?3-27 and experimental8 results related to this phenomenon. Also relevant to this
subject are references 29-31. The occurrence of quasi-periodicity and chaos in multiransverse
mode regimes was predicied in Ref. 32 and observed experimentally in references 33-35.

This paper is organized as follows. Section 2 describes the basic ¢quations that govern the
space-time evolution of this model. Section 3 contains an overview of the steady state solutions
and of the most interesting time dependent features; here we also discuss the status of our current
studies of the spatial correlation properties of the cutput intensity. In Section 4 we discuss some
additional details of the cooperaiive frequency locking phenomenon. Finally, in Section 5 we
present a summary of our results and discuss some of the open prablems that we hope to address
in future studies. Appendix A contains some detailed information on the modal structure of a nng
resonator which may be useful as a supplement 1o the derivation of the basic equations of this
maodel. The remaining two appendices give technical details on the derivation of the made mode

coupling coefficients and the two-mode steady state solution.

2. Description of the model and derivation of the equations of motion

The theoretical development described in this section is a generalization of the traditonal
plang-wave model and itincludes (i} the effects of diffraction due to the finite cross section of the
field and irs wansverse varations of amplitude and phase, (i) the wave-front curvature caused by
the spherical reflectors, and (iii) the mansverse gain variation of the active medium. The stoms, 48
shown schematically in Fig. 1, are confined within a region of length L., between the spherical
mirrors and are modelied as a collection of homogeneously broadened 1wo-tevel systems with a

teansition frequency @, o specira] width ¥ and @ reluxation rate ¥y, for the populaton inversion.

The systenis governed by the generalized set of Maxwell-Bloch equations

‘i-V'il‘+%-+—\',%i—;=i—~é4F-uAP (2.1a)
4B« (FD + (1+i8)P) (2.1b)
%-E-?—-=A7{-%(F'P+FP')+D-x] (2.1¢)

i the slowly varying envelopes of the field (F) and of the pelarization (P), and for the difference
etween the excited and ground state population, The field and atomic vanizbles depend on the

aled coordinates

_z = [
= P AL

vaddition w the polar angle variable ¢. The scaled phase velocity v is defined by

T=Y0, (2.2)

9

Y= -

= Ay,
allowing the usual practice, the field envelope F is related to the full Maxwell field E by

h [y, L

')IJ. 2

E{rp,2,0) = { F(r.g.2,0) cxp[i(koz - wyt)] exp(-i6€) + c.c. } (2.3

here | denotes the modulus of the dipole moment of the atomic transition. The carricr frequency
y is arbitrary but it must be sufficiendy close to the (uuknown) operating laser frequency so that F
tndeed slowly varying in time; a convenient choice for @y is given by the empty cavity

SIS, Wy gy g, that lies nearest to the center of the gain line (wy); kg = wylc = Wy ggfc 15 the
rresponding wave number.

I the trachtional Maxwell-Bloch theory 88 denotes the frequency offset between the
periting luiser trequency and ayy, under conditions of stationary cuput intensity; this identification
uplics that w steady stae F beeomes independent of time. Implicit in this representation of the
Laxvwell field is the assumplion that 8 can be calculated in closed form, and this is indeed the

. . bl - . .
e for single-mode operation in the plane wave-nwdelZ3 and for the conditions considered in
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Ref. 21, Here, insiead, the steady siate configuration is often of the multimode 1ype ang 862
cannot be caleulated o easily in closed form; for now, we leave this frequency shift unspecified
and reserve the right 1o fix it in the most convenient way when needed in the following
caiculations. Naturally, for any choice of 802 other than he correct frequency offset, the sicady
state values of the derivatives of the field and polarization variables do not vanish; however, any
judicious choice of 842 will make the temporal variations of F slow, and this is advantageous for
the purpose of numerical computations.

The remaining symbols that appear in Eqs. (2.1) are defined as follows: 8£2' denotes 8{2/y,,
A"is the difference between &5 = (0, - wp)Y; and BT @ is the unsaturated gain parameter of
ihe ficld per unit length, and ¥ is the equilibrium population difference in the absence of the laser
ficld. In general, ¥ rmay depend upon the Jongitudinal coordinate 1, in addition to the transverse
coordinates p and @; here, for simplicity, we assume only a radial dependence. The transverse
L.aplacian in Eq. (2.1a) accounts for the distortion of the wave-front due to diffraction, the
transverse gain variations are deseribed by the function x(p) and the presence of spherical
reflectors is taken into account by the boundary conditions [see I2q. (2.6) belowl.

The soiution of Egs. (2.1} offers formidable difficulties which we 1y to remove gradually by
recasting the equations in a form that is more amenable to numerical studies and by introducing &
number of useful simplifications, chiefly an appropriate generalization of the uniform field Yimit |
Our immediate goal 13 to derive a set of equations for the field modal amplitudes. For this purpose

we consider the expansion

iy (i)
Fip.pn,o = Z AP, £, 0 (2.4

P
where the modal functions Al are given by Eq. (A.23)in Appendix A and obey the

orthonermality condition {A25). A prier, Eq. (2.9 requires consideration of an infinite nuniber

of modal amplitudes fon® (P = 0,12, i = 1,2 for m>0) and, in addition, each function Fou!

depends on . However, we anticipate that in the amiform field limit the mod.d amphitsdes becowe

uniform along the longitudinal divection [in a sense that is made precise by Fg (219} and,

nmoreaver, the number of modes that are significamly excited is manageably small,

Upon substituting Eq. (2.4) into (2.1a) and after a few simple steps we arrive at the coupled

eyuinions
S i) n
of of g r i
m ] . {i) @
e =i 2 - ah fap b fag Ao PO 23)
0 0

These are subject to the boundary conditions

(i) -i8 ceme. ML @) AL
fon (3 LD =Re Texp ( i8Qy ) (m (3, Ty, - =) (2.6)
where fy =L,/A, and
Wnpm™ 049
/A

By = 2.7)

forany value of the longitudinal mode index n. The cavity eigenfrequencies Wy g A€ given by Eq.
(A.26) and, by definition, 8y = 0. Our next objective is to recast the boundary conditions (2.6)
iiito a standard periodicity form as a preliminary step 1o the uniform field limit. As usual,23 this is

accomphished by introducing the new set of independent variables

M z
N == (2.8a)
fs "L
AL
) AT
TET+Y, g (T+1L) (2.8b)
A

and the new fiehd amplitades ¢, 9 delined by
v i . . AL
o O15T) = (;\f”:] o't cxp[~ (InR - lﬁpm + 1562y, —L—i Y+ U2 } (2.9}

L this way the new ekl equations take the fonm

11} (i}
RSN e . \ ‘YLA (i} TLA a{ppm _
__{)_.li.;.w S (InRk - |hpm+ 1542 T—)({)Pm+ T E T (2.10)
aa P
. . i G0y *
.al,r\cxp[(inR - 18t 1Y &) (1]'+1/2)]J‘dp pjd(pz\m P
o ¢



and the boundary conditions are

ol 1.T) =yl ) 2.11)

At this point we assume the uniform field limit

al, <<1, T=1-Rex1l {(2.12)

where, as usual, the ratio

oy 2C (2.13)
T ¢ ’

is arbitrary but finite. We also assume that the frequency offset 80 is much smaller than the free

spectral range, i.c.
A
s 2 <om @14

‘The main virtue of the uniform field limit is that it sets a strong constraint on the number of
modes that can develop an appreciable amplitude, as we now demonstrate with the help of the
following argument. We divide the collection of indices {p,m), which label the field modes of

interest, into two groups: the first includes the pairs (p.m) for which an integer M, can be found

pin

that satisfies the constraint

18, 2M,| = O(T) : (2.15)

The second group includes all the uthers for which Eq. (2.15) cannot be satisfied. Note that
because 8gg = 0, the choice p=m=0 sausfies Eq. (2.15) with Myg=0 and therefare it belongs 10 the
tirst group. The physical meaning of this subdivision is that it selects the cavity modes that are
neucky degenerite with the refersnee mode {(n=N, p=m=0), or mure precisely whose frequency
separation from the reference mode is of the order of the cavily linewidth k = cT/A. In fact, as one
can verify from Eqs. {A.26) and (2.7), Eq. (2.15) implies that the cavity resonance
(n=N-Mgq,p.m) is nearly degenerate with the reference mode (N,0,0). A graphic representation
of shis grouping is given in Fig. 2 where we have skesched the position of the first few radial

resonances associsted with the longitudinal indices N and N-1; in this case the choice (p=3.m=0

10

satishies Ey. (2.15) with My, = 1. The significance of this classification becomes especially clear
with the help of a result from Ref. 24 concerning the behavior of the steady state solution whe; e
trequency of the laser is close o the reference frequency. In reference 24 we proved that the
steady state amplitudes of the non-degenerate modes (i.e. the modes of the second class) are
negligible in the uniform field limit, while instead the amplitudes of the modes belonging 1o the
first class have moduli of order unity. Furthermore, if the free specmral range is sufficiently large

or, precisely, if
A
L (2.16)

and the ratio

K

¢T
= (2.17)
An

i3 arbitrary, the amplitudes of the second class are negligible also away from the stationary staie
because the corresponding cavity resonances lic far away from the atomic line. Hence the only
modes with any dynamical significance are the quasi-degenerate modes of the first class. In
pracuce, an additional mode selection comes into play in real fasers because mansverse modes with
larger values of the indices p and m have higher diffractiion losses because of the fnite size of the
mirrors, the limited d:ameter of the active volume, and the presence of intracavily elements such as
pinholes, modulators, ete, As a result, only the lowest order ransverse modes are usually
involved in the dynamics and thercfore we shall limit our considerations 1o reasonably small upper

bounds for the indices p and m.

In Ref. 24 we analyzed the case of radial mode spacing of the order of the free spectral range,

assuming that there are no nearly degenerate modes. Under these conditions the laser operatey a
steady state in g single longitudinal and wransverse mode; muliimode behavior arises only when the
srowth of other modes destabilizes the siattonary state und produces spontaneous undamped
oscillations in the cutput intensity. If instead the spacing between runsverse modes is of the order
of the cavity linewidth (i.e. much smaller than the free spectrat range} we can anticipate sroeg

modde-wade coupling among the modes of the first class and mulinode operation also under steady

L
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state conditions, as a4 consequence of cooperative frequency douking. The same behavior is
expected also when t ~adial mode spacing is of the order of dic free spectral range provided that
sorne of the modes are degenerate or nearly degenerate in the sense of Eq. (2.15), or, more
precisely, that the first class includes at least one pair of indices (p.m) different from (0,0). An
example is provided by the quasi-confocal resonator where the frequency difference between
consecutive ransverse resonances is nearly equal 1o the free spectral range. Also in this case the
nearly degenerate modes may lock in frequency and in phase giving rise to muldmode stationary
configurations. At present, we ignore the issue of diffraction losses which we add
phenomenologically at the end of the derivation of the equations of motion.

In summarizing the essence of this discussion, we reiterate that in the uniform field limit
{2.12), (2.14) and under the additional assumption (2.16) only quasi-degenerate modes of the first
class are dynamically significant; furthermore cach set of indices (p.m} in this class is associated
with pnly one value of the longitudinal index, ie. N-Mpm. Hence, we conclude that the
longitudinal dependence of the modal amplitudes @, (') is of the form

(1) [1}] L . . s
Gn(T) = D (7,0 expl - 2mid (e /] (2.18)

where the functions @ (0 are nearly independent of 1 in the sense that

pm

Dd‘m
an

=(T)

and it satisties the same boundary conditions (2.11) as (). The new field amplitudes obey the

equations of motion

DD,,.n - (219

i
P .
(Inlx - -C— 37

i)
5 RIS ﬂ#) Do

pm

— RS, © P , ¢ zn e
= ul.Acxp[(lnR Byt 8y, — o Y (n'+ I/E)}Idp pjmp Apn P
0 h]

where

L —

12
Bpm = Bpm 20M,, (2.20)
Finally we define
+172
() ¢ R
YomlT) = [dn' @ (0',T) (221
12

we integrate the left and right hand sides of Eq. (2.19) with respect to " and canry out the uniform

ficld limit by retaining only the first order terms in T and aL,. The resultis

(i /2 -
d upm
T - K (T, i 8Q/) \y - 2Cx’ J.dr] J-dp p-l.d(pA (P.en} P (2.22)
1n

where we have defined

B
Lo = T 223

and k' 1s the cavity tinewidth in units of v, (see Eq. (2.17). Also, for definiteness, we select 8¢

as the value given by the standard mode-pulling formula, so that {see for example Ref. 23]

o Tex =4 (2.24}

A further convenient simphfication arises if we can assume that

L, << Al]l (2.25)

where ANy is the Raileigh length of the cavity field in the region occupied by the active medium,

bothis case, for -1/2 €11 € 1/2 we have
" ; ) ()
At P M) = AL(p.9.0) = A (pap) (2.26)

and the required equations of mation take the form

) o n

"m 1 ()
o W (14w Y w:,,i, - 2Cx .[dp pJ-dgp Apm(P @) Plp.@,T) (2.270)

0 0

ays

h’
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A0 _ _[FD + (1+ia)P] (2.27b)
dJt’
-y[-LEP+rP)+D- 1p3] (2.27¢)
with
FP.00) = D, Apni0.0) Wom(¥) (2.28)

pmi
We nole that in terms of a new radial variable p’.defined by

p'= L (2.29)

N

and afier introducing the scaled functions

. )
Wg‘)“ = Yom \Fpm 1(2.30)
Vi
and
O 2.mf2
AP’ 9} = 2(2p"™) (pm), Lp(2p Yy exp(-p™) Bl =
= [T} AP ®) @31

Eqs. (2.27) retain exactly the same form in terms of the new variables: this is also true for the

orthogonality refation (A.25). In this way the parameter 1y, is no longer explicitly in evidence in

the working equations. Thus, in summary, the basic equations of the model are

(i)

anm =-K(1+ia hm” YR \V m - 2Cx' J‘GP P J'dq) Apnl (2.324)
at ¥ P

[
gf. =-[FD + q+iay p) (2.320)

E)D Y[. L Tt Y4+ D xlp )] (2.32¢)

14
where
) O R )
F(plo,t) = Z Apn( P9} Yol T) (2.33)
pmi
and
an in
Idp' p'fdwﬁ ® tp)A o (PO =8 5 5. (2.34)
0 0

Two interesting remarks are appropriate when the frequency spacing between transverse

modes with the same value of the longitudinal index is of the order of the cavity linewidth (this

implies that M, is equal to zero for all values of p and m under consideration). First, the

assumption (2.25) becomes a consequence of (2.15) because the latter condition 1ogether with Eqs.

{2.7) and (A.26) implies that n; = O(1/T) >> | and therefore Lo << AT;. Second, one can
reformulate Eq. (2.32a) as an equation for the entire ficld amplitude F (Eq. (2.28)]. In fact

2

consider the identity

i1yl

2 2
A )Apm ("p+m+l)A (2.35)
where
v, 1__8_,,_1_1_ (2.36)
1 ap'Z p a p a(pz

With the help of Eqs. (2.23), (2.7) and {A.26) and by exploiting the completeness of the set of

fungtions Kpmil), une obtains from Egs. (2.32), (2.28), (2.30) and (2.31)

a—i:' =- K'[l 1A - 1%(‘;_ V‘LI_ P'2+ ])] F-2Cx' p(p'.q)_.[') (2.37)

(=3}

where

=3 [t 2t 4 ! 2
T [tan 2nz+l.ln znl] (2.38)

L

Pt it
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1 Numerical study of the equations of motion
For the purpose ¢ " numerical work 1t is convenient to expand the atomic varables P and 1)

thar appear in Eqs. (2.32) in terms of the complete set of modal functions A (p' ) defined in

pm

Fq. 12.31). Thus we let

_) ;
P(p'.p,v) = Z A pm(P'.0) Pyl 1) (3.1a)
pmi
s X _{) . ay
Dip'p.T) = Z Apn(PP) dpm(T) (3.1b)
prmi

and with the help of the orthogonality relations (2.34) we obtain

(i)

ay . T i

o= (U i8) Y, - 20 Porm (3.22)
Jpn W6

pm R 1 L i
—r=- {Z Z [(6.0.0) ¥, d. .+ (14i8) p:,',)“ (3.2b)
p'myp'mti”

aa

Hpm 1 - MU (b (i 0w
=y (LY Y oo phlee) vdon - i} (320

pmip’mi”
where ¢ s a short-hand notation for {p,my,i} and
. mn .
L . _0) G0
Mo,6.6") = Jdp P de A, ’\p'm‘ An"m" (330
hl ¢
o= n .
(1) A M ,
Apm = Jdp p jd(p Apm x(pH (3.3b)
0 hi

The field damping term -K'y,, V) that appears on the right hand side of Eq. (3.24) is a consequence
of the partial refleciivity of the cavity output couplers; in this form, Eq.03.2a) assigns the sume loss
rate w every field modal amplingde. In practice, however, higher order transverse modes are more

heavily damped than their lower arder connrerpasts because of the tmiied transverse dimensicns of

16

the resonator and the possible presence of inmracavity elements such as pinholes, modulators, eic.
The simplest way to account for this additional loss mechanisms is to replace the damping term
-K"Fp.u(") with 'lcpm'\il_pmm and to select k., as an appropriate monotonically growing function of
the indices (p,m). This artifice has the advantage of further reducing the number of dynamically
relevant modal amplitudes and to bring the modei more in line with realistic laser systems.

We begin our survey of the numerical solutions of Eq. (3.2) by focusing first on the behavior
of the model under the assumption that cylindrical symmetry prevails during the laser action. This
regime can be enforced rather easily in typical experimental situations.Z! Under conditions of
cylindrical symmetry, the modal index m is equal to zero and the index (i) must be dropped from

all the modal amplitudes in Egs. (3.2) which now take the form

oV i e .
= K Uy - ik (g 8) §p - 20Ky (3.43)
app _ .
2= 2 T Uy & - (14087 7] (3.4b)
PP

od .

P 1 - ] .
e {-3( 2: [ Wy P+ 00) +, 1) (3.4¢)

The modal tunctions of the resonator ace

Ay = 20,0207 expt- p?) (3.5)

where for simplicity we have dropped the factor By = {211)'¥2 50 that the erthonormality relation

tahes the form

J‘dp‘ PUALP) AR =8
0

The mode-node coupling coetficients T - given by Eq. (B.1) can be calculated with the help of
a simple recursion relation developed in Appendix B. For definiteness, and somewhat arbitrarily,

we have chosen
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I\'P' =N I gy = 1 + Bp4, (p=012.) (3.6)

where [} is a constant and, in addition, we have assumed a uniform pump protile {ur the active

nediur; with this selection, the equilibrium modal populations are given by the simple formula
p
=00 (3.7)

We note that, in the case of a cavity with quasi-planar mirrors in which the frequency spacing
berween wransverse modes with the same value of the longitudinal index n is of the order of the
cavity linewidth, one has the simple relation

a,=ap (3.8)

where 2y = 4 is given by Eq. (2.38). This is easily seen if we consider that in this case M, in Eq.
(2.15) vanishes, and if we use Eq. (2.23) with gp = BP {see Eq. (2.20)], Eq. (2.7), and Eq.

(A.21). In the case of a quasi-confocal cavity, instead, the quasi-degenerate modes have different
values of the longitudinal index n, and M, =p. Again Eq. (3.8) holds tmue, provided we define the
parameter 3, as

a ::51- n (3.9

Hence the two cases of 4 quasi-planar and quasi-confocal cavily can be treated simultancously with
the same set of Egs. (3.4), keeping Eq. (3.8) into account; the Quasi-planar (confocal)
configuration corresponds 1o values a; 20 (a; S 0). In our calculations we will consider only the
quasi-planar case in which the dynamics is governed by the single value n = N of the longitdina
index and where a; denotes the frequency spacing between adjacent transverse modes, measured in
units of the cavity linewidth . In the following, for simplicity, we will refer 1o the parameler i) as
the frequency spacing.
The other parameters of the model (3.4) and their values selected for the simulations are:
- the ratio &' of the cavity linewidih K to the atomic linewidth ¥y Isetequal to 1.0 (case a) or
equal to 0.3 (case b},

- the ratio yof the relaxaton rate Yy of the population inversion to the atomic linewidsh ¥, et

eyt o (LOS Y,

- the paraimeter (8 which governs the effective losses of the ransverse modes [Eq. (3.0)] (set
vyual to 0.005);

- the pump parameter C (sel equal to 1.2);

- the utomic detuning parameter A’ which is defined by Eq. (2.24), where dc is the difference
between the alomic transition frequency wy and the frequency wy of the fundamental mode,
mweasured in units of v, (set equal 10 0.18).

Before entering the details of the numerical simulations, we consider the steady state solutions. In

the case in which only one inude deminates over the others, he stationary solution can be shown

analytically 10 be given by 20

Rey) = {-{2¢ - gyt1 + a7 1] ) (3.10a)
pBp

Im() =0 (3.10b)
K,

£=— (3.100)
i+K

L= Y Vi o = 4de e (Lyxn* (3.100)

q 0

where £ 15 the shift in units of y) between the operating laser carrier and the reference frequency
and the arbirary phase of the electric field has been set equal w zero. These solutions are stable
only if the spacing between transverse modes is sufficiently large as compared to K, the p-mode
resonance is the closest to the atomic frequency and the atomic linewidth Y, is of the sune order as
WA Lt siep in understanding multimode operation is 0 cansider a situation where ouly two
modal amplitudes are differeat from zero. By reducing the frequency spacing, modes with higher
medal tndex increase their gain and, since they muake better use of the available pupulation
wversion, they induce a process of competition with other ransverse modes, The outcome of this
competition cannat be known a prion as the modes with higher modal index also experience higher

ditracton losses. We consider, for example, the competition between the modes p=0 and p=1,
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eveit if the _fullu\ving calculations can be extended w any pair of successive trinverse modes, The
cumbersome algebraic expressian of the steady state solution close ta the lasing threshold is
reported in the Appendix C. Tor large values of ay a single Gaussian solution (p=0) is stable and
the laser carrier is tuned to the reference frequency. By taking advantage of the fact that the laser is
close to threshold, we perform a perturbative expansion of Egs. {C.2-5) and obtain an analytical

expression for the shift of the luser frequency

, 2 .
K'(2C - 1- A )a, + AP} (1)

€= : FRR:
AL+ WYL+ A%l + )

A comparison between Eq. (3.11) and the comresponding value calculated by direct integration of
Eqgs. {3.4) is shown in Fig. 3. The slight mismaich between the two curves is due to the selected
value of the gain which does not quite fulfill the perturbative condition, The growing p=1 muxde
pulls the laser frequency toward its charactenistic resonance without, however, generating a beat
note over a large range of values of a;. The departure of the curve (b) in Fig. 3 from the behavior
described by Eq. (3.11) (curve (1)) is the signature of the onset of oscillations which characterize
the dynamics for sufficiently smaller values of the control parameter a,.

We have carried out our numerical sitnulations by fixing the parameter [} to (1005 which
selects p=3 as the {argest significant modal index for the chosen gain. However, in order 1o insure
a satisfactory convergence of the integration process, we have included all mades up 10 p=7 for
field and pelanzation arid up to p=10 for the population inversion. We have also controlled a
posterion that the amplitude of the mode p=7 had rematned at least three orders of mapnitxde
smualler than that of the mode p=3.

A physical quantity that charactenzes the global dynamical behavior of the laser 15 the total

flux

i - 2::.[(1‘) o ROl =21 fi 0 (31D
i} P

whose evolution for decreasing values of &) s shown in Fig. 4 for both cases of &2 L0 (cuive a)
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and w'=0.3 teurve b). We observe two major regions of instability aliemating with
time-independent regimes of cooperative frequency Iocking,l()-z() In the lauer state, the modes
selecta common frequency of operation which generally lies close 1o the characteristic resonance of
the largest mode. In this way we can identify the first region of insuabitity as a competition for the
same population inversion, between the p=0 and the growing p=1 mode. Once the p=1 mode
dominates over the others, a new cooperative frequency locked state is reached and the laser
frequency is sligtly detuned from the p=1 resonance. A mechanism similar 10 the pulling described
by Eq. (3.11), rules the onset of the second instability region when the p=2 mode grows above a
particular threshold. This picture of aliernating locking and unlocking regions is shown in better
evidence in Fig. 5 where the amplitudes of the p=0,1,2 modes are reporied for the two cases a) and
b) of Fig. 4,

The detailed nature of the oscillations in the second region of instability depends on the losses
of the laser. For larger values of the ratio K’=x/y, we have observed more complicate osctllatory
behaviars such as quasiperiodic and chaotic motions, These complicated oscillations disappear if
we lower the losses of the cavity, a feature which is i line with the experimental results reported in
Ref. 21 with a €Oy, laser. Transverse sections of the beam profile are shown in Fig. 6 for the
W'=1.0 in the'periodic, quasipenodic and chaotic states. Quasiperiodic and dynamically locked
states are to be expected because of the simultaneous frequency pulling irduced by each one of the
three active modes. However the rew and more tnteresting behavior is the gradual increase of
complexity in the spatio-temporal solutions when we decrease the controt parameter a,. In order to

characierize the complexity of these solutions we have calculated the intensity correlation function

100 Kp T8 L (K0 )P T)
C 0.0y = Max(Vo1) > i 313
L) 1 T} a0y o 3 3

where I{p) is the {ield intensty acdistance p from the center of the beam, a(p) is the standard
deviation of 1p) and the brickets indicate a time average. Among the relevant properties of this
corelstion lunction, we menton that C, | (0

s properly nomilized over the interval 0,1,
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{iy s equal 1o umty for signals caleuluted at different radial locations which are merely dephased
in time refative to one another, and

(iii) is equal to unity for oscillating signals that are produced by beat notes.

Figure 7 shows Cp,,(0,p) for the three spatio-iemporal solutions of Fig. 6. The progressive

decrease of the spatial correlation is in agreement with the increased complexity of the panerns.

Work is presently in progress to conncect this phenomenon with the presence of singulanities of the

solutons and the possible appearance of defects. 36

4. A discussion of cooperative frequency locking

We have introduced the descripter “cooperative frequency locking” to denote a reginwe of
operation in which two or more modes oscillate in synchronism with fixed relative phases and
generate a time-independent output intensity. Because our analysis of this phenomenan is based
on the concept of empty cavity modes, one might raise the objection that a more accurate approach
ought to involve basis functions that can account for the presence of the nonlinear active medium.
Ln answer to this objection, we stress that the empty cavity modes provide an asympuotically exact
representation of the laser field in the limit in which alL, << 1, the limit of interest to this paper.
Nevenheless, there sull remain some subile problems which require a more careful discussion.

When dealing, for example, with a linear chain of harmonic oscillators we can deseribe their
motion either in terms of their individual coordinates and momenta or by the normal mode vaniabley
which are dynamically decoupled from each another and correspond 1o well defined renormatized
or dressed frequencies. A state of the system in which one normal mode is excited can be thought
ol as a multimode configuration in terms of the original variables, or as a single-mode
conftguration in serms of dressed states of the interacting system. [n the same way one may
suggest that the cooperative frequency locked states are just dressed normal modes of the la:.ér, an
interpretation that greaily reduces the significance of this phenomenon. The main goal of this
STCLON is to suggest that this inwerpretation is not appropriate for the nonlinear system of interest

1itis work,
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In our investigations of cooperative frequency tocking we have focused on two distinct types
ol apticat resonators: Cartesian cavities with lawral mirrors, as in Ref, 19, and more conventional
resonators with spherical output couplers, as in this work. In the foomer case, where the empty
cavity maodes are labelled by the index n=0,1,2,..., we can recognize two difierent groups of
statignary solutions. The solutions of the first group, which include also the homogeneous
stationary state, are numbered by an index k=0,1,2... and can be rv:cogniz.c:.{ by the fact that the
I
only modes with appreciable amplitude are the moxdeg n=k, the ulli;d.a)ixlh}-cu. harmanics [ie.,
tur each solution the nonzero modal components comespond to the indices n=(2s+1)k, with
$=0,1,2,...]. It follows that the solution labelled k=0 has only the mode n=0 excited, while for
k=0 the mode n=0 is altogether absent. The solutions of the second group, instead, are such that
the mode n=0 coexists with a number of other modes with n#0,

With this in mind, it is reasonable to consider the solutions of the first group as some kind of
dressed normal modes of the nonlinear system because of the admixture of the fundamental
component n=k and its harmonics caused by the nonlinear interaction (we might mention however
that the dressing effects is ruther small because the amplitude of the n=k mode is much larger than
those of its hanmonics). The solutions of the second group represent something altogether
diflerent from a simple dressing effect. The cooperative frequency locking is associated peecisely
with solutions of the later type where no single mode has a dominant charscter.

For the case of resonators with sphcricﬁl mirors each mode is coupled 1o all the others by the
nonlinear interaction; the problem is much more complicated and, apparenty, does not allow a
simple classiticution of the stationary selutions. Yel, even in this case, we can sull advance a
simple phiysical interpretiion of the numerical results in terms of empty cavity modes. We have
seen instances in which the sysiem approaches a sieady state and one of the modes dominates over
the athers. These situations can be interpreted as single-mode behaviors, or zs a kind of injection
lovking induved by the dominant modal component.

We have also seen several cases where the presence of several modes with comparable

Amphindes creaies a greater level of comperition. Sometimes, under these condiions, the owput

i
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intensity acquires an ascillatory behavior which is easily traced 1o the interference amaong the
competing modes from the fact that the osciliation frequency is equal to the mode-pulled intermide
spacing. When the number of dominant modes is larger than two, a periodic output impties that
the modes are able 10 maintain the mode-locked artangement, which is typical of homogenevusly
broadened systems. Symmery breaking can also occur due 10 the nonlinear caupling and when
this happens the output intensity oscillations acquires a quasi periodic or chaotic character.

There are also parameier values where several modes with comparable amplitudes swiich
from a competitive to a cooperative behavior and produce phase and frequency locked
configurations in which the output intensity becomes swationary fust as in the case of single-miode
operation. An essential requirement for the appearance of this phenomenon is that the relevant
empty cavity modes be quasi-degenerate or, better, that their frequency spacing be of the onder of
the cavity linewidth, This is what we catl cooperative frequency locking. From this perspective we
believe that this phenomenon has a highly nentrivial orgin and cannot be casily interpreted av the

consequence of a simple dressing operation induced by the nonlinear interaction.

3. Conclusion

The main objective of this Paper wis to derive a set of equations for the description of Liser
dynamies in the presence of ransverse effects, and to present the most interesting predictions uf
this model. The inclusion of transverse degrees of freedom in the tradisional Maxwell-Bloch
formulation 1s respousible for a much greater level of complexity than one finds in the plane-wave
cowrerpant models. Hence, our aim was 1o identify a sufficiently realistic set of conditions that
would allow us to Locus on the essential features of the ransverse dynamics without requiring, ot
the same time, extensive numerical computations. A suitable extension of the planc-wave uniform
lield linit 1o the case in which transverse effects become important tirns out to be a very
sanstactory solution for this problem. In fact, under the assumptions of this model, the cavity
moddes tall naturally into two clasces: one confains those few modes whose amiplitudes grow o

appeeciable values, the other includes the mudes wiose excitation remains nepiigible for all tines,
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The umfonm field limit allows a natural selection of the relevant modal cguations which are now
few enough in number that one can entertain small-scale numerical simulations for their sotution.
This selection process is sharpened, in addition, by the existence of diffraction losses in the
resonator which grow with the transverse indices of the cavity modes. Finally, in this limit the
essential part of the modal amplirudes of the field are almast uniform longitudinally so that their
evalution is governed by an ordinary set of time-dependent differential equations.

In this study we have assurned that the set of modes that can develop an appreciable
amphude include the mode (N,0,0). Of course this is not always the case, and one can easily
generatize this eatment 1o the sitation where the mode (N,P M) develops an appreciable
amplitude ami derive a set of time evolution equations for the amplitudes of the mode (N,P.M) anl
of thase that are nearly degencrate with it, In this case it is best to select the frequency of the
{N.i'.:) mode as the reference frequency.

The selutions presented in this work show the existence of stationary and time-dependent
reginies: the most interesting siationary states correspond 1o mixtures of caviry modes whose
{reguencies, in the absence of an active medium, differ from each other. These modes attain a
steidy state oscillation without beat phenomena through a process called cooperative frequency
locking, in which the individual amplitudes develop a synchronous behavior and produce a total
held characrenized by a single carrier frequency which is commen to all. The tirme dependent
confizurations exhibit the expected variety of behaviors with perniadic, quasi-periodic or even
chaatic oscillations. This is expected because the strong interaction among transverse modes
develops henever their natural frequencies are in close proximity of one another.

We have analyzed the sparial behavior of the intensity patterus at the output of the laser under
e dependent conditions and attempted 10 characterize the various levels of spatial complexity.
This is 4 problem that has received somewhat limited attention thus far and which deserves to be
mvestigased at much greater depth. Oue of the open issues, and arguably the most obvious, is
sugpested a7 once by the very existence of numerous diagnostic tools for the analysis of emporal

complexity: how can one deveiop, in a paratiel way, suitabie indices for the charscterization of
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spatial complexity? Here we have mied 10 answer this question in a preliminary way by
introducing an “ppropriale spatial correlation function for the ourput intensity. A seemingly
curioas feature of this functon is that its modulus, for euch pair of radial positions, acquires its
largest value for a non-zero time delay. This suggests the existence of correlated wave-like
phenomena that propagate across the ransverse profile of the beam at a finite speed. With the
chosen delinition, our correlation function consistently decays from unity when the outpus inensity
panems become more complex.

There are additonal ramifications (o be studied such as the possible connecton of thesce
features with the notion of defects. These issues, however, are stili 100 pretiminary 1o be

discussed at this potnt,

)

Appendix A - The modai structure of the ring resonutor

A schematc representation of the typical unidirectional riag resonator of interest to this work
is shown in Fig. 8. The length of the cavity is A and the two spherical mirmors have the same radii
uf curvature Ry and power refiectivity R, Their separation is denoied by L. In order to keep our
calculations as simpie as possible, we consider first the case in which the cavity field has
cylindrical symmetry,37 . it depends only on the radial coordinate 1, the longitudinal coordinate

z and the time. In this case the field obeys the wave equation

2
ViEGz) - L9 Eran =0 (A1)
c* &
where
2 3 19,90
V..ar2+‘_ar+az,2 (A.2)

and r 1s the radial coordinate along a direction transverse 1o the longitudinal axis of the resonator.
In the paraxial approximation we seek elementary solutions of the form

E(r.z,1) = Alr,z) exp(i (kz - )] (A.3)

where A(r,2), a slowly varying function of z, is a solution of the ¢yuation

(aI: + al')A(r,z) + Zik g A(r2)=0 (A4

and k = w/c. in terms of the scaled coordinates

= A @ /_“_
n= X o] AR t (A.5)

we have

OA ol
o 4(ap2+ﬂapm (A.6)

We divide the ring resonator in successive longitudinal segmients bounded by pairs of curved

warors. Ln the exampte of Fig, 8 there are two such segments, labelled 1 and 2 in the figure (if the

plaoe mircor were replaced by a curved reflecior, the cavity would have to be divided into three
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parts). The solution of Fq. (A &) over the range -LA2A) <1 < LA2A} is given by

(")

2
p )cxp(—i(2p+l)tan"n!nl) (A7)

A ( )= A ) +1
P Gy v(n) u(n)
where Lp (p=0.1.2...) is the Laguerre polynomial of order p and the indicated arpument
142
vy = ;) [1+ o] (A.Ra)

represents the beam waist at the position 7, and
um) = & n? + (A.8b)

measures the scaled radius of curvature of the wavefront. The parameter M, is arbitrary at this
point and must be specified with the help of the cavity boundary conditions; in the chosen systern
of units 1, plays the role of the Rayleigh length of the beam (i.e. the distance between the two
transverse planes where the beam waist is larger than the minimum size by a factor V2), while

Jn_l = v{{}) {A 8c)

is the minimum waist size.

The soluticn of Ey. (A.6) for any other segment of the resonator has the same forrmal
structure as Iy, (A7) except for the value of the minimum waist, which is usually different in
every segment, and for an extra phase factor which is needed 1o join the solutions smoothly with
one another. Thus inregion 2 we have

2 2
—L (2 A
) ( ( )C”( o (1])+l5(m)

() 2
A {pm) = (—('

5
exp [-12p+1)an’! = Jexp tig) (A9}

where

(AT

() n[l+( IP)JL

3

=_ . )
pin) 1/2 L2t 0l (A.10b)

and @15 a phase factor that must be adjusted to fit the houndary conditions. The shift of the
longitudinal coordinate that appears in Egs. (A.10) is made in conformity with the chosen origin of

the 1 axis.
These Gauss-Laguerre solutions, as they are called, are characterized by the beam parameter

q0) defined by

1 1,1
B Al
amy ~um vl A1

This complex guantity satisfies elementary mapping rules under transiation and reflection from a
spherical mirror. 38 If q is any beam parameter, the translated and reflecied values are given,

respectively, by

1) 4, =q,+d (A.12a)
ard
. q
iy g, :T‘—— {A.12b)
- =-q.+ 1
P 1

where d is an arhurary length (in units of A) and pg = R /A is the scaled radius of curvature of the
mirrors. With the help of these rules we can follow the variations of the Gauss-Laguerre beam at
every point alony the resonator.

In order to complete the solution of our problem we must calculate the parameters 1 and 1,
sudd the phase factor @ in rerms of the cavity geometry, and derive an expression for the empty
viviy eigenfrequencies. The calculation of 1, proceeds as follows: let 4(n=0) denote the beam
paraneter at =) we propagate this value and reflect it as many times as needed until we conplete
afull loop. At the end, we require that the fical beant paramecler i =1) coincide with ¢(n=0). We

let

f o= I
A
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and we have

4(N=0) = -iv*(0) = -in,

(AL F3a)
e Lf oy - L

M =gf-ey=qn=0)+5( (A.130)

(=7f-¢)
q(r‘:é—f+€)= 2q 2] (A.13¢)
-Fo—q(n=?f-e)+l
[ {a
=N =qn=1-1f+e)+3fmqmn=0) (A13d)

where -€ and +€ indicate positions just before and after reflection by the spherical mirrors.
The solution of this simple set of cquations is

w1 [g Do £-n
12 potf-1

subject 1o the constraint py+ £- 1 >0, In a similar way we can propagate the initial beam

(A.14)

parameier {which is now known) up to point 1 = 1/2 of Fig. 8 und arrive at

i
Ny =—;
o™y

{nla -f-po)2+4i(po+fz-f)2} (A.15)

Now we must impose the boundary conditions at each curved miieror (refleciions at plane surfaces
dre assumed o leave the beam invarant). In the pacaxial

approximation the reflection at a spherical
mirTor is approximately equivalent 1o a mudtiplication by the phase factor

-
R =exp(-i _DT)

(A.16}
Thus we impose that

1
e =

e o e
if—x,p,a)-E (t]—;fﬂ:,p,:)

(ALY
We vbserve that

.\‘;D

vl(n=;—f-£)=u1tn=;—f+£) (A.182)
2, 1 - 1
Po um=3f-8) PMm=gf+e)

(A.18b)

With the help of these relations and of Eqs. (A.3), (A.7) and (A.16} it is easy to verify that the first
boundary condition (A.17) is satsfied if

0 =-@2pe1) [ian? -+ vant 121

(A1)
m, n,
Now we impose the boundary condition at the second curved mirror, ie.
P Em(n =1- -}f— ED. )= Em(n =- %f +E,p, 1) (A.20)
and armive at the required result
W =%’{-% +%\9(2p+1)[tm'l-12—r"f+mn-‘?%l_] (A.21)

np=0,1, 2,....

The inclusion of the angutar dependence requires only a few modifications. The ransverse
Liplacian is now given by

21
v -+
P
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2

2 =_(12_+ (A22)
L apl ¢

[~5)

and the emipty cavity eigenfunctions have the form

i A23
AL, (P =B, (@) C, (P} expli, (p.n)] (A.23)

where

[ . m=0
{2r
1, (1) =< % sinme m > () {A24a)
m [
m>0
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Appendix B - Recursion relation for the mode-mode coupling coefficients

Con(pn) = ( 2p? ymt "‘( p ) ( (A 24h) :
pan{PT = W :f,;; {p+m)‘ xp o We wish to derive a convenient recursion relation for the evaluation of the mode-mode
coupling coefficients
and
o r ..=Id¥,§“ﬁ( A AL (B.1)
B,m(p.n) = ( el (2p+m+1)tan'yn, (A.24¢) b L 4
p=012..; m=012,.... where the modal functions are given by
_ . 2 2
The symbol L™ indicates the associated Laguerre polynomial of order p and index m, and v(n) ApEr =21 (28 ) exp(- &) (B.2)

and u(n) are defined by Eqs. (A.8a).and (A.8b), respectively. The functions Apm form a complete With the change of variable x = 2 £, Eq. (B. 1) takes the explicit form

orihonormal set and obey the orthogonality relation

- = 23
moo . Cpppe ™ 2fdxexpt 30 LG L Lt (B.3)
Jaofaop A 00 AL PO =555, (A.25) 0
0 0 . . .
Consider the two recursion relations
The superscript i (i=1,2} distinguishes the solutions of type sin{m) from those of type cos{meg), if AL, (x) = (2n-1-x) L (x) - (n-1) L_ _(x), a2l (B.4)
n n-1 n- - .
m = 0 (for m = 0 the index i must be omitted). The eigenfrequencies of the ring resonator are given
and
by
dL )
M =l (x) - nl B.5
Wapm =2—A—n +=E (2p+m+1) [mn lznzfﬂan 5:‘_1] (A.26) * x nlalx) - oLy (x) (B.5)
With the help of Eq. (B.4) we can cast Eq. (B.3) in the form
where
- _ 3 2p“-1 X p-l
npm=01,2,. Loy = zjdx expl- 3 X)Ly L, (T Loy - 5 L., - e Lp,._ﬁ) (B.6)

0

For a resanator with a different mirror configuration from the one sketched in Fig. 2, Fqg. (A 26)

o which vields at once
retains the same structuse exceplt for the geometry-dependent coefficient in the square brackers. A
limting ease of our cavity configuration is pg = £ = 1/2 in which My =M> = 1/4 and the cavity r = Eiias P l

!
p.pp” pr el ?— PP 2‘},‘“ Jxetp( (B.7)

r.ul.u

X) x 1 P Lp.._1

frequencies are given by

Ic l2(n+p) +m + 1}

Wy = r (A27) The integral can be handled with an integration by parts according to the scheme

This simsation is essentially identical 1o the standard confocal configurarion,
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dx ex| (-ix)xl_',[ L :l(lxexp(.lx)[xill]u L. +
P37 R 2 dx B R
o o

dL

dL .
P p-l
tx Pl e L L L) (B.8)

and, with the help of Eq. (B.5), we finally arrive al the recursion relation

_ 2p+lp'-4p"+3 1p*1 2p
rp.p'-p" T 3p" rP-P'-p”-l R rp.p'.p"-?. *3 P rp.p‘-l.p"-l +
2 "
+?I)P,—_rp_l.p.m.._,, P21 (B.9)

Itis clear that if the coupling coefficients I'y i o are known we can easily construct every other
coetficient [p g o« with p* 2 1. We can derive a recursion relation for I 5 g following the sarue

procedure adopted above; we start from the definition

— — 3
I'p‘p. = rp.p‘.l) = Zde exp(- T x) Lp LP' (B.10}
0

we replace Ly(x) inwerms of L. and L ; (Eq. (B.4)] and integrate the remaining itegral by
paris with the help of Eq. (A.5). The result is the recursion relation

2p-4p'+3 o .
=_ =P p+I 1Pt 2P :
' Ip rp.p'-l T IP.P‘.2+ Tp Fp'l.p._l . pal (B.1D)

From standard tables of integrals we have

4
r =
po prl
3

(B.12)

Hence, the numerical strategy is clear: first we calculate Foo(P=0, §..pauy) from Eq. (B.12),

next we calculate [y o) from the recursion relation (B.11), and finally we calculate I -y froin
Ey. {(B.9). We have implemented this procedure and compared the results for selected coupling
coctficients with those obiwined tfrom the direct numerical integration of Eq. (B.1). The
comparison was very satisfactory [better than 4 digits even in single precision and for values of p

as large as 30,

iy

Appendix C - 'Two mode stutivhary sulution
Ihuativais. (3.4) aee writien b o fregienay reivivies (ianw oldined by e wabRT s
puiling condition applied 10 the atomic and the p={ mode frequencies. To properly analyee the

steady state solutions we must shift the reference frame 10 the true unknown laser frequency via the

transformation
STALIN | { S, i C1
Yp=e  Yp=x,+iy, {C.1)

with a similar expression for the polarization variable. Alter setiing the complex ampliludes for al!
modes but p=0 and p=] equal to zero, we obtain four coupled algebraic equatiens for xg, E, x, and

Y1

X
-xg(1+2x242x % +x2} + [(al—'f.- -d')y"g]x|](x§+2xuxl+~il)

oS +ANEB gy 1y - [ Sr-a0x vryy Jixgy + 3%,y )4 20xe= 0 (C2)

"‘u(A'"“"oylﬂ:yi)ﬂu(f? AUy, ]::-' -A‘)yl+glxl](x0yl+%xlyl)

Sy a0k e,y ]=0 (€.3)

P | - E . 1
"‘u(xu+2xux1+§x1)+"uy1(F +A )(x0+§;.1)
+(1+x5+x0xl+xf)[(al- %-A')yl-glx]]-(th'+ % x0yl+xiyl)[(:ll- i— -ANx,

+g,y,]+2Cx =0 (C.4)

Xy i 480 er Ly oyl LAy g ]

b3 —

|
—xuyl(x0+§-x')+

(el £ -adx ey | #2Cy,=0 (5

P SR

4

P F ST

—r

e

L i



These equations are used in the text w evaluaie the frequency shift € due to the presence of the el

mode for pump values closc t the first laser threshold.

()
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Figure Captions

Schematic representation of a ang laser cavity with two spherical mirrors of radius of
curvature Ry The lengih of the ring is A, while the distance between the two corved
reflectors is L. n =0 indicates the origin of the longitudinal coordinate system and n
measures various longitudinal positions of relevance 10 our discussion, in units of A. The
active medium is confined within the rectangular region of fength L.

Mustrating the significance of the two classes of transverse modes. The mode (n=N-1_p=3)
is nearly degencrate with the reference mode (n=N, p=0). We have omitted the angular
indices m for clarity of illustration.

The shift of the laser carrier from the reference frequency in a range of parameters where the
competition between the p=0 and p=1 modes leads to sationary solutions. {a) Plot of the
curve (3,11} obtained via perturbative expansion of the steady state equations, (b) numerical
integration of Eqs. {3.4) for x'=1.0. The other parameters are fixed 1o the values reporied in
the text,

Scan of the ol flux as a fuaction of the modal spacing a for (a) x'=1.0, (b) &' ={).3. The
other parameters are selected as stated in the text. For each value of a|, we plut the maximum
and minimum excursion of the oscillations after the transients have died out.

Time evolution of the first three modal amplitudes during the scan of Fig. 4 for x'=1.0
(curves al, a2, a3} and &' =0.3 (curves bl, b2, and b3). The other parameters are selected as
stated in the ext,

Spatio-te mporal evoiution of the modulus of the output field for k'=1.0, (a) a,=0.34, (b
=0.32.and (¢) 9 =0.25. The ather parameters are sclected as stated in the text

Radial dependence of the correlution function Crraa 0.0 for the spatio-tempaoral evolutions of
Fig. 6.

Schematic representation of the tmpty resonator. The meuning of the symbols is the same s

m Fig. 1
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