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1. - Introduction.

Quantum optics from its beginning was considered as the physies of co-
horent and intrinsically stable radiation sourcos. Lamb’s semi-classicu] theory [1]
showed the role of tho o.m. field in the cavity in ordering thoe phuses of the
inducod atomic dipoles, thus giving rise to a macroscopie polarization and
making it possible a deseription in torms of very fow collective variubles, In
tho case of a sinple-mode luser and a homogeneous gain ling this meant. jnst
five coupled degrees of frowlom, namely, a complex field amplitude F, a
complox polarization I and a pepulation inversion §N. A eorresponding quantam
theory, even for tho simplest, model laser (the so-eallod Dicke maoded, that
in, a diserote collection of modes interacting with a finite number of 1.‘\\'0-](»}«-1
atoms), doos not lead to a closed sob of equations, however 1he interaction with
other degrees of freodom acting ag a thermal bath (atomic collisiens, thf-rma.]
radiation} provides trunecation of high-order terms in the atom-licld intor-
activn [2-4]. The problem may be roduced 1o five coupled oquations (Lho so-
called Maxwell-Bloeh cquations), hut now 1hey are alfected by noise sourees
1o aecount for the coupling with the thermal bath [B]. Thexo heing stoelastie,
or Langevin, equations, the correspoluding solufion in elosed form refers 1o o
suituble weight funetion or phase-spaco density. Anyway 1he averwge motion
watelies the semi-cassieal one, and fluedgations play a negligible rolo if one
excludes the bifurcation points whero 1here are changes of stubility in thoe
stationary hranches, Leaving out the peculiar statistieal phenomona whiel
charpeterize the 1hreshold poinds and which sugrosted o formal analogy with
thermodynmmnic phise trangitions [6], the main point of inferest is that. a single-
le Lasor provides a highly stable or eoherent radiat jon fiehl,

Irom the point of view of the associated informal ion, 1he standard intor-
ferometrie or spectroseopic measuroments of classical oplies, rolying on averago
fleld values or on their first-order correlation functions, are insuflicieit. In
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ordor to charactorizo the statistical Toatures of quantum opties, it was neces-
sary to make extensive uge of photon statisties 7, 8],

As disengsed in dotail in poet, 2, cohieronce is equivalont to having a stabie
fixell-point atiractor and this does not depend on tho details of the nonlinear
coupling, but on the number of relevant degroes of freedom. Sineo such a
number depends on the time 8cules on which the output. field ig obsorved,
eohoerenco bocomos a question of time seales. This ig the reagon why for some
lasors eoherence is 4 robust quality, persistent even in the pregenco of strong
perturbations, whereas in other cases coheronee iz eusily destroyed by tho
manipulations eommon in the Inboratory nse of lasors, such as modulation,
feadback or injection from ancther Lser.

Here wa reviow instabilitieg and ehaos in aetive quantum opties. Soection 2
8 a gonoral presentation of low-dimonsional chaos in lasers, including the
deseription of the rolevant meagurements upon which any assessment on chaos
has to rely. SBections 3 10 6 are, respectively, devoted to lasors with modulated
losses, lasers with injocted signals, Insors with levdback and bidirestiona] ring
Iagers. Soection 7 discusses the ¢ hyporchaos s, or 1/f noise,

For a more completo approach to the problem, I refer to a recent mono-
graph on the subjeet {9].

2, -~ Deterministic chaos.

2'1. Historical aspects. — Uniil recontly the current point of view wiag thut
# few-body dynamics was fully predictable, aud that only addition of noiso
sourees, due to coupling with a thermal reservoir, could provide stulisiical
uctustions, Lack of long-time Predictability, or turbulenco, was considord
45 rosulting from the interaction of g large number of degroes of froedom, as
in a fluid above tho eritical Reynolds number {Landan-Hopf modol of turbulence).

On tho contrary it is new known that oven in systom with few degroes
of froodom nonlinearities may give riso to oxpanding directions in phase BPACo
and Lhis, together with the luck of precision in assigning initial coiditions, is
sufficiont 1o induce o loss of predictubility over long times.

This level of dynamieal description was born with the th ree-body problem
in eolostial mechanics (Poincarg). Alroady a three-body dynamie system is
very differont from the two-body problem, sineo in gencral there are asymp-
1otie instabilitios. This moeans a divergence, exponential in time, of two phase-
8pace trajeetorios stomming from nearby initial points. The uniqueness theoren
tor solutions of diffsrential systems sevms to offor an uBCHaPO way: he more
and more precige in Ipealizing the co-ordinates of the initial point. Howover,
& fundamental difficulty arigos. Only rational numbors can be assignidl by a
finite number of digits. A « preeise » assignment of a real number requires an
infinite acquisition timoe and an infinite momory apacity 1o store it, and
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neithor of 1hese two infinities is avuilable to the physicist. Hence any initind
condition implies a trumeation. A whole range of initial corulitions, even il
small, is uswally given and from within it trajoctorics may wrise whose dif-
ferones beenmes sizable aflor o given time, if 1hero is an exponential divergence.
This moans that prediclions are in genera) limited in tite and that motions
aro complex, starting already from the three-body case. n fact, we know
nowudays from very clementary topological considerations thut a threc-
dimonsional phase spaco corresponding 1o three coupled degreos of freedom is
already sufliciont to yiold w positive Liupunov exponuent, awnd accordingly an
oxpanding phase-space direstion, This complexity is not «ue to coupling with
4 noise source as a thormal reservoir, but to sensitive dependence on initial
conditions. It is ealled deterministic chaos.

Tho birth of this new dynamiecs was motivated by pructical probloms, as
tixing the orbit of a sulellite or forecasting muteorology [10], and it was strongly
Lelped by the introduction of powerful computers. The mathematics of mul-
tiple bifurcations leading frem a simple beliaviour to a complex one is under
curront investigation. Some regularities, such as the s geenarios » or routes to
deterministic chuos, have already been partly explored {11].

22, Dynamical aspects. — A dissipalive system (i.e. with damping terms)
doos not conserve the phage-space volumo. [f we start with initial eonditions
confined in a hypersphioere of radius e, that is, with an initial phase volumo

Vo=2¢%,

28 time goos on, le sphere transforms into an ellipeoid witl each axis modified
by a time-dependent factor. Its volume is

V=& oxp [Y 4,1]

(1, == Lispunov oxpononts). Sinee the volume has to conlract, V, << ¥,, then

.

Il<0.

i=1

We denote the sequence of 1 exponents, starting from the smullest up to the
highost, a8 the Liupunov spectrum. Let us congider for simplicity just the sighs
of nonzero A, kveping the zero for i,:=0. Wo then desuribe a sequonce of
negative, zoro and positive A, 88, €.g., (—— 0 +). For N=1, we have (-)
and a segment ¥V, = & of initial conditions shrinks 1o a single peint for & — oo,
that is, the attractor is & fixed point. For ¥= 2, the system goos eithur t0 u
figed point (——), or to & limit cycls (— 0). Chaotic motion ((— +) with
1, < |A_|) is forbidden in two dimensions by the Poincaré-Bendixon theorem.
Yor N= 3, besides fixed point (—— —} and limit oycle ( -— 0], we ¢an have
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molion on @ torus with twe uncomnensurate frequencies (— 00}, but we can
also have (—-- -F), that is, a positive 4 which gives an expanding direction
along whifoh wo rupidly gub tiouibainby.

An ovxamplo of chaotic motion is offered by the Lorenz model of hydro- -

dynamic iustabilities [10] whieh corresponds 1o the following equations where
tho parametor values have been ehoson in order to yield one pusitive Liapunov
exponent:

& =— 10z 410y,
(1} §o=—y | 28w - >z,
4= — (8/3)2-+ 2y.

The sbove considerations suggest to study low-dimensional chuos, ith

the simplost phase-space topology ullowing for the sppourance of o positive

Liszpunov exponent.

Focusing on theso situutions in guantum oplics permits cluse comparison °

between experiments and theory. ¢ purpess I do not tuckle tho vast cluss
of inhomogeneously broadoned lasers, where it is extremoly diffieult to derive
close correspondences betwoen experiments and theory because of the largo
number of coupled degrees of freedoin.

If we couple Maxwell equations with Schrédinger equations for N atoms
confined in a cavity, and expand the field in cavity modes, koeping only the
first mode B which goeg unstable, this is coupled with the collective variablos
P and A deseribing the atomie polarization and population inversion as follows:

B =—k& - gP,

(2) > = —y, P+ gE4,
4= —y,(4— 4;)— WPE.

For simplicity we consider the cavily frequency at resonance with the atemie

resonance, 8o that we can take E und P as roal variables and we have throe

coupled vquations. Here, k, y,, ¥, ure the loss rates for fiold, polarization and :
population, respectively, y is & coupling constant and .1, is the population
jnversion which would be established by the pump mechunism in the atomic
modium, in the absence of coupling. While the first equation comes from
Muxwell equations, the two others iwply the reduetion of vuch atom to & two-
level atom resonanily coupled with tho fleld, thut is, a doseription of each
atom in a isospin space of spin 4. The last two equations ure like Bloch equa- |

L
i

PoE

o

—

-

tions whieh describe the spin preeession in the presence of u magnetic field. b

For such a reason eqs. {2) are called Maxwell-Bloch oquatious.

W

The proesence of loss rates moans that the threo relovant degrees of freedom ’i

are in eontact with o «gea » of other degrees of frecdom. In prineiplo, cqs. (2)

¥
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could bo dednead from microscopic equationg by statistical reduction tech-
ninues {5].

Thoe simitarity of Maxwoell-Bloeh equations (2} with Torenz equations (1)
would suggest the easy appearance of chaotie instabilities in gingle-mode,
hemogeneous-line lagers. ¥owoever, time seale considerations rule out the full
dynamies for most of Lhe availuble lagers. Hquations (1) have damping rates
within ono order of magnitunde. On the contrary, in most lasers the theee damping
rafes are wildly different from one anoiher.

The following classifieation has bown iniroduced [12]:

Class A (e.g., He-No, Ar, Kr, dyv): ¢, ~y, >k
The two last equations (2) can bhe solved at oquilibrium (adiabatie olim-

ination procedure) and one single nonlinear fiold equation describes the laser.
N:=1 means fixed-point attractor, hence coheront omission.

Class B (e.g., ruby, Nd, COy): v, >k2y,.

Only polarization is adinbutically eliminated {middle equation (2)) and the
dynamics is rulod by two rate oquations for ficld and population. N 2 allows
also for period oscillations.

Class O (e.y., FIR lagors): y,~y, A k.
The completo sot of eqs. (2) has to bo nsed, hence Lorenz-like chaos is feasible.

We have carricd a series of axperiments on the birth of deterministic clhaos
in CO, lasers (class B)., In ordor to ineronse by at least 1 the number of degrecs
of freedom, wo have fosted the following configurations:

i) Inirodoetion of a time-dependent parametor to make the system
nonaulonomous [13].  Precigely, an electro-optical modnlator moduliates the
cavity logses at o frequency near tho proper oseillation frequency £ provided
by a linear stabilily analysis, which for @ CO, laser happens o lie in the (Hho-=-
-2100) kHz range, making it eagy an aceurate sot of measurcments.

ii) Imjeetion of signal from an extornal lager dotuued with rospeet o
ihe main one, choosing the frequency differeneo near tho above-montioned £2.
With respect to the extornal reference the Liser fiold has twe quadrature com-
ponents which represent two dynamieal voriables, Hence wo reach N== 3
and observe chaos [12].

iii) Use a bidirectional ring, rather than a Fabry-Perot eavily [14].
1n 1ho latter case the houndary eonditions congtrain the forward and the back-
ward wave, by phase relations on the mirror, to act as a single standing wave.
In the formur eaze forward and backward waves have just 1o fill the totul ring
Iength with an integer nummber of wavelengths, but there are no mutual phaso
contraints, honee they aet as two soparate variables, Turthermore, when the
ficld froqueney is detuned with respoct 1o the eentre of the suin line, a complex
population grating arises from interferenco of the two counfergoing waves,
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andd as a resnll the dynimies becames rather complex, roguiring ¥V > 3 -
moensions.

iv) Addd an overall fecdback, besides tled provided by the cavity mir-
rors, by modulating the losses witle w signad provided by the cut put intonsity [15].
11 tho feodback hus o timo constant compamrable with the popnlation decay
time, it provides a third equation sufficient 1o yield chaos.

Notieo that, while methods i), ii) and iv) require ab oxternal device, iii) pro-
vides intringie chaos. In any ease, sinee foedback, injection or modulation are
enrrently used in lager applications, the evideneo of ehaotic regions pnils n
caution on the optimistic trust in the laser cohorenens,

Of conrse, the requirement of throe coupled nonlinear equations does not
noeesgarily restriet the attontion to just Torenz equations. Tn fael, none of the
oxploridd eares i) to iv) corresponds to Lorenz ehaos,

2'3. Information aspects. — Hore, we diseuss what we measuro to assoss
chaos. Wo plot two of the 3 (or more) varinbles on a plane phase-spaco pro-
jection. Thix way, we build projections of plase-space trajectories on a o-y
oscilloseope, Simullanconsly we ean measure 1he power speetrwm. Tn soet. 3
wo show a soquenes of subharmonic bifureations which evontually Ieads to an
intrieated trajoctory (strange atfracteor) and to o continuous power spectrum,
But how can we digeriminate botween deterministie chaos and noise?  After
all, noise also would give o continuons spectrom, and tlhe phage-space point
woutld HlL ergodically part of the plane, 1hus covering a two-dimonsional sot.

In order to diseriminate delerministic ehaos from order as well as from
ranidom noise, we introduce two invarinnts of tho motion, one statie, the olthor
dynamic.

Wo partition the plase space into small hoxves of linewr gize £ and give i-th
box a probability p,.= M/M cqual to the fractionad number of times it has
beon visited by the trajectory. This way, wo build a Shannon infermation
I(g), and with it an « information dimonsion » Dy{e) [16] which is in genoral
fractional number, or a « {fractal»e:

(%) Hey= - ¥ pdogp,,

]

() ey —tim 10T

evn JOU

To understand the meaning of o fractal, look after an oporational definition
of dimension [17). Let us compare three sets: i) o semmont of unit length;
it) the Cantor setl, built by tuking oul. the middle one-third of the unit, segmont.
and repeating the oporstion on sach fragment; iii) the Koeh earve, buill by
rephweing the mitdle third with the other two sides of an equilstoral trivngle
and repesding the operstion ad bfonitum. Al mch stage of the partition, we
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cover oach sel with beads of suitable size not 1o lose in resolution (e.y., diasmeter
L athe tirst partition) and count the number N for caeh set {al the iirst partition,
wo newl 2 for the Candor sot, 3 for the segmont, 4 for the Koch curve). Wo
define the fraetal dimeosion as the ratio

log N{r)

0! Do) = 18 ey

This delinition is indepondent of the partition, Indeed for the Cantor get and
the Koch eurve wo have No=u 2, e =1 and N = 4, ¢ = }, respeclively, at
thoe first partition, yielding

log 2
) (Ce D~ .63 ..
1y(Cantor) og G
and
, logd ,
NKoeh) = =2 ~ {618 ... .
D{kovh) log 3 1.2618

Al tho secondl partitivn the number of necessary beads goos us N® amd the
diametor of cuch us £3, henco )y remains invariant.

Going buck to the information dimengion Dy{e}, wo see thai wo have re-
placed log ¥ with [{e) which is an average (for p, all equal, we recover I(s) =
== log N). Honee D, generalizes D, whenever the density of points is not
uniferm along the trajectory,

As Dy was independont of the partition stage, similurly D), is an invariant,
it static (timno does not enter), It can be shown that D, » Dy, however for
nonpathological gels the differcnce is irrolevant. Let us rofer for simplieity
to & N== 3-dimensional phase spaco. If 1} == ¢ (fixed point) or 1 (linit cycle)
or 2 {torus) wo have an ordervd, or coherent, metion. In the other limit of
random noise, Huctuations fill ergodically » N-dimensional rugion of the space,
honee D = 3. Detorministic chaos has to be in boetween, that is,

2< D3,

Heonee u fractal dimension is an indicator of chaos. As wo show later, this
indieator is expressed in term of correlation functions, thus it requires the samo
measuring techniques introduced in photon statisties.

These foeatures rolated to the topology of the atbractor have a temporal
counterpart in another invariant, whieh moeasures how information is dis-
gipated in a motion to muntain knowledge on the system. To huild this dynamie
invariant, we partition hoth space and time in boxes of sizes & and v thui we
NG ip, 1y, ..., 84 &b each of tho disercte times 1, 27, ..., dr, wnd introduco the
joint probabilily over thu d time inturvals,

Pistons = (ot = 1) Cty;.;alt =dr)Cigd.

INSTABILIUIES AND CHAUS IN LASERS: INTHOUDUCTION Ty DYLPERCLAOS 27
Correspondingly, we define a joint informaiion

(6) Ty =— Y2 (VIS TR

{4y ial

Then, by a limit operation, deline 1he IKolmogorov entropy as tho rate of in-
formation logs per unit timae:

P 1
7 Ko dim i i —— N (f - lim—-1, .
o ' tlf:n n'-u v GT ,:l( i W ! dr "

Now we have two iidicators to gauge the dilferenee among order, randem noise
(Browniun motion} and deterministic chaos. Lioforring 1o K, it is casily scon
thut

K-—=0 for order (no information loss),
K= oo for random noise (lotal information loss),

0< K < so  for doterministic cliaos.

The box eounting method deseribod above is impractical. It may roquire
10¢ points for a convergent numerical rosult. On_ihe contrary, the followins
method introduced by GrassBErGER and Procaccra [18] is applieable to only

105104 imlupundmnt data points. Wo goeneralizo Shannon information defining
the order-f information as

(8) o= 1_—, Y .

For f->1 wo recover the usual definition, Associatod with I,, there is an
ordor-f dimension of the atiractor

‘ T I;(E)
() b, = l: |.|: /e

For f= 0 and 1 we recover D, aud 1, Cousider f==2. The sum ¥ p? is just
tho probability {(hat o pair of random points on the attractor foll into the s

box, thut js, that two arbitrury points will huve a distance loss than e, (!allmg

W), we expect thus

A £
(1) (e) = lim e %0(:‘ — |, —x,]) = e};/{h__.} ,

N-va0

whore O(c) is moeasured as tho number of pairs (¢, j) with a distanco |2, — 2,| < .
Here 8 is the Hoaviside stop funetion.

B L

s
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Exporimoentally, wo do not measure at each time the vector a(t) of phase

apace, but just one component {6} (for instanes, just. the light out of w Jager),
Howevor, in o nonlinear syxtem, any component z (8) will influenee », st u
later time (o normal-mode transformation!). Henco, we can huild a m-
dimensional phase spaco E{) by just measuring one ginglo componend z; at
suecessive Limes and cousidoring the m-fold as a single point in m-space:

(1) E(t) = [ilt)y &L -} 7), .oy 2t + mE)] .

Ar wo evaluate the glope log € ea. log ¢ from our data, wa can stop from in-
croasing m whan the slope shows saturation. The saturated slope is D, .

3. — The modulated laser |13, 19}.

For a single-moduy, class-B, laser tuned ot the ceniro line, the phase spaco
becomes two-dinensional, howoever introdnetion of a time-depondont parianeter
makes the system nonaatonomoeus adding o third eqnation and thus making
it possible Lthe appearanee of & positive Liapunov exponent, It ig then a prac-
tienl matter to loealizo the values of the control parameters (pump, modulation
frequoncy and amplitude) for which this will occur.

When we apply a time-dopetdont loss, the laser oguations becomo

l=-2kliz— 1y,
(1<) 2oy (2-—2—2l),
k== mk, Qsin .

They come from (2), oliminating P and rescaling I = F2amlz = A, Form — 0,
wo have small doviations from the equilibrinm values

(13)

Thesn deviations are linear in m and synchronous with the oxternal frequency £2.
Destabilization of this limit cycle has to be dealt with by I’loguet theory [20].
It may be shown that even for m — 0 a nonlinear resonunce yields a positive
Linpunov exponont for £2 aronnd tho characteristic frequency [13)

(0 O VI y 0z, — 1),
For a CO, laboratory laser near threshold £ =3-10781, ¢, ~ 104 1 and

Z- 1 0.1 (109, above threshold), the corresponding frequoney f = {27 is
in the 50 kHz range, cosily aceessiblo,
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Fig. 1. — Experimental phaso-spaco porteaits {n -8} (vight-hod zide) and the corre-

sponding frequoney spectru (left-hand side) for different modeladion frequencies f;
a) J 62.7 kilz. DPeriod-two limit cyclo and cotresponling f/2 subhanmonic, by f —

63.50 kHz. Period-four limit eyele and f/4 subharmonic, ¢) [ = 640 kllz. The
phase-space porirail shows a strange attractor (the oseilloscopo apol could not resolve
single windings), The power speetrum iz a gquasi-continnous one willh o simall peak
al the modulation frequency {seo the scale change with rospeet Lo previous figures).
i) f = 64.13 kilz. Period-threa limit cycle and /3 sublinrmonie,

Thus wo have made two series of experimental obsorvations, the first [13]
devoted to an experimental asgessment of chaotic instabilities by phaso-space
portraits and power spoetra, the second [19] to fractal dimensions and Kol-
mogorov eutropy.

The driving frequency f wag chosen to vary in the rogion from /27 to ity
Third Il:eroilio, that is from 60 to 190 kIlz. We¢ have explored modulation
values between 19, and 5%, A complete state disgram would yield the dy-
wamicul foaturos for all possible vidues of the modulation parameters m and £2.
However, the strip m = 1%, 5%, dous not display s dopendence; therefore,
wo limil oursolver 0 giving oxperimontal results at m =— 19, for various 2
values,
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AV,

I
3 f

Bl

Fig. 2. - f : 63.85 kllx. Experimentul evidence of generalized wwultistahility (vooxist-
enco ol two indopendont atiraciors). The power spoctrum shows that those altvactors
cvrrespond Lo ff3 and /4 subbarmonic bifurcations, respectively; in phase space, the
wultiple windings werged within the thickness of the phase portrail contour.

The experimental sot-up consists of a CO, luser carofully slabilized wgainst
thenual and acoustie disturbunces, with the discharge current stabilized botter
than 1/10%. No long-torm stabilization was necessary. Tho eleetro-optical
modulator was a CdTe, antireflex-coated, 6 cm long erystad, with an absorption
less than 0.29%, The luser cavity includes also o 1f4 plate and a beam oxpander,
both coated to limit the totul losses per pass to 209,. The laser output is de-
tocted on o fust (2.6 ns rise time) pyroclectric dotoctor whose current, propor-
tional to the photon nuwber (), is senl together with its timo dorivative n(f)
1o u -y scopo, in order 1o huve the phase-spaco portrait (4, #). Thoe detector
is ulso sont to a Rochlund speetrum analyser to meusure the power spectra,

Ala.u}
=
F—
-

N

Wi

Fig. 3. — Computor plots for the parmmucter values p, - ¥ st K == 7-107 !,
mo== 2.0-107%, QK = 2.0-10M. g) f-- 64.33 kilz, Subbarmonic bifurcation f/4, as
in the cxperiment of fig. vh). b) f = 78.8 kHz, m - 3-10°% Strauge atiractor and broad
spoclriim corrcepouding to a chaotie solulion,
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Iig. 4. - Theoretical generalized bistalility; f - 118.0 klz, m - 2.0-107% 'The phuse-
spaco portrait shows the cxistence oi two independont atbraciors, corresponding Lo
tlie subihannonic frequoencies §{2 (dashed line) and ff3 (continnows line); relalive spectra®,
are superimpesed. 1t must be noted that one nitractor remuins inside the other as in™ -
the experitent of fig. 2. If initiul coditions aro properly clumged, & third attractor” ~
is found with u suprrharmonie frequency f{10 (not plotted for the sake of simplicity). ’h
Juitial conditivns: ny = 4-108, i == 0 (dashed), #, = 2-10%, A, .. 2108 (continuous), - 3

The limited rango (up to 200 kHz) of the specirum analyser hag limited the
frequency range explored in this first ran. We show later 1hat interesting bi-
furestions are also expected in the 180 kHz domain,

In fig. 1 we show cxperimental dads in o nierow region betweon 62.7 anl
4.13 kHz whore various bifureations oceur. Fhis region is limited above and
bolow by wide intervals with stable single-period limit eycles.  Figure la)
shows thoe f/2 bifurcation ul f = 62.7 kHz, fig. 15) the f{d4 case for f == 63.8 Lz,
fig. 1¢) shows the strunge altractor aud o broswl-band spectoinn for f = 64,0 k¥z,.,
wnd fig. 1d) slows tho fj3 case for f-. 64.13 kHe, ’

Furthermore, ut f == 63.80 kHz o now lealure appears, namely the coox-
isteneo of two independent stable atiractors, one of period 4(f{4) and the othor ©
of porivd 3(f{3) ({ig. 2). This bistuble situation has nothing to do with the
commuon optical bistability where two d.e. output amplitude values wppoar -
for a single d.c. driving amplitade. Wo call this coexistoneo of two atiractors
¢ gonoralized bistability » (see sect. 7).

e A

60 —
= .
w v
o o
s 20t ;
1 k
. L “k
ok~ _ R "%
25 50 W00 )
Log FiHz)

Fig. 4. - Experimental power spuctra in the cawse of two allraciors, stuble (dashed ™
line} and strange (solid line).
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In g, 3 and 4 we report tho theorotical equivadents of fig, 1 and 2, respee-
Ltivoly, obtained by eomputler solution of eqs. (12) with poratneter values in
the range of the exporiment.

As stoted inosecl. 7 Hf-type low-Irsquencey divorgonces, with power speclra
ws o= 060 1), appear when the following conditions wre fullilled: i) There
are st least 1woe hasins of atiraction, ii) the attractors hive becomo strango
and any random noise (always present in g nicroseopic system) aets as o bridgo,
trigroring jumps belween them. Theso jumps have the f 0 feature, In the
rogion of bistability (seo fig, 2) we have inereased the modulater amplitude m
up to the point wheres the two attractors have become strange. Figuro 6 shows
the sudden incronse in the low-frequency spectrum. Tho divergent part has
power law behaviour f* with a2 0.6.

The above-describwl first run is still affected by the experimental uneertain-
tios which characlerize a phase-space projection or a power spectrum. Does
the first one show a self-simikur structure boyond the chaotie throshold as
theorolically expecied for a strange attractor, or it just fills orgodicadly o two-
dimoensional region of the (v, 91) plane, thus being trivial random noise?  After
all the latter test (continuons frequeney specirum) isg also o common properly
of random noise and it is nol a sufficiont characeterization of delerministic chaos,

In order 10 sat 3 moro relinblo distinetion between chaos and random noise,
andl also 1o specify thoe route to chaos (fi. 1 is only a preliminary ovidenee of
a Foigenbaum, on subharmenie, route), we have digitized the signal by a
LoCroy transiont. recorder with 32 000 samples in momory, Sotiing Lhe internal
clock at 320 ns, we oblained approximately 16 points for cach period of thoe
fandamental froqueney with light-bit. resolution. By synchronizing the sampl-

Pig, 6. - Top: Lasere intensity re. time for a f/8 subharmonie Trequoney, and corre-
sponding stroboscopic intensity ploic with the tite intorval befween successive points
cquad fo thoe poriod of the modalation Seegpueney (F91.000 k1z) Bottom: Laser inten-
wily e time and strobodeapic plol for chaodie behaviour, The period of the modulation
i+ 5.2 ps. Wa note on the befb-liod side the o soof resolution deo to bhe dimiled seguisi-
tion bandwidth. This deawwback s absent on the right -hand side weause of the huge
incrense in bandwidoh,
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ing time Lo the external drive period we oblained o projection of the Poinearé
soction,  The projection ig onto i one-dimensional spaco (wo moeasure only
the intensity) independent of the other variables. In fig. 6 wo prosont the see-
tions and the corresponding timo series, respectively. The advantagoe of this
signal procossing is that wo are able to analyse 4 high number of periods
{32 0006 maximum) with a single acquisition.  Furthermore, it allows a inuch
Lirgor-bandwidth processing of narrow pulse soquences, which otherwise re-
quires a ligh sampling rate with the related problems in data storing and
processing. In lig. 6, on the loft-hanl side, the bandwilil is 300 kilz, and on
the right it is 100 MHz; indeod wo can notico alrewdy in the f/8 plob o loss of
resolution in the gmaller peaks on the left-hand side.

Log Nie)

Log ¢

Fig. 7. — Plots of log ¥ (¢) va. loge for difforent values of n caleulated from the time
serica (lefl-hand pancts) and from the etroboscopic sections (right-land panels) for
difforent. subharmonie frequoncies: a), b) fi4; ), d) fi8; and ¢}, ) chastie behaviour,
Al best-lit values of the slope » are assuned to have an overall estimeated error of - 0.1,
6000 points were used. The emboedding dimensions for all reporied plots run from 5
to 9. Dimensivus lrom 1 to 15 were lested,
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Wo analyse digitized tine soquenees of the laser ontpul intensity and re-
colsbruet tho allraelors with an cmbedding technigue. For the determination
of (he fraciad dimension wo follow the method of Grassherger-Urocaceia,

1f wo deting N a(e) a8 the number of voetors whose distince is smaller than &,
widd il the vmbedding dimension n is large enough, thon N (e) ~ g7, where v
is the Dy diinonsion of the attractor. In lig. Te} to f) wo plot log N ,(e) as a
function ol log & for @ sequoence of bilurculions f{4, f[8, wnd chaos, Wo limit
our unalysis 10 Lhe regions where 1he slope remains constant over o wide vegion
of lug ¢ and where it is independent of n, ws it must be from theorotical predic-
tious.

From inspoetion of Hg. Te) and &) it is clear that tho slope obtaingl for the
f14 subhurmonic saturates al ¥ ~ 1 in the lime sories wid v~ U in the Poinearé
goction, For ihe f{8 subhanuonic » is <lightly above 1.5 {lig. 7¢) and d)). Thiy
result, even though not readily understandable hoviuse the timo gignal still
appeirs periodic, nevertholoss agrees witin U thearetical prediction for the
dimonsion al the aeenmulation point (inlinite perinlicity) of the logistic map
(1.537 6 < » -2 1.63350). Tndeed this dimeusion Las been proven o be universal
for those mappings for which (he LFoigenbaum sealing kiw holds [21]. We
present here a houristic interpretation based on our duta. I vur vxpoerimental
gysion, the unaveliable noige yiclds a trajeclory wandering over a nonzerod
range of purameler vialuos, the « testing » nearby poriodic sttractors of the sub-
Jurnionie soquenee. ot indinite resolution, we would seo for the stroboscopic
ditn a stuirease of horizonlal pluteaus ench with zoro slope, as it appears at
highor emboedding dimoensions in tiyg, 76} and dj. However, tho tiuite reselution
of the corrolation mensuronients averages over adjucent steps, and thus providos
the 0.58 slope, us it appears in fig, Td). This is the first time that the dimension
at 1he accumulation point of a Foigenbaum cascado has been measured in an
exporimentul system.
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Fig. 8. — Ulots of log ¥(2) vs. loge for difforent dimensions 5 obtained from tho

mamerical integration of the model cquutions for two ditiorend cases, f/8 sublurmonic
(eit-hand side) and chaos (right-hand side). G000 points were uscd.
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Wlhen Lhe system enters thoe chaotie revion, the fractal dimension sud-
denly jumps to a higher valuo (v = 2.4).
The time behaviour of tho intensity obtainwl by munerical integration
ol ogs. (12) was processed in ihe same manner as the experimental sigoal,
Figuro 8 shows the results obtained for a f{8 solution and a strange atlraclor,

“Again neuwr the aceumulation poinl » ~ 1,6, Direct comparison of tig. 8 with

figr. Te) and d) shows good agroement betweon oxperiment wul model,

75

50

kHz
»
»
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25) +

0

0 T 10 T 1s
g, 9. Correlation entropy K, {in kilohertz) es. the embedding dimension for tho
fl4 {erosses) and the chaotic {Lriangles} attractor.

In fig. 9 we roport the correlation eutropy K; vs. tho vmbedding dimension
for the f{4 and for the chaotic wltractor, vs. the enmbedding dimonsion, from the
duta of fig. 7. We seo that, while i, = 0 for fj4, K, ~ 30 kllz for the chaotie
attractor, As wo have a singlo positive Linpunov exponent and as the ombedding

time is 5.2 ps, we estimate that the half-luss of information corresponds to
3.8 periods of the modulation frequency.

4. ~ The laser with injected signal (LI4) 12, 29, 23],

Injocting an extornal signul into a single-mode luser provides an oxtra
degreo of frodom. Indeed, in goneral, the fivld amplitude @ has to bo decom-
posed into two dynamical variubles, that is, the two quadraiure components
&y -+ e, == & with respect 1o the extornal phase reference. In class ¢ lasors
this provides u fourth equation [24, 23] which is woro thun the necessary ro-
quirement for detorministic chaos. A simpler situation is thot of a ouss B
LIS, which is ruled by tho three equalions

ok = L1 4+ 69— 1 vVIz,cosp,
(15) ik = — 0 82(1 4- 83— ay sin gV 1,
Eyy = —2z— {1 4 8%,

T SRR
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whore ®, = A is 1he exlernal field and » = v/T exp [ip] the internal one. The
froquency rolations among gain line, cavity, extornal fiold and internal laser
ate given in fig. 10,

1
W,

I
1
|
1
i
i
|
I
1
I
I

" 3

Tig. 10. — Qualitalive plot of the frequency relations among alomic resonance (homo-
geneons width p ) ventred at o, cavily resonance (width K) centred nt o, and
injoctod field al o,

Wo have obgerved iwo different ways to reach bho locked regime, either
by decreasing the oscillation frogquoency (langent bifurcation), or by decreasing
tho amplitude of oscillation (Hopf bifurcation), and two difforent routes to
chaos, either by inlermittoney or by period doubling.

An extensive linear stability analysis was reported in ref. [22], together
with numerical golutions of eqs. (15) for different values of tlhe injocted am-
plitwdo A= x, and mulual dotuning - 4.

Proliminary oxperimental data have boen obtained by a three-luser set-
up [23], the first Jaser being o ring laser where the dyuamies develops, the
socond one the cxiernal injecting laser and the third ono a master eseillator
with reforence 1o which first and seeond luser are stabilized. The paramoter
rogion explored in this experitnont was sofficient 1o yield oscillatory instabilitios
but not enough to reach ehuos,

3. — The laser with fecdback [15].

In lager applications whore high stubility is required, an overall negative
feodbuck is currently usod, bagides thatl already provided by the electiromag-
notic cavity, for instance by controlling the pump strength with a signal
provided by the dolected output intensily. However, 5 fundamenial objec-
tien Lo a feedback seliome s That it provides one extra dimension to phase
space and honeo the modificd dynamices ean be affected by irregular behaviour,

Here we show how feeding the luser output back on an intracavity mod-
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a) m o) a) e)

L L i

1
0 0.2 &.4 0.6 a 0.8

Pig. 11. - Laser with fecdback: plots «of normalized stationary intensity T vs. R
{the bias voltage B is oxpressed in angular units) for different values of the fvedback
coupling constant f. The curves @) to ) refor 1o f =1, 0.052, 0.102, 0.152 and 0.202,
regpeclively. Dashed lines correspond to 1he loci of the first ITapf bifurcations for three
differont values of the damping constant (4-1 of the feedback loop, namely, g, =
= 35108, f, = 3.0-10% and g, = 2.5-10".

ulator introduces » third dogree of freedom leading to chaotic instability.
When the foedback loop is so fast that it practically provides an « instanta-
necusly » adapted losy coefficiont, it doos not modify the phase-space topology,
which in the ecase of a class B lager remaing {wo-dimensional. Ii, howover,
the time seale of 1he feodback Joop is of the sume order a8 that of the ofher
relevant variables, the systera becomes threo-dimensional. Sueh s gysicm s
ruled by three first-order equations for the intensity , populstion differcier z
and modulation voltage ». With suitabloe normalizations (notico that here g
is tho inlongity, not the field) the equations are

# == — kr(l 4 asin?v— 2),
(16) 2 =—vy(z-- A} xz),
o=—file— B - fa),

where k(z) = k(14 « 8in*e) ia tho Joss rate modulated by the voltage », k,
is the nonmodulated cavity loss parameter, a the conpling botween dotector
voltago v and modulator, p, the population decay rate and g tho dumping
constant of tho feeback loop. Furthermore, B is the voltage bius applied to
the second input of the medulator amplifier, A is the pump parametor, f is a
coupling coofficiont botwoeen intonsity z detected on P und voltage v. Nolice
that @ i3 normalized to the saturation intensity, z and A te the threghold pop-
ulation (without fecdback) and v is given in angular unite,
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Fig. 12. — Laser with feedback: digitizer tine plots of the cxporimental luser intensity
(left) and tho corrcaponding power spectra (right) for increasing values of the control
paramicter B. a) corresponds to the onsel of the first Hopf bifurcation, at 4 frequency
v = 7.3 kHz, B = 0.361; §) shows the appearance of a subharmonic bifurcation 12
where the fundamental froquency is» = 52.0 kHz, 13 = 0.378 wnd ¢) shows the apprarancy
of chaos, B == 0.383.

The exporimontal system of ref. [16] hug Ky = 1L1T-107 {371, = 0.98-
-10¢ (1), A = 3.0-10% (37!} and & normalized pump A= 4.2
The stationary solulions (%, , Z) of vgs. (16) imply the condition

A ]
(an B = fi§ { urcsin ( Uaﬂ——l) .

1--2 «

Depending on the fesdback eoupling f, for different bing values B we can havu
mono or bistability (fig. 11). In particular, arcumd f= 0.1 we expeet au
ambiguity, sinee ¢q. (17) provides a quusi-vortical curve. induved, us wo show
later, this is the region where we observe chios.

By a linear stability unmlysis arouud the stationory selution, we ovaluaty
the points where the system starts solf-pulsing (Hopl bifurcations). The lines
of Hopf bifureations wre drawn ju fig. 11 (dashod) for three dilfercnt § values.

In fig. 12 we present. tho power spectra of the intenkity deteetod in the ex-
periment. Iigure 12e) shows the first Hopi hifurcation, fig. 12b) the appearance
of 2 subhurmonic ff2, and fig. 12¢) corresponds to 1o appewrauce of chaos.
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Fig. 13. - Laser wilh foedback: plols of log N (&) ea. loge for different values of
embedding dimoension w (B == 10-15); P, = 2.6 £ 0.1, Full dots como from experi-
ment. Thooretical plols coincide with tho experimontal ones within the doi sizea.

Beyond chaos, tlere are periodie time windows. In ordor to gt full aggurance
of the ehuolic nature of the time plol of 12¢), the correlation dimension was
measuroed. i

Itigure 13 shows i fractul exponont D, -- 2.6 1 0.1, Whilo fig. 13 comes
from the oxperiment, the satne I vilue is obtained by solving numerically
eqs. (16) for f§:=f, = 3.0-10* and £ = 0.383. The theoretical plots, when
reported in fig. 13, closely follow the oxperimoniul ones wilh uncorfuinties
gmaller than the dot sizes.

6. — The bidirectional ring laser [14].

Last wo consider a longitudinal single-mode CU, ring Liser in which both
directions of propagulion are allowed {fig. 14}, The linewidth being homo-
goncously broadened, the two counterpropagaling beams connot work ad ihe
same time, becauso they must compote for the same mmount of populition
inversion. Morcover, they are slichtly detuned botween cach other—and with
respoct 1o line centre—because, for intrinsic asymmelries, cavity losses wre
differont on the two propagadion directions (K, and K,); this results in o dif-
forent mode pulling and then differcnt lasing froquency. bivdeed, having o
giag (low in the laser tube, this alrendy indueces o smull smount of Doppler
shift in 1ho interaction with one or the other of the two counterrunning modes.
The detuning has been shown oxperimentally as woll as in the numerical
solulion (o be essontial for breaking the symmetry botwoon the {wo directions,
A forbidden gap around the centre of the molecular line, as well ag the nter-

—
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Fig, 14. — Bidirectional ring laser: «) Experimental set-up: gain coll with partial pros-
sures: CO,y 1, N 1.5 Torr, Ic variable. Cavity lengih 4.3 m; I'ZT pivzoeleciric mirror
translater: D, and T, detectors for forward and backward intrnsities. b)) Phase diagram
for total prossure (7'} and discharge eurrent (i) Regions are: [ mode altoration, 1T
golf Q-awitch, 111 irregular pulsation.

change of role of forward and backward fiolds at right and left of the lino contro
are evidence of guch u dotuning. I K, were the «cold » damping rides, 1hey
could not differ for reciprocity (in o passive medinm thermodynamics forbids
such a simmoetry breaking). Howover, the K,, in the active medinm diffor
for the above-mentioned gas flow «ffect.

Through the graiing induced in the population inversion by the inter-
forenes of the two waves wo have an interchange of energy from one field into
the other by backscattering, so thal we may consider the gystom a8 a LIS
(where the injection comes from the counterpropagating moile).

In the exporimental parametor space (fig. 14) wo can distinguish three main
different regions showing complutely different behaviour. In tho first one we
observe u self-pulsing very similar to that of the laser with an injected signal.

mode 1
base line )
mode 2
base Line \ }\l k l}\ R\ L\
05 1.0 1.5

time (ms}

Fig. 15, - Bidirectional ring laser. regivn 11: output intensity ra. time, The upper
signal has a cow. baselino, while the lower osvillates over o zee level. Oseillations relax
to the sleady state before a now junp interehange helween e.w. aclion) Lukes place.
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Omo modo s also running e.w., whils in 1he ofher one we observe only spikog,
in plase with the main mode, which oecur ol o repetition rate (w) of 1the order
of y,. In Iaet, as in the LIS system, the eow. working mode injocts some energy
into 1he other one letting population inversion inerease up 1o a level al which
o giant pulge 1akes placo (the height may be 500 times greater than the stationary
lovel). During the pulse boil modes go abhove (hreshold and spiko in phase,
Superimposed to 1he deeay we sea relaxadion oscillations typical of CO, lasers
with o frequeney (wg) very uear to £2: they are out of phase becanse of com-
petition belween the two modes.

Tor higher excitation eurrenis wo ohsorve a deterministic swilching e
to eompotition botween the two ficlda with low froequency (30 1[z). Trring
intorchango jnmps we observe agnin tho Lwo frequencies of fig, 14 but. with
the lower one inereased beeause of n larger value of ¢, (higzher eurrent), while
the higher one ean be varied also by adjusting the eavity length and alignment
by moving u mirror mounted on a piozovlecbric erystal.

The transition between thoss two regines is not abrupt and it takes plico
throngh a region which shows chaotic behaviour. 1ere both phenonena related
to population inversion, spiking (lower currents) and oscillation (higher enr-
vonts), take plaee; effective output frequeney results also a8 o combinalion
of the two olhers (m, -|- @), Al the same time, if wo adjust tho cavily mirror
positioh 80 that we bring Q== o -1 @,, wo obtain g compedition of two dif-
ferent variables {population inversion and field) on tho same time seale. The
rogull is o fully doveloped chaos {(fig. 16).

I
0 5 10 15 20 0t 10° 10
time (ms) Log f (kHz}
Fig. 16. - Bidirectional ring laser, region T outpu intensity na, time [or o wholly

chaolio gignal (left). Double logarithmic power spectrum with Jow-frequency diver-
gence f-o, a ~ 0.6 (right).

If now wo injoet baek one fiokl indo the Taser with a oxternal mirror (a
fifth mirror in the configuration of fig. 14) we obtain stabilization of solf-spiking,
stable laser aetion instead of switching botween the two modes and chaotic
behaviour. Al the boundary hefween the spiking and the ehaofic region we
observe a plenomenology typicul of a luser with an injeeted signal (lig. 17
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Ty means that in this situation wo have paramelers practically equal fo those
responsible of sueh a behaviour in the LIS cuse, although the system herc is
more complicated,

A L 1
Q 0.2 0.4 0.6 0.8
time {ms})

Fig. 17. - Bidircctionul ring with extra mirror Lo reinject the forward mode into the
backward one: vutput intensity vs. lime. Bifurcation soquence 1 analogy with a laser
with injected signal.

7. -~ Noise-induced trapping at the boundary between two allraclors: hyper.
chaos and 1/f speetra [26].

Tu 1his seelion wo show how addition of random noise in w nonlinear dy-
numieul systom with more than one atiractor muy load to 1ff spectra, provided
that the bagin boundary bo fractal. Thig shows that eowbining the features
leading 1o detorministic chuos with o random noise is somewhal. equivalent
to o doubloe randomnoss and we eall « iyporchuos » such o situation. Indeed
random-random walks in ordinary spuce, 18 diffusion in disordered systeius,
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have showw w 1/f beliaviour [27, 28] Thus by perchaos hero introdueod is o
random-random walk i plise space, where in fivt one of (e Lbwo sourcos of
complox behavicur is dne to fhe feactal straciare arising from deterministic
dynamics.

To evaluale 1he impact of the following argunients, we premise some his-
torical remarks on 1/f spectra in nontinear dynamics,

Some years ago it was discovered [29] thad, in a nonlinear dynwiical systean
with more: than one atiraetor, intreduction of random noise induees a hopping
betwoen different. busing of altraction, giving rise to a low-froquency spoctral
divergenco, resombling 1he 1/f noise well known in many areas of physics [30].
Buch a discovery wus confirmed by w luser cxperiment implying two coex-
isting atltractors {13] already reported in sect. 3, and Luter tho offect wus ob-
gerved in other arcas as, e.g., Josephson tunnel junctious |31, 321].

The elfvet wus quostioned with two objections:

@) @ noise-induced jump aeross » boundury leads to w telegraph signa,
hence to o singlo Lorontzian spectrum [33a];

b) & computoer experiment yieldod a power law only over o limited spec-
tral rango [33b].

The quostions were angwersd [33¢] with o statement of the vmpirical eon-
ditious under which the 1/f speetra appoured, namely:

i) eoexistonco of al loast two aliractors (su-eu.llu(l o gonoralizod muli-
stability » [13]),

il} presonce of noiso,

ili) somo «strangeness » in tho attractors.

Aas a nustter of fact this third condition was rather vague. To mako it more
procise, two theoretical models were explored, namoly, a one-dimonsional
cubic iteration mup with noise [34] and o foreed Duffing equation with noise [35].
Both these papers disclose interesting features, bringing more light on the wbove
assumption iii), Figure 2 of ref. [34] shows that the size of the 1jf spoetral
regivn increasos with the rang. of the applied noise, that is, with the prob-
ubility of ecrossing the bagin boundary by a nuise-induced jump (fig. 3 of 1he
same reforence shows that the Liupunov oxponent approaches the erisis valio
for inereusing noise).

The nnmerical ovaluation of rof. {35] showed 1hat for some control puram-
otors the boundury belween busing of atiraction was an intricalvd sot of points,
through which it was impossible to draw a simplo line. In such casos 1l noise
was most effective in yielding low-frequeney spoetra 1/f-liko.

On 1the othor haud, o fundamental logical approach to the 1/f problem was
buged on the eomposition of o large nwumber of Lorentziwns (or clemondary
Markov processes with exponontial decay) whose weights wre log-normall y
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distributed [36], 1hus Inlfilling the relation

4 'J’ B it U . l
(13 Wp(y)d,ffuumt o
4

pravided p(y)~ lfy, and for the froquency range y, € o < y,.

Motivated by the rato processes considerutions of ref. [33e), which yiclded
a single Lorontzian for two atiractors, we devolopod a kinelic model [34] based
on @ single {ransition rato for oach pair of attractors. In the case of M at-
tractors, this yiokled M — 1 Lorentzians. To approximate the integral (18)
by a sum (5%, accuracy in fitling a 1/f lww would require about one pole per
decade) @ Jarge number M 22 of attracters ix necessary and hence tho integral
of eq. (18) would be roplaced by the sum over the M — 1 Lorentzians ¢or-
rospoitding 10 the cigenvalues of the kinetic moedel, however there is 110 reason
to weigh the Lorentzians according 1o their reciprocal widils, henee no satis-
fuctory roconstruction of a 1/f specirum wag possible. In fuet, an exporiment
on a forced and noigy Duffing oscillator with an increasing number of atirac-
tors [37} did not offer clear ovidenco of the expected scaling of the spectral
oxponent. with the nuinber of attractors. On the contrary, ref. [353] showed
that the boundary region between just 1wo uttractors was sufiicient to yield
1/f-like ypectra, at variance with the many-atiractor model. Thus this suggested
that the boundary structure was the real responsible for o large number of
docay eonstants (possibly log-normally distributed).

In the meantime, the fractal structure of a basin boundary was explored
in somo examples [38]. Thir means the following. As the phase point wandors
within one basin of atiraction, if wo draw a sphere around the point defining
its distanco from the other basin of attraction, the radii of these sphoeres are
distribnted with all sealo Iengihs, according to the self-similar strueture of the
fraetal boundary. If we consider two-dimensional projections of the phase
apaco a8 in fig. 3 1o 6 of ref. [36], the aplieres will be circles.

Based on the above considorations, we have built an elemontary cellular
automaton which models the motion of the phase point within a fractal basin
houndary undor the presonce of random noeise. We mode] tho boundary region
of two basins of altraction A and B ns8 two adjacont ono-dimensgional Iuttices
of gitos. Suppose we start from aite i. At each discrate timo stop, if 4 belongs
to A (f-=4,) it moves one step forward on the same lattice (i, — 4, +1) and
if it belongs to B it poes one step backvard (i, — i, — 1). Tn tho absence of
noiso, once the motion has started on ove basin, it will remain on it forever.
In the presonco of noise, at each timo step there is a finile probahility of o
«cross » jump b 1he same ldtico site, from strip A to B: 4, > i5.

We eall I the maximum size of the houndary region and L, - L any of the
possiblo gizes of tho fructal set. At caeh time step, the probabilities ol per-
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memtenes and jump are, respeetively,

P, = Pap=1LJL
(19) Ad 28 ”f ¥
Pin== Pgy= 1 LL.

To build a self-similar strueturo we allow ¢, to seale aa 1 [L . ()™, whore

V(i) is a natural nmmber sorted ruwdomly for each site i, (i 22 — o Lo oo,
k== A, B). To deal with a real nuinerical expoerimont, we consider finilo se-

- 20

- 80

o -1001L__

LSGF — — R e—
=14

- 70 P . . —_— [P S
\

) I

S B—

e e e e ]

-150 . — —— o
10t 0! 107 L

Fig. 18, - Power spectra (vertical) es. Irequency  (hortzontal} in doubls legarit hmie
seitle. Wavy lnes: mcasured spoetra; staaight tines: best ks, whose shopes o are reported
in the pext figure. The two samples shown refor (o K4 4 and M, respectively.



46 P AlleCin

quences of N sites (e.g., ¥ = 105) and wo fruneato the Dactality by imposing
0.z V(i) < F. Here, £ is b finite integor denoting the maximum partitioniug
(131, that is, tho ultimte rexolution of the muasuring deviee in appreciating
the fractad strueture of ounr seb. With all this in mind, for vach ovolulion we
extract o doublo sequence of N integers randomdy distributed betwoen § and
¥ -1, und denole each sito i by the correspoiding mmber F ). This moeans
that wo have attribuled to each site an cares of ruspuoct », that is, o specifle
gopuwration {, from the ofher whiractor, with {, depewding on F i), us shown
above. We slart, ¢.g., ou the bagin -l fromn &, = Nf2.

At this stop, Lo accound for 3 suitable noise yielding the permanenco and
jump probabilities (19}, wo gonorate @ random number y uniforinly distribhuted
botweon 0 awl Lo 1f y - (3)7%, then at the noxt time the point gues to 4, |- 1
on allractor 4; if ¥ > (1), then tho peint jumps iustantaneously to site iy
and @i the next time it gous 1o 4y — 1 on atiractor B.

By nwasuring tho position co-ordinate, tuking tho Fourier transform and
gquaring it, wo can build the powor spectra, that is, the transfurms of the position
corrolation functlions.

In fig. 18 wo show Lwo power spectta for M = 4 and 14, cospoctively. In
fact, we have mcasured spoctra for wll integer values of F between 4 and 14,
but wo just report two sumples aver slightly mors than three [roquency decudes.
The sequence shows that, as the fractality increases, the slope of thoe double
fogarithmie plol goos from wbout 2 (single Lorentzian) to wbout 1 (1/f spectrum).
This appears botter in fig. 19, where tho slopo « of the f- # spectral law is plotted

2.0
a

1.0 . L L " . A 1
0 i & ] 8 30 2 OF 4

Fig. 19, - Exponents a of the power luw [+ vs. fractality F.

ov. tho fractality #. The Lorentzian (@ = 2} of thu rindow telograph modoel
is casily recovered for # =1, thug showing that noise-induced jumips ucross
a regular line boundary fulfil the intuitive expectation of u single decay rato.
An anulogy with the random-random waulk (27, 28] is easily drawn. Indesd
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our motion is bound with o Fas. devistion poing from about v'E Lo {log ¢
ag Lhe Truclality # increases from 4 {o 14, according 1o SixaL

For vompureisull wo asuslion obthoe spproachon laddiBg (o 17 or anywaey
non-Lorentzian low-frogquency spucira:

i} Pomesu-Mauneville type-3 intermittency corresponds to slowly di-
vorging trajoctories with a 1/f power spoctrum [39]. This behuviour i indrinsic
to the dynamies, honee it oceurs withoul noise.

ii) A detorministic diffusion process miy oceur Beyond «erisis v 1G]
whon twe otherwise disjoint attractors merge into o single ono. Here aguin
no noise is required, snd o comparison of thiy behaviour with noise-induced
jumps was given in rof. [35].

iii) Anotlier comparison of intrinsic vs. noise-inducod intermittency waos
earried on for a damped driven pendulum, which models a Joseplison juction [41].
This last paper offers numorieal evaliations of spectra, showing a 1/f region
oxtending over two deeades, bul to onr knowledge nobody has tried so far to
analyse the rolo of fractality and draw a comparison with Sinai subdiffusive
motion.

Among other things, the resuils of this papor may strongly affeet our cur-
rent understanding of optical-bistability (OB) plienomena. OB is deseribed
in terms of two fixed-point witractors, which, however, are (he result of a col-
loctive dynamics implying m:my. degrees of frecdom, There are no exhausiive
anulyses of the structure of the basin beundary, thus possible [ractal structures
may appoar if the dynamies is evaluaded in detail, On the other hand, in onder
to reduce the signal powor necessary 1o drive the OB dovice from one stato Lo
tho other, the aystem is usuully sob very noar io the boundary, Thus unavoid-
able randem noise might induce low-trequency specira of the type above
doscribed.

8. — Conclusion: long memory in statistical physics.

Let me conclude with a speculation en tho rols of the long-time terms in
nonequilibrium statistical mochanies.
We have shown that, whenover in nonlivcur dynuinics more than one at-
tructor is preseut, there are two distinct power spectra:
i) @ high-frequency ong, corresponding 1o the decay of correlations within
one atlractor;
ii) @ low-frequeney one, eorrcsponding lo noise-induced jumps.
Based upou i), the usua! trahsport coefliciouts for macroscopie equations
of ovolution have been built. Effect i) has been overlovked so far. Here, 1
wisht to consider un example showing tho relevance of ii) with respoct to multi-
photon nolecular excitation.
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Lot me consider a molecule wilth two isomerie states (cis and Trang) of almosb
oqual cnorgy, separatod by un onergy barrier, suy, of 1 eV (e.g., rhodopsin
maolocula in the reting of verlehrates).

We known that an PR laser such as a CO, laser (4 = 10 pm, hy ~ 0.1 0V)
may give riss 1o a multiphofon wbhsorption process if it is powerful enough to
provide 10 photons within one coherones timo of the eciss valley, so that
[0 smull photons pile up to 1oV excitation. (We are considering a molecule
Iargo onongh so that the barrier is alremdy o elassical one, and so guanium
tunnolling ig possible.} We know that s vibrational modo [ active decays
by intramolecular relaxations toward the {hermal bath of all other modes, in
a limo of omdor of 10-'*s = 1 ps. In ordor to have a mulliphoton ixomerie
irangition, wo should have a laser power of

10 photong/1 ps ~ 1077 W

over & cross-soetion of ~ (1 A)2 = 10-"*em2 and ihas o laser intensity of
100 Wiem2 Bt this was o Markovian point of viow, basel on a momory time
of 1 ps rolated Lo the high-frequency speetral bromdening. A double potontial
valloy dynamics is deseribod by u Dulling equation (see vef. [29, 35]) and the
presonce of an IR Lwer illumination as w foreing term yviolds a motion on an
asttractor nol neeessarily confined in one valloy, oven for very lew intensilies
{seo fig. 3 of ref. [29]).

Such a chuotic motion may pass near fo the boundary, henee requiring
an activation onorgy much loss than 1ho hartier of 1 eV 1o bo introdueced into
an Arrhoniug typo law. For instance, in fig, 2 woe have seen s high-froguoney
apectrin around 100 kIlz, and in fig. & tho eorresponding low-frequency jump
gpectrum at 1 Hz (5 deewdes below), By (he same reasoning, we might expeet
that an intensity 5 or 6 deecwdes Jower (that iy, 10 photons/us or just 10° W/em)
might be sufliciont. for & multiphoton isomerization process.

I waer could wse sueh o largo enhancoent factor in most activation procosses
of biochemical relevance, the consequence wounld be thatl the timoes neeessary
for biochemieal ovolution on Earth eould be correspondingly rodueed.

This is just a cuess, to show how the introdaetion of the long-memory
processes hore deseribad for the first time may open new routes in the physies

ol complex systems.
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