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A CO, laser with feedback shows different dynamic regimes depending on the dominant role of one or two of three
coexisting unstable stationary points. These regimes have been characterized by statistical distributions of return
tirnes to a Poincaré section at constant intensity. In particular, in the regime of Shil'nikov chaos the iteration maps
of return times display a statistical spread owing to a transient fluctuation enhancement phenomenon peculiar to
macroscopic systems, which is absent in low-dimensional chaotic dynamics.

INTRODUCTION

The dynamic behavior of a single-mode CO- laser with feed-
back is characterized by global features in the phase space,
related to the presence of three coexisting unstable fixed
points. A: a control parameter is monotonically increased,
one can observe transitions from a Hopf bifurcation to a
local chaos and eventually to regular spiking and Shil'nikov
chaos. Furthermore, one can find evidence of competition
among these different kinds of instabilitv.! The phase-
space trajectories are affected differentlv by each of the
three unstable points, and by adjustment of the control
parameters they can be characterized by the dominant role
of only one, or a pair, of them.

A linear stability analvsis shows the local features at each
fixed point. To be precise, point 0 {at zero intensity) is a
saddie node with two stable directions and one unstable:
point 1 has a plane unstable manifold with a focus and a
stable third direction; point 2 has a stable manifold with a
focus and an unstable third direction. Shi’nikov chaos is
related to the saddle focus character of point 2.2 Around a
saddle focus the motion consists of a contracting spiral
exp(—At)cos{w!) on the stable manifold and of an exponen-
tial expansion exp(+¢) along the unstable manifold. The
presence of the other two unstable points ensures that the
diverging flow is reinjected into the neighborhood of the
saddle focus. Shil'nikov showed that for [x] < v there exists
a countable set of unstable trajectories close to the homo-
clinic one.?2 This structure of the flow is one of the simplest
capable of generating chaotic behavior in many autonomous
systems, such as the Lorenz equations® and the Belousov—
Zhabotinski reaction.*

The temporal behavior of laser output intensity in this
regime is characterized by pulses almost equal in shape but
with chaotic recurrence times? The regularity in shape
means that the points at any Poincaré section are so closely
packed that impossibly precise measurements of their posi-
tion would be required if the relevant features of the motion
were to be found. Instead, there is a large spread in the
return times to a Poincaré section close to the unstable
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point. For this reason, the statistics of the return times
appears to be the most appropriate characterization of Shil -
nikov chaos.?

Our experimental data yield iteration maps of return
times in close agreement with those arising from the theory
of Shil'nikov. However, the theory must be supplemented
by the consideration of experimental iteration maps of finite
thickening independent of the accuracy of measurement.
This is due to a transient fluctuation enhancement discov-
ered earlier in the decay of an unstable state of a macrozcop-
ic system.®% Even though this spread has no relevance to
the average dynamics, it contributes a large transient fluctu-
ation whenever the system decays from an unstable point.

A heuristic explanation of these fluctuations (the tran-
sient counterpart of the stationary critical fluctuations at a
phase transition) is as the follows.6* For a dvnamic system
made of N degrees of freedom the relative fluctuations at a
stationary point are O{1/N). If the point is unstable, the
linear part of the decay implies an amplification that scales
as the system size, O(N). Hence the amplified relative fluc-
tuations will be O(1) and the corresponding absclute fluctu-
ations scale as the system size. Here we observe this en-
hancement repeated at each Poincaré cycle. Large fluctua-
tions of this type were first observed in the switch-on of a
laser® and then in many quenching phenomena. such as
spinodal decomposition and superfluorescence.” Our find-
ing allows us to draw a line of demarcation between chaotic
experiments on large systems and simulations on simplified
low-dimensional models.

EXPERIMENTAL SETUP

Our experimental setup {Fig. 1) consists of a single-mode
COs laser with an intracavity electro-optic modulator vield-
ing cavity losses proportional to the laser output intensity.®
The optical cavity is defined by a grating in order to select
the P(20) line at 10.6 um and a total reflecting mirror mount-
ed an a piezoelectric translator to adjust the frequency of the
cavity mode to the center of the molecular line. The cavity
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Fig. 1. Experimental setup. M, tota] reflecting mirror mounted
on a piezoelectric (P.Z.T.} drive; E.0. MOD, electro-optic modula-
tor; B.S., ZnSe beam splitter; G, grating; 1), HgCdTe detector: B,
bias voltage; H.V., high-voltage amplifier; A, amplifier,

length is 2 m. The radiation is coupled out by means of a
low-reflectivity ZnSe beam splitter and detected by a
HgCdTe detector. The output signal, suitably amplified
and added to a continous voltage, is sent to the electro-optic
modulator, which has a voltage V,» = 4240 V.

For a fixed pump parameter proportional to the discharge
current in the laser tube, our system has two control parame-
ters: the bias voltage applied to the electro-optic modulator
and the gain in the feedback loop.

THEORETICAL MODEL

The CO, laser represents one of the most appropriate sys-
tems to use in investigating low-dimensional chaoctic dynam-
ics. Its dynamic behavior can be described by two coupled
differential equations, one for the field amplitude and the
other for the population inversion, the fast polarization be-
ing adiabatically eliminated from the complete set of Max-
well-Bloch equations.10

The third degree of freedom crucial for the onset of deter-
ministic chaos can be provided in one of several ways: (i) by
an external sinusoidal drive applied to an intracavity elec-
tro-optic modulator that controls the cavity losses!! or the
cavity length,? (ii) by injection of a field from an external
detuned laser,1? (iii) by a ring configuration, which decou-
ples forward and backward waves, thus contributing at least
one extra degree of freedom.!*

In our configuration the presence of feedback introduces
the third degree of freedom. When the feedback loop is so
fast that it provides a practically instantaneously adapted
loss coefficient, it does not modify the phase-space topology,
which in the case of a CO; laser remains two dimensional.
On other hand, if the time scale of the feedback loop is of the
same order as of the other two relevant variables, the system
becomes three dimensional. Such a system is described by
three first-order differential equations for the laser intensity
x{t}), the population inversion y{t), and the modulation volt-
age z(t) as follows:

i = —Kyx[1 + asin®(z) — y], R
¥y ==yy +xy— A), (2)
i==8(z-B+rx), @)

where Ky = (¢/L)T is the unmodulated cavity-loss parame-
ter, L is the cavity length, T is the effective transmission of
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the cavity, and v is the population decay rate. The intensi-
ty x{t) is normalized to the saturation intensity f, = ¥v:/2G,
with G the field-matter coupling constant. The population
inversion y(t) is normalized to the threshold inversion Ky/G;
z(t} is the modulation voltage normalized to =/ Vi, with Vo
the A/2 modulator voltage: A is the normalized pump param-
eter; 8 is the damping rate of the feedback loop; r is a
coupling coefficient between the detected intensity x{t) and
the normalized z(¢) voltage; B is the bias voltage applied to
the electro-optic modulator; and « = (1 ~ T)/T.

The stationary solution (x*, y*, 2*) for the system [Eqgs.
(1)-(3)] implies the condition

« B = rx* + arcsin({{A/(1 + x*) — 1]/al!/3), (4)

In Fig. 2 we show the stationary laser intensity versus one
of the control parameters {(B) for different values of the
second parameter (r). This shows the coexistence of three
fixed points for a wide range of r values. In Table 1 we
present the numerical values for the eigenvalues and the
corresponding normalized eigenvectors for the three station-
ary points consistent with Eq. {4) forr = 0.16, 4 = 20/3, and
a=8.0at B = 0838,

Fig. 2. Plot of the normalized stationary intensity x* versus B for A
= 6.667 and e = 9.0. Curves a, b, ¢, d, and e refer to r = 0.0, 0.04,
0.08,0.12, and 0.16, respectively. The horizontal dashed line corre-
sponds to stationary solutions with z* = 0. Points 0,1, and 2,
indicated by arrows, are the stationary points for B = 0.838 and r =
0.16.

Table 1. Eigenvalues and Eigenvector Components of
the Fixed Points Shown in Fig. 2¢

x* AR by u R u,R u,d uf u,!

+1.376 +0.000 +0.998 —0.058 0.000 —0.025 0.000
406 —1.013 0.133 0986 +0.155 +0.033 0.052 +0.010
—1013 -0.133 0986 +0.155 —0.033 +0.052 —0.010
+0.109 0.536 0.788 -0.213 0575 ~0.028 0.041
016 +0.109 —0.536 0.788 —0.213 0.575 -0.028 —0.041
~0.565 0.000 0727 0680 0.000 0.098 0.000
+8.929 0.000 0998 —0.057 0000 —-0.005 0.000
0.00 —0.077 0000 0000 1.00F 0.000 0000 0.000
—0.258 0.000 0.000 0.000 0000 1001 0000

° z* indicates the stationary intensity values of Eq. (4) fora = 9.0, A = 20/3,
end r = 0.16 at B = 0.838 A® and A7, with i = 0, 1, 2, are the rea! and
imaginary parts, respectively, of the eigenvalues at the ith stationary point.
uRandu, withj = 1, y, z, are the normalized components of the eigenvectors
calculated at the stationary point. Al u,’ are null for all eigenvalues.
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Fig. 3. Schematic view of a trajectory in the phase space when the
dynamics are affected by all three unstable stationary points. The
values of A and o are the same as in Fig. 2, withr = 0.16 and B =
0.838. The normalized components of eigenvectors are given in
Table 1.
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In Fig. 3 we present a schematic view of the trajectory in
the three-dimensional space, obtained by a linear stability
analysis of the motion around the stationary points. and
qualitative connections between the linear manifolds
(dashed lines).

EXPERIMENTAL RESULTS

From an experimental point of view we are able to visualize
(x — 2) phase-space projections, obtained by feeding onto a
scope the photodetector signal proportional to the laser out-
put intensity x(t) and the feedback voltage z(t). This
phase-space projection consists of closed orbits visiting suc-
cessively the neighborhoods of the three unstable stationary
points 0, 1, and 2.

The local chaos around point 1, established at the end of a
subharmonic sequence, has been characterized by standard
methods as power spectra and correlation dimension mea-
surements.?

However, the existence of a global behavior characterized
by pulses with regular shapes but chaotic in their time of
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Fig. 4. Return-times measurement setup. COMP.. comparator (threshold circuit); ¥.D., frequency divider: T.A.C.1. T.A.C.2. time-to-
amplitude converters: M.A.. multichannel analvzer: A/D. analog-to-digital converter: C, computer.
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Fig. 5. (a) Time plot of the laser intensity at the onset of the Hopf bifurcation (r = 0.330 and B = 0.270). {b) T.A.C. pulses, whose heights are
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securrence makes it significant to study the dynamics
through measurements of return times to a Poincaré section.
T ie measurements have been done by using a threshold
ircuit like that shown in Fig. 4. An appropriate Poincaré
section x = constant can be selected by adjusting the thresh-
old level of our discriminator. The successive operation of
time conversion has been done by means of two Canberra
Model 2042 time analyzers. In our measurements we split
into two separate channels the pulses corresponding to
successive threshold crossings, and we use each of them as
the start signal for one time analyzer and as the stop signal
for the other.
One method to analyze the return times is based on the
statistical distribution obtained by a multichannel analyzer.
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This method allows us to distinguish among the different
dynamical regimes,

At the onset of the Hopf bifurcation the phase-space tra-
jectory is a stable limit cycle around point 1, and the corre-
sponding statistical distribution of return times {shown in
Fig. 5(c)] shows a sharp peak. From the above distribution
we evaluate an average return time r,, = 9 psec and a full
width at half-maximum comparable with the accuracy of our
measurement (i.e., 300 usec/channel).

When B is increased at constant r, the limit cycle becomes
unstable through successive subharmonic bifurcations and
finally becomes chaotic. In this chaotic region we obtain a
discrete distribution with peaks indicating the presence of
high-o¥der subharmonic bifurcations. The heights of the
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Fig. 8. (a) Time plot of the laser intensity. (b) T.A.C. pulses and (c) statistical distribution of return times in a window of Shil'nikov chaos (r

= 0.430 and B = 0.340}.

peaks in the distribution are strongly dependent on the
setting of the threshold level {see Fig. 6(c)].

As B is increased further, we observe a progressive en-
largement of the peaks up to a continuous distribution, In
this case, the phase-space trajectory visits the neighbor-
hoods of both points 1 and 2, which are competing for its
determination. In Fig. 7 we refer to an experimental condi-
tion in which the competition is so strong that the corre-
sponding statistical distribution becomes continuous with
peaks superimposed [Fig. 7(c)].

Adjusting the control parameters in order to have a domi-
nance of the saddle focus 2, we obtain a motion consisting of
a quasi-homoclinic orbit asymptotic to it [Fig. 8(a)]. In this
regime, the behavior of the laser output is characterized by
pulses with regular shapes but chaotic in their recurrence.
Based on such a consideration, the statistics of the return
times appear to be the most appropriate characterization of
this quasi-homoclinic chaos.

In Fig. 8(c) we show a statistical distribution correspond-
ing to this regime. As we can observe, the statistical distri-
bution is a broad featureless curve, which does not offer cues
to the ordering of the return times r;. On the contrary, the
iteration map (7,41 versus 7;) displays an extremelx regular
structure that we show below to be in close agreement with
that arising from Shil'nikov's theory of homoclinic chaos
(see Fig. 9}

Before we discuss the details of Shil'nikov's theory, a ¢ru-
cial question arises: How much of the spread in the return
times has to be attributed to point 2 or 07 Indeed, we have
quasi-heteroclinic orbits visiting the surroundings of the two
unstable points 2 and 0. But in our experimental situation
the dynamics can be assimilated 1o a quasi-homoelinic orbit
around point 2. which is thus mainly responsible for the
spread in return times. This is easily proved by measuring
the spread Az in the residence times 74 around O (zero
intensity stripes) and the spread A7, in the residence times
Toaround 2 {complementary stripes, such that r, + 72 is the
total orbital time). In Fig. 10, which shows tvpical time

sequences used to build the return map of Fig. 9, the two

averaged relative spreads are approximately
{Arg)/(1g) ~ 14%, {Arg)/(rq) ~ BO%.
(A7) /(1) ~ 40%, (A7) /{7,5) ~ 250%.

The comparison shows that point 0 introduces a perturba-

50

(®)

Tn + 1 {usec)

10usec
L

10usec

Fig. 9. Experimental iteration maps of the return times. aJr =
0.487 and B = 0.350. (b} Maps correspending to regular periedic
situations, namely, 1. an electronic oscillator: 2. the laser ina regular
periodic regime: 3, the laser just at the onset of the instabilitv but
still with a regular period.
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different gains r (0.487 and 0.696, respectively) of the feedback loop.
ihi Shows long transients corresponding to a large number of small
spirals around the saddle focus.

tion arcund 16% with respect to pure homoclinicity, that is,
the orbital regularity is ruled mainly by point 2.

Thus a theoretical approach to our experiment in terms of
homoclinic chaos appears justified.

UNIDIMENSIONAL ITERATION MAFP

From a theoretical point of view, a homoclinic orbit asymp-
totic to a saddle focus can be modeled in terms of the follow-
ing one-dimensional iteration map!5:

{ner = £ coslw/y Inff,)] + ¢, (5)

where 4 and —X £ iw are the eigenvalues of the linearized
flow at the saddle focus, { is the cocrdinate along the unsta-
ble manifold. and ¢ is the deviation along { from the homo-
clinic orbit at the Poincaré section in the neighborheod of
the saddle point (¢ = 0 corresponds te the homoclinic condi-
tion).

If we build a small cubic box of unit side centered at the
saddle focus and oriented along the eigenvectors £, 5, and ¢,
and tiny difference in the entrance coordinate along the
expanding axis { will strongly influence the residence time
inside the box and hence the spacing from the next reinjec-
tion.

Observing that most of the time is spent in the box around
the saddle point, we relate the return time 7 to the coordi-
nate { of the unstable manifold by { = { exp(yr), thus
obtaining an iteration map for the return times!!:

7h4e1 = —Infexp(=A/yr, Jeoslw/yr,) + ¢
= —Infe(r) + €], (6)

where o, v, w, and ¢ are the same as above and we have
collected in ¢ the terms that contain r,.

Comparison of Egs. (5} and (6) shows the enhanced sensi-
tivity to fluctuations of the r map with respect to the { map.

Arecchi et al,

Indeed, suppose that the offset ¢ from homoclinicity is af-
fected by a small amount of noise, The sensitivities of the
two maps to such a noise are given, respectively, by {/9¢ = 1
and

arlde = [e(r) + 7L (7)

This sensitivity factor acts as a lever arm whenever (1) +
¢ becomes very small. Note the following: (1) This is not
deterministic chaos; in fact, large fluctuations can be expect-
ed even for a regular dynamics, implying a fixed point 7* as
shown in Fig. 9(b). (2} It is not associated with the homo-
clinicity condition ¢ = 0; in fact, for finite ¢ there may a =*
such th;at el +e=0.

Sincé a homoclinic orbit is the dynamic counterpart of
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Fig. 11. Numerical iteration maps for Shil'nikov chaos. Parame-
ter values: w/y = 13.0,‘/7 =0.986, ¢ = (.01. (a}and (), r maps
without and with noise & = 1072, respectively, {c} Stakle fixed
point of the regular dynamics, broadened by a noise é¢ = 1072,



Arecchi et al.

repeated decays out of an unstable state, the result is like
repositioning the initial condition in an experiment on a
single decay. Here the repetition is automaticaly provided
by the contracting motion asymptotic to the stable manifold.
As a consequence, superposed upon the deterministic dy-
namics (either regular or chaotic), the high sensitivity [Eq.
{7)] may provide a broadening of the r maps not detectable
in the { maps whenever noise in the offset ¢ is present.

In fact, the model description = F(x} of a large system in
terms of a low-dimensional dynamic variable x is just an
ensemble-averaged description, and residual fluctuations on
position x must be considered at some initial time, even
though the successive evolution is accounted for by a deter-
ministic law. In our case such a fluctuation is a stochastic
spread &¢ on the offset ¢ of the position {.

As shown in Fig. 11, the same amount of é¢ in Eqgs. (5) and
(6) leaves the { maps unaltered, while it strongly affects the 7
maps, making them appear like the experimental data.

If we specialize the map parameters a, v, «, and € t0 a
regular orbit (fixed points both in { and r spaces), introduc-
tion of é¢ does not broaden the { point, while the  point
broadens, in agreement with the experiment of Fig. 9(b}).
For example, the values a/y = 0.98, w/y = 2.98, and ¢ = 0.01
vield one fixed point 7* = 5.327, with a sensitivity dr*/d¢ =
182 [Fig. 11(c}].

Note that the noise effect reported here has nothing to do
with additive noise effects on return maps already de-
scribed.’® Indeed, the latter effects refer to the scaling be-
havior near stationary bifurcations, whereas our data refer
to transient fluctuation enhancement, and they do not leave
a permanent mark (such as an orbital shift or broadening).

Thus, while Shil'nikov chaos is a deterministic effect de-
scribed on average by the backbone of the 7 or { maps, the
superposed thickening is a noise effect peculiar to v maps
and undetectable in { maps. This new effect is a specific
indicator of intrinsic fluctuations, and it permits a demarca-
tion line to be drawn beiween a real-life experiment and a
model simulation, from which this second feature is absent.

CONCLUSION

We have shown a fundamental difference between a small
system, ruled by a few equations, and a large system, in
which the corresponding low-dimensional dynamics is a con-
tracted description in terms of macroscopic variables, which
are ensemble averages over some initial spread. Inthelatter
case, the validity of a low-dimensional description ‘epends
on whether {xx) =~ (x){(x}, and this relation fails in decay
situations such as Shil'nikov chaos, where we must couple
the chaotic dynamic with statistical features.

In the small-system case the standard low-dimensional
description of chaotic dynamics holds in terms of = F(x) (x
being a low-dimensional vector). In the large-system case

Vol. 5, No, 5/May 1988/J. Opt. Soc. Am. B 1159

the equation & = F(x) must be completed by an additional
noise term; hence it becomes a high-dimensional (Langevin-
type) equation ¥ = [F(x), £(¢)], where £it} is a stochastic
process, not necessarily additive. In fact, we have shown
that position noise is additive for { maps and multiplicative
for r maps.
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