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Lecture 1

Quantum States of the Fhoton Field and Their
Statistical Properties

"*Even though these subjects seem
irrelevant, I must touch on all of
them; for they have a bearing on
what happened latter”.

Kenneth Roberts - Northwest Passege

The guantum statistical properties of light represent an im-
portant branch of wmodern physics. This fact is connected with
the development of spectroscepy, optical communication, precision
quantum measurement, etc. Investigation of the statistical proper-
ties of light plays also an important rocle in the understanding of
the collective states of the fields with the different physical
nature.

In quantum mechanics, complete information about the statis-
tical and fluctuation properties of a system contains in the den-
sity matrix p defined by the Liouville equation

ihap/et=(H, p)., (1.1}

where H is the hamiltonian of the system. In the case of quantum
optics H describes an interaction between light and matter. Let
# be a dynamical variable in the Schrédinger representation. Then
its time-dependent mean value is defined in the following manner:

A =Tr ( 4 p(t) } . (1.2)

The Heisenberg representation is constructed from the
Schrédinger representation by the relation
Aty = U (L) ® U(L)
where U(t) is the unitary operator obeying the equation
inhou/st=HU, ug e, ) =1 .

Hence the mean value (1.1) can be represented in the form
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83O, =Tr ( 8(L) p(t)) ). (1.3)
Operator ®(t) obeys the Helsenberg equation of motion:
ihagiyat = [ 8, H) . (1.4)

For the model problems of guantum optics the density matrix
of the initial state p (t,) is usually written in the form

p (Lt} =p ep , (1.5)

where p_  is the initial density matrix of a radiation fleld and
e, is the same for the matter. This condition (1.5) expresses the
hypothesis of the switching on of the radiation-matter interaction
at the time moment to.

Next, to define P+ We discuss some important states of the
quantized electromagnetic fiald.

In the gquantum electrodynamics the electric and magnetic in-

-+ -

tensities, E and B , are regarded as operators satisfying Max-
well’s eguations

-
1

YvxB=-g¢ 8B/t ,

- - -
vxB=c' aErat ,

(YE)=0, (¢B)=20.
The operators E and B can be defined in terms of the vector
potential operator A:

-+ - -+ - -
E=-c'aa/st , B=vVxA.,

The operator A obeys the wave equation
had - -+
VA - c?danst’ = 0.
For the field in a normalization cubic volume L° with peri-
odic boundary conditions the vector potential operator A can be
expanded in terms of plane waves in the following form

-+
-+ - 2

ACx) = (2ame/t)yPE § oKV (e (k) a, el(KX - CKE)
k o=1
+ e;(k) aic e 1(kx -ckt) b . (1.6}

Here a = ( a;c ) is the annihilation (creation) operator for a
photon of momentum hk and pelarization o , ea(k) is a unite
polarization vector satisfying the condition

- -+

e (k) ep(k) = 3o0r + ke (k) = 0 .

The photon operators obey the fcllowing commutation rules
+
[ al ’ aA' 1 - aa.lr r (1'7)
[ a

+
A'al']=[al'ah’]=o'

where A = ( k , 0} is the mode index.
The energy of a free field in a volume L' ig described by
the hamiltonian

S0, using the Maxwell’s equations together with (1.6) we obtain

.Y
H = FThw (n +1/2) (1.8)
Y A A
where w, = kc and so-called number operator SA is defined by
the expression
A +
l'lA = aa a;\ -

Fock state (number state) is defined as an eigenstate of the
EGEBE;_EEErator
hln> = n Ind (1.9}
where n is a real number and we omit the mode index for
simplicity.
Vacuum state of the field is defined by

a | o)) = 0, 010> = 1



Because
at 10> = 1L,
at tny = vin+nin+1d>, a In> = ¥yalin-1>

any Fock state can be constructed from the vacuum state

in> =(m )™ W 103, <nind = & . (1.10)

nn’

The countable set of states | n > , n=20, 1, 2, ..., forms
a complete orthogonal system, the so-called Fock basis. Any state
of the radiation field can be expanded in terms of Fock state. The

appropriate expansion of a density matrix is

p = L p(n,m)lind>(ml, p(n,m) = <Knlplm).
n,m
(1.11)
For the Fock state p(n , m) = anm and p = {in>{Nl.

The mean number of photons in the Pock state is
¢n> = <nlnlnd> = n,
whereas mean sguare of the number of photons is

C(n¥y = ¢<ni(n)1n> = 0.

So, the variance of the numher of photons in the Fock state is

C(AN)Y Y= (R)d>=<n)>=0. (1.12)

One can say therefore that it is the state with a fixed number of
photons.

~

pesides the number of photons, the operator of phasa ¢ can
also be considered. The following definition was given by Dirac

a=ei? V (ata) . (1.13)

The famous uncertainty relation of the form

(AR C(Aap)D =1/4 (1.14)

is usually used. It follows from (1.12) and ({1.14) that from the
quantum-mechanical point of view the phase is a completely uncer-
tain characteristic of the field in the Fock state.

It should be noted that (4.13) is not a mathematically cor-
rect definition. It was shown by Carruthers and Nieto ( Rev. Mod.
Phys. 40(1968)411) that the operator U = exp ( i ¢ ) is not uni-
tary, since

cotutuloy=o0,

in contradiction with vty = 1. Following to Carruthers and
Nieto, ona can define the phase operator ¢ by the formal
expressions:

s s - o -
P - )7t af e~iv o ( at ¥ cn+ 137t {1.15)

Nevertheless, expressions (1.13) and (1.1&) can be used to obtain
estimations in many cases.

Chaotic state is defined as a state of the field being in the
equllibrium with the medium. Perhaps, it is the wmost widely
distributed type of the natural radiation in the Universe.

In statistical mechanics, the equilibrium state of a system
is defined by the condition of maximum of its entropy. The quantum
definition of the entropy is

8 = = Tr {plnp) (1.16)
or, in terms of the Fock states,

s = T ¢(nlplmd><mllnpin).
n,m

The maximum is defined with the supplementary condition

Tr (pata) = ¢n> . (1.16a)
Then
p, = L e (n Iln><nl , {1.17)
n
5
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n
p (n) = - * (n>y =(e
€ {(1+<n >c)1+n °

~
< n >

fuar /3 -1

-1

where ¢ is a radiation temperature. This is the well-known Bose-
Einstein distribution. The expression {1.17) can also be represen-
ted in the form

exp (-H/9)

Tr exp (~H/9)

where H = h w n .
Chaotic state is not a pure quantum state because

Tt pj = 1.

The number of photon variance in a chaotic state is
<(AR)®> = <n> (1+Cn>) . (1.18)

From the expressions (1.14), (1.17) and (1.18) it follows
that the variance of phase <( ( & 3 )2 > tends to zeroc when ¢ -+ w
and tends to infinity when & - 0. Hence the phase uncertainty
decreases with the increase of the radiation temperature in the
chaotic state.
Coherent state is defined as an eigenstate of a photon annihilati-
on operater

alady = alay , (al at = o Ca |l ¥ (1.19)

It was introduced by Glauber { Phys. Rev. 130 (1963) 2529 ).
let us expand | « )» over the Fock basis

lad = T A 1 nd (1.20})

where An are some complex numbers. When we substitute expression
({1-19) into (1.20), we get the result

E A, Yn Iln=-13% = a T A, Ind>.

n=1 n

50, the following recurrence relation

mn
An = A
v nl °
takes place, and Ao = 1 from the normalization condition. Hen-

ce, the coherent state can be constructed from the vacuum state in
the following manner

jad> = D (a) | 0> (1.21)
where the displacement operator
D(a) = exp(aa’ - a a}
obeys the conditiocons

D+ (a)aD{a) = a+a

pYtaeya™(a) = atra

D () = D (@) = D { ~a)
The scalar product of two coherent states is
CBlad> = exp(-lal¥2z -181%2 + ag") .

Hence the coherent states are not orthogonal to each other, but
any state of another sort can be expanded over the coherent
states.

It follows from the expression (1.21) that the possibility to
discover, in a coherent state, exactly n photons is

zn
|

| « _ F
l<nla>i{i*e«———— o b 1™ (1.22)
n!
This is the Poisson distribution with ( ﬁ >y =1 1* and
<(an)> = ¢ny. (1.23)

By analogy with the expression (1.11) the density matrix can
be expressed in terms of the coherent states with complex o @



p=IP(a)|a><ald2a. (1.24)

Here P ( o ) 1is interpreted as a guasi-probabkility distribution
because in the ccherent state the quantum mean value of the nor-
mally ordered form coincides with the classical mean value with
the probability distribution P { «a ) . Comparing (1.24) with
{(1.11) and using (1.20) we obtain

n * m
*  (a) - 2
p {(nm)} = I P(a) Pal a’a .
v n! m!
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Lecture 2

SQUEEZED STATE OF FIELD

“It is not really
difficult to construct a series
of Iinferens—ces, each dependent
upon its predecessor and each
simple in itself."

Sir Arthur Conan Doyl -

The Dancing Men,

Now we discuss the quantum fluctuation properties of the ra-
diation field. Instead of the creation and annihilation nonhermi-
tian operators at and a + let us consider two hermitian quad-
rature operators X and xz defined by the expressions

+

X =(a +a)/2,x2=1(a+-a)/2. (2.1)

and obeying the commutation relation

(X . X, ) = i/2 . (2.2)
The known quantum expression for a plane monochromatic elect-

romaghetic wave is

E(t) = A (ae it gt glut, (2.3)

In terms of the quadrature operators it reduces to

E (t) = 2 a( X cos wt + X, sin wt ) ., (2.4)
Since for a guantum harmonic oscillator

a = (wg + ip) ( 200 )72

at = (wg - {p) (20w )M

from the comparison with (2.1) it follows that the guadrature ope-
rators can be interpreted as a dimensionlesg coordinate and a
dimensionless momentum, respectively,

S il



X, = (w/20)'7 q X, = { 20 )7V p .

The following uncertainty relation for quadratures
COBX P> CAX, > = 1<% . X 1>1°/4 =1/16
(2.5)

can be obtained. If an exact equality in (2.5) holds, then corres-
ponding quantum state of the field is a state with minimal uncer-
tainty. From the definition of the coherent state it follows that

< (AX)P> =< AX2)2>-1/4. (2.6)

So, | a > is the minimal uncertainty state.
Let us consider now the uncertainty of the coherent state on
the x1 ’ xz plane. It follows from (1.21} and (2.1) that

(X >, = Rea, <Xy = Ima.

In accordance with (2.6) each component of vector | « > can be

measured with the minimal accuracy

/2

5 o= (< ax ) Vo= 12,
X So, the uncertainty of a
can be pictured as an area
of a circle with radius 1/2
| Im a
(see Fig. 2.1).
In the Fock state (1.9)

o
Re o xz < x1 >n =< xz >n =0
|
Fig. 2.1. Plot of uncertainty in a and

coherent state.
2

CLAX ) > -
= < (A% )F> = (1+2n)/4 > V4.

It is not a minimal uncertainty state at n > 0 . The gquantum ac-

10

curacy in the measurement of guadrature components of field is

6=(1+2n)“2/2

The corresponding plot of uncertainty is presented by an annulus
(Fig. 2.2).

2 It should be noted that
the uncertainty relation

(2.5) imposes a restric-
1 tion only on the product

of two variances. Each
factor may have any

Fig. 2.2. Plot of uncertainty

value including the

value less then 1/4 at
the expense of increased
the fluctuations in the
in Fock state. other quadrature. The
corresponding states of
the field present the great interest for the physical measurements
and optical communication and information systems. These are the
so~called squeezed stats.

Usually it is defined as a state which has a small value of
fluctuation in one guadrature component than the zero-point (cche-
rent state) fluctuation.

The simplest example of a squeezed state can be constructed
with the aid of the famous Bogolubov canonical transformation (
Bogolubov N.N. - J. Phys. USSR 11 (1947) 23 ) introduced for the
first time in the theory of superfluidity.

Let us consider a monochromatic field and define a formal

column
a)
A=
[a*J
The Begolubov transformation has the form
B = UA , (2.7)

where the column

11



describes some "new" Bose-field and

u v
u = .
& *
v u
From the commutation relation
(b,b" ] =1
it follows that
detu = jul® - jvi? = 1, (2.8)

Cne can define vacuum states for the "fields" A and B by
formal expressions

al o >A = 0 , bl o >B = 0.

Because A and B realize two different representations of the
same physical field, the state | 0 >p can be expanded over the
Fock basis of the "field" A :
L)
10> =T a |Ind . (2.9)
B n=g P A

By analogy with the coherent state (1.20), let us substitute (2.9)
into the definition of the "B-field" vacuum. We get

<« o0
0 = F uwa vnln=-1.+ L va vn+lin+1)) .
n=1 n A n=0 n A

For the numerical ccefficients An it follows that

Ay (= Vv /u )n/2 v nt / nll, n is even
w

0, nis odd .

Using now (1.10), instead of (2.9} we obtain

L o> ¥ (- v/2u)" ()" I o)
B n=o n! A
= exp { - (W2w) (aH)?) 10>, . (2.10)
The state I 0 >B is the so-called squeezed vacuum of the
12

"A-field". It contains a complete set of the Fock states of the
"A-field" with an even number of photons.

To clarify the term “squeezing”, 1let us consider the
uncertainty relation (2.5). From {2.7) we derive the
transformation for the quadratures of the "a-field"

Y, [ Reu + Rev Imv = Imu [ X
= (2.11)
Yz Imv +Imu Reu - Reyv xl
where
+ +
Yl = (b + b))/ 2 , Y. = 31 (b - b))/ 2.

2
One can easily obtain
01X 106> = 01 COiX, 103 = 0;

COIX 105 = lu=-viPze3¢0I X103 = lu+v ity
2 - - 2
0| (A xl 11 o )B = |l u v T/ 4,

<col(ax)loyy = Ju+vi®/a

and the right-hand side of the uncertainty relation(2.5) takes
the form

1
2 2
16 | u viIiTlu+v|

= { al® + |vi® -~ 2juvl cos A }( lul® + |v]|

2
A=argu - argv.
According to (2.8) it has the minimal value 1/16 when
A=kna, k=0,1,2,... . (2.12)
In this case we deal with the minimal uncertainty state, but in

contrast with the coherent state the plot of uncertainty present
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an ellipse (Fig. 2.3) owing to asymmetry of the gquadrature

uncertainties. .
1 9 Acting o©on the sgueezed
vacuum state | O >, by the
operator (hH" one can

obtain the sgqueezed Fock
states for the "A-field" which
are the standard Fock states
of the "B-fiela".

Let us now consider a

T LTTTN
7777777 X,

coherent squeezad state or a

Fig. 2.3. Plot of uncertainty squeezed state of the A-field

in a squeezed vacuum which is a coherent state of

state. the "B-field". It can be
defined as

l €, a> = D(a) S(£) 10> (2.12)

Here D is the displacement operator (1.21) and S is the
unitary squeezing operator

1 1
5 (€) = exp (—— et a® - - € ahH?y . (2.14)

It was introduced by Stoler ( Stoler D. - Phys. Rev. D1
(1970)3217; D4 (1971) 1925 and 2309). The transformation properti-
es of the squeezing operator are as follows:

s+(E) aS(E)y = a W~ atw
(2.15)

+ * +

stiey a* s(e) = -av' + atu

It is obvious that the squeezed state (2.13) is an eigenstate of
the creation operator b :

bl E€,ad> = (va + va )1 €, abd (2.16)

i.e. it is a coherent state of tha "B-field" defined by the
Bogolubov transformation (2.7). This transformation is often

14

represented in the form

b = acoshr + a' eiw sinh r

Then instead of (2.15) we have

s+(E) a S(§) = acoshr - a* el ginh r

(2.17)

+ -ig

sty a* s(g) = at coshr - a" e '® sinh r .

The most important mean values and variances for a sgqueezed
state in the case of minimal uncertainty (when ¢ = k n ) are
<> =|a|® + sinn’r

< (Aﬂ)z > = |a coshr - o sinhr|2 + 2 cosh’r sinh’r
(2.18)

1

2

< (ax) >
2

< (8x) >

P N

It follows from the expressions (2.18) that the variance of any
guadrature component of the field in the squeezed state can be
smaller than in the coherent state or in the vacuum state. This
circumstance open the possibility to produce a precision optical
measurement beyond the shot-noise limit.

One can say that squeezed state of the electromagnetic field
have reduced quantum noise for one observable and preserve the
Heigenberg uncertainty relation by an increased quantum noise for
the conjugate chservable, The information can be extracted from
the observable with reduced quantum noise, and thus the standard
guantum limit can be overcome. The first successful attempt was
realized by Min-Xiao, Ling-An Wu and Kimble (Phys.Rev.Lett. 59
(1987) 278}.

The scheme of their experimental arrangement is shown in Fig
2.4 A Mach-Zehnder intarferometer is formed by the two beam split-
ters m , m, and the highly reflected mirrors m,, m. A coherent
field E is injected into the input port m , and the fields from
the two paths through P, and P,

15



m, pq_ m,
R S

N [ 3 DI.
my

LR PN s SRS NN

I

E, 1
\_JOPO
The principal elements of the experimental arrangement
for interferometry with sgqueezed state.

Fig. 2.4,

are recombined at the output port L to produce interference frin-
ges as a function of phase difference along the two arms. The non-
linear elements in the two arms of the Mach-Zehnder interferometer
are deuterated potassiusm dihydrogen phosphate (Kszoz) phase mo-
dulators. The limit on the minimum detectable phase change is the
Shot Noise Limit (SNLL) and presents the best sensitivity possible
for input of a ccherent state E‘ and a vacuum field E-.

To achieve sensitivity beyond the SNL, a squeezed field E_ is
injected in place of the vacuum field into the input m . Two de-
tectors D and D, registered the intensity of the beams which de-
pends on the phase difference for propagation along the two arms
of the interferometer. The photocurrents are examined by the sub-
traction arrangement ¥_ which gives the time dependence of the
phase fluctuations (Fig. 2.4 ). One can ses that in the case of
squeezed light the level of fluctuations of the difference photo-
current is smaller than for the case of vacuum field, which is
given by the dashed linel. In this experiment an improvement of
3.0dB in signal-to-noise ratio was achleved in (b) related to (a).

(v) 40F
3.0
2.0

1.0}
Wlo |

1.0}

'bl.T T 02 %] il
Time {sut) Mime (.ech
Fig. 2.5. Level of fluctuations ve time: (z) vPcuum—state

(b) squeezed-state input E. . The

for the field K
line gives Lhe vacuum level.

input
dashed

This achievement opens the wide perspectives in the field of
the precision quantum measurements, e.g. in the gravitational wave
detecting and in the optical transmission of information.
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Lecture 3.
HOW TO MAKE A SQUEEZED STATE

#There are some points which are as
dark as ever, DBut wve have so much
that it will be our own fault if we
cannot get the rest.”
sir Arthur Connan Doyle -

- The second stain.

The simplest way to obtain a squeezed state consists in the
using of a two-photon generation mechanism. For a single mode case
this mechanism can be deacribed by the quadratic hamiltonian

H = h(wa'a + f:a2 + fla'z + f:a + fzaﬁ (3.1)
where c-numbers f may be time dependent. The f terms describe a
two-photon mechanism of interaction whereas the fz terms describe
the usual one-photon or linear driving mechanism (see? Yuen H. =

Phys.Rev. Al3 (1976) 2226).
Instead of (3.1) the general quadratic hamiltonian

E : +_+ +

H = {Aklakal + Aklakal + Bklakal} (3.2)
k,1 .

can be examined. Here Bk1=51k and Ah1=A1k‘ Bogolubov cancnical

transformation of the form

* 4+
a = E (ukmbm * Vkmbm)

reduces (3.2} into the diagonal quadratic hamiltonian

= + = - 2
H=E +LEpb, . E, ; By vy, l° - (3.4)
n T
’
Here E_ and Upmt Vim are the eigenvalues and eigenfunctions of

the system of eguations

18

Entlym = 51: By yUim ¥ 28V 1)

E _ * + w
m km )1: (ByrVim * MY

The functions u and v obey the following conditions

* *
E g, - Vklvkm) = 3(1-m)
L WVim ~ Uem¥k1? = ©
L
+ * (k-
}E(”m"m Vi¥xy) = Stkm
)1: U )¥my ~ Uni¥xi) = °
The Heisenberg equations
., d _ a + o +
in g by = Egbp o ih ¢ by E b

have the simple solutions

b (t) = b, (0) exp(-1E.t/h) , br(t) = b'(0) exp(iE t/h)  (3.5)

Using (3.5) together with the transformation (3.3) one can define
the time dependence of the operators a,, a;. Then, averaging the
operator constructions with the density matrix of the initial
state, it is possible to define the time dependence of the fluctu-
ations (variances).

For example, let us consider a simple particular case of
(3.2)

H = hmlata‘ + hwza:az + hG(a:a: + alaz)

which describes the parametric interaction processes. Here the
coupling constant G is related to the nonlinear susceptibility for
the process under consideration. It should be noted that the crea-
tion of photons in pairs, described by (3.6), happens in many non-

linear-optical problems ({e.g. in downconversion and four-wave
mixing).

19



Cne can see that the difference in the number ocperators for
the two modes
+ +
A= aa - a,a,
is a time-independent operator. For al(t) and aa(t) one can obtain

iat ia_t
al(t) = C‘e + cae
iat irx_t
aa(t) = CSe + C‘e
where
o o+ W
1 1/ 2_, .2, 1 2
A, =5 (W - w,) t 3 (@ +w ) -46" |G| = —_—

and the operators C are defined by the initial conditions.

Making the gsimple calculations one can obtain now tha time
dependence of the quadratures and corresponding variances and to
define the existence of squeezing in dependence on the initial
state.

In connecticn with the hamiltonian (3.6) it should be noted
that the operator aa, acting on a Fock stata, simultaneocusly an-
nihilates photons of two modes a and a,. Thus aa, can be consi-
dered as the pair-annihilation operator and the corresponding pair
coherent state can be defined (hgarwal-JOSA, B5 (1988) 1940) as
follows

a a |§g@ =% |9

Blg,> = g l€.a>

Its expansion over the Fock basis is

En
£, =N Z h+gq, n,
! "l ! (n+ 1) !

where [n’',nd=|n’'>e|n> and Nq is the normalization constant

20

IEIZH -1/2
N = = [ (i )‘i J (2i ~1/2
1 [ E:: n! (n +q)! J lel (22Eh

he )

The generation of these interesting states alsoc lead to the
squeezing,

Let us now consider the anharmonic oscillator model. A
possible realization of this model is strong light propagation
through a nonlinear Kerr medium {(Tanas R, - Phys.Lett. Al41 (1989)
217).

The two versions of the anharmonic oscillator model that are
4oing to be compared here are defined by the Hamiltonians

H = hwa'a + -;-nk(a’)“az (3.8)
H'= hwa'a + %nk(a’a)‘ (3.8a)

where k is the nenlinearity parameter, which real and assumed
the same in both cases.

The Heisenberg equations of motion for the annihilation
operators are then

a=- % [a,H] = ~i{w + ka'a)a, (3.9)
; = % [a,H] = -i(w + %k + ka'a)a. (3.10)

Since a*a is a constant of motion in both cases the solutions
are the exponentials

a(t) = exp{-it(w + ka’(0)a(0)])a(0), (3.11)

a(t) = exp{-it[w+ 3k + ka'(0)a(0)])a(0). (3.12)

Egs. (3.11) and (3.12) are the exact operator solutions describing
the dynamics of the two versions of the apharmonic oscillator. It
is seen that the only difference is the extra phase shift kt/2
which appeared in (3.12).

Since we are interested in squeezing, we define the Hermitian
quadratura operator
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Qg = alt) WP L 4t ey @V OP, (3.13)

which for ¢=0 corresponds to the in-phase quadrature component of
the field and for g=n/2 to the out-of-phase component .
The variance of such an operator is given by

var(e,} = (Q;> - <ow>2-

21 -,

= 2 Re (<a’(t)> &' Py care? e (3.14)

+2 (<atay - ¢a'(t)> @(tid) + 1.

For the vacuum state as well as coherent states thias variance is
equal to unity. If it becomes smaller than unity the state of the
field for which this occurs is referred to as squeezed state, and
perfect squeezing is obtained if Var[Qv]. It is convenient to use
the normally ordered variance

= .02 * - 2=
Vw(t) = (-Qw(t)-> (Qp(t)>
= 2 Re |(a2(t)> Q2! Wt-9), (a(t))z emIwal} (3.15)

+ 2 (¢at(bra(t)y> - @t (L) <a(t)>) .

Negative values of this variance mean sgueezing and its value
equal to -1 means perfect squeezing.

Assuming that the initial state of the field is a coherent
state |ay with the mean number of photons N=|a|2, and using egs.
{3.11) and {3.12), one can easily calculate the normally ordered
variances (3.15) for both versions of the nonlinear interactions.
The results are as follows:

vv(r) = 2N{exp(N(cos 2T - 1)1 X cos[2(y - po) + T 4+ N sin 2T1)
- exp[2N(cos T - 1)] x cos{2(¢ - 9 ) + 2N sin 1]

+ 1 - exp[2N{cos ©t - 1)1} , (3.16)
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V'w(t) = 2N{exp{N(cos 2t - 1)] x cos[2(p - ¢ } + 2T + N sin 2t)
- exp[2N{cos T - 1)] x coa[2{p - pn) + t + 2N s8in T]
+ 1 - exp[2N(cos T - 1}]} . (3.17)

where we have introduced the notation T = kt and a = \f""i»i_ew0 with
®, being the initial phase of the field.

Hence, in both cases there are the periodic revival of squee-
zing in the long-time scale with exactly the same period (see Fig.
3.1, 3.2).

Fig. 3.1. The normally ordered variances Vw(t) (eq. (3.16) plotted
against t, for N=0.25: solid line: the in-phase component; dashed
line: the out-of-phase component.

Fig. 3.2. The same as in fig. 1, but for variances Vé(t) (eq.
{3.17)).

Let us now consider the sgueezing of light via nondegenerate
four-wave mixing in a system of three-level atoms (Bogolubov N.N,
Jr., Shumovsky A.5. and Tran Kuang - J.Phys. B, 20 (1987) L447).
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The N three-level atoms concentrated in a region small com-
pared with the wavelength of all the relevant radiation modes in-
teract with two cavity modes E‘, li:2 and with two pumping waves EJ,
., ¢« 9, and n., respectively (fig. 3.3).
The pumping fields E  and E‘ are assumed intense and can be trea-

ted classically. For simplicity the pumping field E, is assumed to

E, with frequencies nl, Y]

be in resonance with the level separation W= (h=1), and the
punping field E‘ is assumed to be in resonance with W= . Let

a, a:' and a_, a: be the annihilation and creation operators of

the modes E and E_, reapectively.

wy 13}

Ry

wy

1, |+

"N 112

PR

Fig. 3.3. Three-level atoms interacting with two puaping fields
' and with two cavity modes R .

The coherence part of the Hamiltonian in the rotating-wave
approximation and interaction picture is

_ + +
chh - A‘axal M Azazaz +Gz: (le cdg) Gaz(aaa * Jaa) M
{3.18)
+ +

v 9, ‘JZInl tad)t gz(Jazaz +oady)
where
4 =0 - w, 4,=0, - w,
G, = - 9,E, G = ~ 4,E,
9, =- dZI(E1/IEI|) 9, =" dsz(lz/l!z“

d are the electric dipole operators for the atom, Jij"‘:I‘ﬁ

(i,j=1,2,3) are the collective angular momenta of the atoms, which
have the following form in the Schwinger representation?
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+

= Cicj (i,j=1,2,3)

Jjj
where the operators ¢y and cI obey the boson commutation
relation

+
[ci'cilgsij

and can be treated as the annihilation and creation operators for
the atoms populating the level |i).

Let the signal modes E and E, be initially in coherent sta-
tes. After Agarwal (1974), by using the Markovian approximation,
one finds the master equation for the reduced density matrix p for
the atomic system alona in the form

8p/ot = "j’tﬁcon'p] = ¥y (T TP = J,PY,, + HC) -

- 132(‘]::3:39 - Jaapajz + HC) = [p

where 2y 4y are the transition rates caused by the atomic reservo-
irs from level |i>+|j>. The Hamiltonian l'l”h differs from the Ha-
miltonian B . in equation (1) by the substitution of the opera-
tors a, and L by their eigenvalues over the initially coherent
states (Agarwal 1974).

Further, we investigate only the case of the intense pumping
fields E3 and E‘ . 80 that

(3.19)

1/2 .
2 @
G = (G, +G) » Nrij,ghaltl'zj (3.20)
After the canonical transformation

-1/2 -1/2

c, = -2 sian‘ + r:.c»so:Qa + 2 sinact:z:l

- -1/2 ~-t/2
c, =27 + 27 % (3.21)
c = 2'wcost1 - sinan + 2'"zcosaoj

and using the secular approximation (Agarwal et al 1978, Bogolubov
et al 1985, 1986a), i.e. ignoring the part of the Liouville opera-
tor L containing rapidly oscillating terms with frequencies
nG{n=1-4), one can find a stationary solution of the master equa-
tion in the form (Bogolubov et al 1985, 1986a)
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N P
p=uput = 27" x* T {P.>M,P| . (3.22)
P~o H=0
where
_ 2 2
X = ¥ ,co8 a/rzlsin o
z = [(N+1)X"% = (ne2)X™! 4 1Y (x-1)°

U is the unitary operator representing the canonical transformati-
on (4), |P,M> is an eigenstate of the operators R = R‘l+R33,
Rllang of the operator of the total number of atoms, where
Rij=Qin (i,j=1,2,3) are the collective angular momenta of the
#dressed” atoms. Now we return to the Hamiltonian (1). Following
the laser theory of Haken (1970), one may obtain a quantum Lange-
vin eguation for the cavity modes E , E, in the form

a (t) (-4 - x)a (t) - igJ () + F (L)

az(t) = (—-iAz - xz)az(t) - 192J23(t) + F}(t) (3.23)
where X, X, and Fl(t), Fz(t) are cavity damping constants and

noise operators for the modes E, and E, respectively. The noise
operators Fl(t) {A=1,2) obey the relations (Haken 1970)

+
(Fh(t)>“ = (Fl(t)>n =0
Franrt ey = P, (B)F,L(E)), = O
FLEIED, (2], = CFy (8)F,, (£)), =
+ S = b .
L, (e ), = n, L (T)2X8 (-0 8y, (3.24)

+ . .
B, (R)FL ()3, = (o (T) + 1)2x,3(E=t")8,,,

where (...)H jndicates the thermal average over the states of the
heat bath and nm'A(T) is the number of thermal guanta at a tempe-
rature T for a field mcde E,.

As follows from the calculations, a substantial squeezing in
the mixture of two modes E and E, can he obtained if modes 21 and
E, are located near fluorescence spectra at frequencies w, * G

and w ¥ G, respectively (fig. 1), i.e.

18,1,18,] «6& (3.25)
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where

or

|Al + Gl.ihz -G] «¢G
With the use of condition (3.25) and the secular approximation,
equations (3.23) reduce to

a(t) = (-i8, - xl)il(t) + i(gl/ﬁ)sinuﬁza(t) + F(t)
(3.26)
a(ty = (-1, - xz)iz(r.) + i(g:/ﬁ)slmﬁaa(t) + ?z(t)

where

1c

et 3 (t) a,(t) = e'ct

[}

a (t) Ez(t)

1Gt

F (t) = et F (1) F (t) = &' F_(t)

1Gt

= - = iGt
R, (t) = R (t)e R (t) = R (t)e

I n the secular approximation §23(t) and ﬁgz(t) are slowly vary-
ing in time (Bogolubov et al 1985, 1986a). For simplicity we con~
sider only the case of nm'A(T)=0, i.e. the temperature T=0. In
this case, as is easily seen from relations (3.24) and equation
{3.260), the noise operators §1'2(t) cannot affect the normally
ordered variance of the signal modes E‘ and EZ , but they give
the commutators [al,a:] and [az,a:] additional values equal to
1-exp(-2x t)-1 (t-=) and l-exp(-2x,t)-1 (t-=») respectively (Haken
1970) .

Deleting the noise operator, one may obtain a stationary so-
lution of equatione (3.26) in the form

ig R -ig R

-~ 1 23 2 32
a = — sine a = -— sina (3.27)
vz i3+, 2 vz 18 +x,

We shall consider the normally ordered variable of fluctuation in

the in-phase (bl) and out-of-phase components (bz) of the mixture of

signal modes a, and a,

b =
1

n| =

(b* + b) b, = - 2wt - b
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where

b=al+a2 b+=a1+a2

By using solution (10) and the steady-state density matrix (5),
one finds the normally ordered variance of fluctuation of the
operators b1 and b2 in the form

. 2. .1 2,2 2 2, .3 2
e (Abl'a) i>= 2 [(g,/x])8in acR R > + (9 /x)cos’acR R >
t ("1"2”‘1"2)51"“0“‘“(<R33R33>; + <Raanaa>s” (3.28)
where the statistical moments <R32Rza>l and <R23R32>s are calcula-

ted over the atomic steady-state density matrix (%) (Bogolubov et
al 1985).

In relation (11) and further, for simplicity, we take
61-52=0. The symbol ¢...) indicates the expectation value over the
states of the heat bath and the atomic steady-state density matrix
(5)- Taking into account the noise operators FA(t) (A=1,2) one can
find the commutator of the Hermitian amplitude operators b, and b,
as

b, b == Ti[(¢%/x})sine - (@Y/xpcos’a)( « H®> -1 (3.29)
The factor of squeezing of the operators b, and ba can be defined
as (Lakshmi et al 1984)
1
Fl.z - <:(Abl.2)z=)/ —2-|<[b1,bz]>| (3.30)

The squeezing is present if the factors F1 or F, are less than
zerc. For the case of X=1 we have (Runz?s'<Runn>s and it fol-
lows that

: 2.y & 1
<'(Abha)‘> 2 RyRydg [

glsinu g,co8a 3
e

x * X
1 2

thus, squeezing is absent in this case. Squeezing is alsc absent

for a separate mode or (i.e. whan ). The behaviour of the
factor of squeezing as a function of the parameter cot when
and =0.8 and as a function of the parameter when cot
=0,7, =2 and =1.0is plotted in figs. 3.4 and 3.5,

respectively. As can be sesn from fig, 3.4, for the one atom case
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the squeezing is smali.
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