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Abstract. We discuss the problem of callective resenance iumescence ol ¥V doiven aiotits
which are damped by a white squeezed noise. Analyticad formulae for the speciiun ol
resonance Auorescence and for the degree of sevond-ueder coherence Tor speairal Jines are
catculated. The narrowing or expansion of linewidibs and the ssymmetry of the speciram
cuused by the squeezed vacuum are shown.

L. Introduction

The fundamental property of squeezed light is the reduced quantum fluctuations in
the one-quadrature phase. After early work by Caves (1983}, in which the potential
application of squeezed light for detection of gravitational waves was shown, a furge
amount of theoretical (Walls 1983, Collett and Loudon 1987, Yurke 1984, Bondurant
et al 1984, Mandel 1982, Walls and Zoller 1981, Lakshmi and Agarwal 1984, Bogolubov
ef al 1986, 1987b, Ficek er al 1987, Kozierowski and Kielich 1983, Golubyev 1987,
Dadonov ef uf 1980, Barnett and Knight 1987, Wodkiewicz er ol 1987) and experimental
work (Slusher ef af 1985, Ling-An Wu et al 1986) has been concentrated on the
generation of sgueezed light and its application to overcome the shot-noise limit (Min
Xiao et al 1987). In recent work the radiative decay {Gardiner 1986) and spectroscopic
properties {Carmichael e al 1987a,b, Parkins and Gardiner 1988) of an atom interacting
with a broad-band squeezed vacuum have been considered.

In this work we discuss the collective resonance fluorescence from N driven atoms
which are damped by white squeezed noise. In the case of an intense external field
the stationary solution for the density operator of the atomic system is given. In the
general case (excluding the case of exact resonance) the density matnx of the atomic
system is dependent on a phase difference between the driving field and squeezed
vacuum. The dependence of the Auorescence spectrum und the photon statistics of
spectrum components on the parameters of the squeezed vacuum are analysed.

2. Basis equations

Let N two-level atoms be concentrated in a region small compuared with the wavelength
of all the relevant radiation modes { Dicke model). The stoms interact with a classical
driving field of frequency wy and with the quantised multimode radiation ticld. The
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132 A S Shumarsky and T Quany

Hamiltonian of the system in the electric dipole, rotating-wave approsination and in
the interaction picture can be written in tollowing form:

o8 L Ge v Ge ™Mdt Ho A b g i

where 8 = w., -y 15 the detuning of the laser frequency from the atomic resonance
frequency w,,, (¢ " o uF where p is the wtomic dipole moment and £ s the
amplitude of the driving field; 4, (6, § = 1, 2) are the collective (angular) atomic operators

which satisly the commutation relations
[E L= a8, - 4 5, g

H ., is the free Hamiltonian for the quantised radiation field; [ and "7 are operators
delined in terms of the positive and negative frequency components of this held,
respectively.

The normal treatment of resonance fluorescence has been considered in many works
{Bogolubov er al 19874, Agarwal er al 1979, Compagno and Persico 1982) in which
the quantised radiation feld is initially taken in the vsual vacoum state.

[n this work we assume that all the quantised radiation modes couphing to the
atoms initiatly are squeezed (Collet and Gardiner 1985, Gardiner 1986, Carmichael
ef al 1987, Parkins and Gardiner 1988, Gardiner et al 1987). The bandwidth of the
squeezing is assumed to be sufficiently broad that the squeered vacuum appears as
f-correlated squeezed white noise (o the atoms. Then, the correlation functions for
free parts 1y, and ') (the noise operators) of the operators I'and 177 cun be written
as (Coltett and Gardiner 1985, Gardiner 1986, Carmichael er af 1987)

(Ul D 80y = yPELE - 1)
e O e = (P H B 1)
e DF e 1)) = ¥ Q €81 —17)
ek O freel 1) = ¥1Ql e B —17)

where y is the spontaneous emission rate of an atom in the usual unsqueezed vacuum;
P and Q = | Q] ¢ are the parameters characterising the squeezing with |Q|" = PLP + 1),
where the eguality holds for a minimum-uncertainty squeezed stale.

Using the relations (1} and (3) and after making the unitary transformation /=
expl i, (1., - 1, }). one finds the master equation lor the reduced density operator
¢ of the atoms in the following lorm (Collett and Gardiner 19851

aplat= =AU - 0 GU L 00 pTH WP+ U apdy = ad e + nc)
FiyPIapds— 3 adnp+uc) = y[Qle (o pts = Jp 4 nc)
SAQle™ U apdi— Jiap HHO) = Lp, (4)

where ¢ = 2¢h) - by is the phase difference of the driving field and squeezed vacuum.
Following previous works (Bogolubov er af 1987a, Schwinger 1965) we introduce

the Schwinger representation for the collective atomic operators J,

J,oala, tig=1,2) (5

o

1 - .
where the operators a, and a, obey the boson commutation relations

e, a]-6

"

(oltective resonance fluorescence in u squeczed racuron 133

and can be treated as the annihilation and creation operators Tor the atoms being
populated in the levet {i).
Alter pecforming the canonical [dressing) transformat:on
a, - Cyeos @0+ Casin
16
a,= - sinf+hcos b
where tan (28) = 2G/ 8, one can split the Liouville operator I appuaring in cqu_uliun
(4} into a slowly varying part and terms oscitlating at lrequencies 2y and 441, with [}
denoting hali of the Rahi frequency. We assume here that the Rabi frequency is
sufficiently large and satisfies the relation
Q{8+ G 5 Ny, Py, (7)
in this cise the secular approximation {Bogolubov ef al 1987a, Agarwal ef af 1979} is
justified and we retain only the slowly varying part of the Liouville operator, We then
have the master equation
ip - . 1.
',18__.‘_ i SR, - Ry, p]4 B R\ pR, - Rip+nd)
1
HXAR IR, — Ry Rp)+ Xol R R - R, Rt | (8}

where R, = (") (,(i,j =1,2) are the collective operators of "dressed’ atoms satisfying
the commutation relation

[R,, R} = Rybi = R, 9)
B=viP+.-|Q]cos ¢)sin’ @cos’ 0 (10)
X, = y[ Plcos’ #+sin* 8+ cos* 8+ 2|Q] cos sin’ #cos’ #] (1t}
X, = 'y Picos® @ +sin* #) +sin® 8+ 2|Q] cos dsin’ @ cos” #| (1)
R.=R.,~ R, (13)

with i = TpT' where T is the unitary operator representing the canonical transforma-

tion (6).
The master equation (8) gives the exact steady-state solution

I
puiZ 2‘ X niny (14}
where
X = X,/ X, (s
Z XN =D/ (X -, (16)

The state 1)) is an eigenstate of the operators Ry, and R, + R,.. The solution {14}
allows one to calculate al! the stationary expectation values of the alomic observables.
Some of the results that will e needed for our further considerstions are given in the
appendix. In the case of exact resopance cot’ # = 1 one shows Irom equations (L1),
{12} and (15) that X =1 and the solution (14) reduces to

goAN+D Y i) 17
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134 A S Shumoosky and T Quuang

Solution (17} is independent of the parameters P und @ ol the squeezed vacuum;
consequently all the one-time expectation values of the utomic observables are indepen:
dent of whether the vacuum is squeezed or not. In the general off-resonance case the
density operator 5 in {14) is phuse-sensitive and all the steady-state expectation values
of the atomic and field observables are dependent on the parameters of squeezed
vacuum. In §§ 3 und 4 we investigale the influence of the squeezed vacuum on the
fluorescence spectrum and photon statistics of spectrum components.

3. Steady-state Huorescence spectrum

Following the work of Carmichael er al (1987} the steady-state spectrum of the
fluorescent light has been calculated as the Fourier transform of the atomic carrelation
function

(-’thf)-'l.')h;}i’nx] (ot 700500 (18)

This scheme for calculating the spectrum assumes that there exists a small *window’
of unsqueezed vacuum modes through which we can view the Huorescence. For the
case N >» P the intensity of the fluorescent field dominates over the squeezed noise
and thus a ‘window’ of unsqueezed vacuum modes is unnecessary, where {- - -), denotes
an expectation value over the steady-state (14). According to the transformation (16)
we have

Ju (1) =3in 8 cos §R, (1) +cos® BR,, (1) —sin® OR,,{1). (19

The equations of motion for (R;(1)) can be derived by using the master equation (8),
and have the following form

d s

5 RU(O) = =y RUUID = 7 RHID + 1 (N +2N) (20)
d .

E(Rlz(f)) = =R, {1)) - 7¢(R1:(”)”{37c({ Ri(1), Rx(0})) (21}
d d *

d_'(RN(I));a;(RJZ(’}) (22)

where

{Ry(1), R, (1)} = Ry R, (1) + Ry (1) Ry(1)

Yo=2y[{P + 1)tsin’ 0+ cos® 8)+2/Q| cos ¢ cos” 8 sin” 0] (23)
¥, = y[(P+3}(1+25in’ 6 cos® 8) — 2| Q] cos ¢ cos® 8 sin? 8] (24)
7. = y{sin® 8 —cos® 0). (25)

Equations {20)-(22) are so far exact. They contain, however, terms with the products
of operators which make them unsolvible in the general case.
For the one-atom case one can use the weli known operator relation

R,R,, = R,$6,, G =1,2) (26}
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and eguations (20)-(22) reduce to the linear ditferential equations

J‘-'(R.m):fyn<R\u»+2yc 27
d .

a""(Rl;ll))—‘—ZlIl(ng(l))—‘Y.(R|_v(1)) {28)
G oo R q
dl(R“(”)_dl(R”“)) . (29)

The lincar ditferential equations (27)-(29) are exact solvable and their solutions are
in agreement with previous work on the resonance luorescence ot an atom in a squeczed
vacuum {Carmichael er af 1987).

For the case of exact resonance, i.e. col” 8 =1 we have ¥.=0 and all equations
(20)-(22) reduce to exact solvable linear difterential equations.

In the general case, to deal with the product terms we apply a decorrelation scheme
similar to that used by Compagno and Persico {1982). The only difference consists in
the fact that we decorrelate symmetrised products of operators (unticommutator). This
allows us Lo preserve one-atom terms unchanged and clearly separate them from the
collective terms. The decorrelated operators that do not enter into the equations as
‘proper” variables are replaced by their steady-state averages calculated with the density
matrix (14):

Ry, R D = 2RR) = HR)R,,. (30)

With such approximations equations (20)}-(22) have simple exponential solutions with
the one-atom ti.e. y,, v.) and collective (i.e. v (R;);) damping constant clearly separ-
ated. Upon neglecting the collective part one immediately obtains the one-atom results.
By using the density matrix {14), one can show that (Bogolubov er uf 1987a, Compagno
and Persico 1982) in the case of large N the decorrelation (30) yields a small error
(of the order of N ') in the calculation of the steady-state fluorescence spectrum.
The explicit expressions for the collective terms of the damping constants can be
oblained with the use of the sieady-state averages given in the appendix.

Using equation (19}, the solutions of equations (20)-(22} and applying the quantum
regression theorem (Gardiner 1986), one obtains the following expressions for the
correlation function (18}

(I (7h s =sin® (R ;Ry)s exp(—F.7— 2ifd7)
+cos'9( R, R s expl— ¥, 7+ 2i0d7)

+sin’ # cos® B({RDs— I.) exp(—F,7) +sin’ ¢ cos’ 81, (31)
where

.= yANT+2NXR s/ o {32)

Yo= Yot YA Raks (33)

¥o=v. t ydRads (34)

Expressions for the weighting (actors of the particular exponenls are given in the
appendix. :
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136 A S Shiemovshy and T Quang

The steady-state spectrum of the fluorescent light is proportional (o the Fourier
transform of the correlation function (31) and has the following form:

Slwh=1 RcI:J expd - il -, ]r](‘f,.\(r)J,;)\dr]

Lo > . ':;u
sin“#cos” BU{R Y- 1) ——3
b {lw—w )+ 7y,
) ¥
o A.'” R.R S~ e
cosT#HR: I")\(w~w|*2!l)‘-+ Y

+ain* MR ,.R.)— ———
R R o # 2 7

+hsin’ Bcos” HIBle—w ). (353

The Huorescence spectrum (35) contains three spectral lines centred at frequencies
w ‘w: w, | 2{}. In the off-resonance case, i.e. when cot’@ # 1, the central line at
w = 0, contains an elustic component with intensity proportional 1o N7 and a Lorent-
zian-shaped component with linewidth ¥, and intensity sin® @ cos” B({RM.— I.}. The
two sidebands are Lorentzians of linewidth 7, #entred at frequencies w = w, —2{} and
w—=w +20), and having intensilies proportional (o sin® 8(R,,R,,)s and
cost H(R, R, )., respectively. In the case of exact resonance we have y.=0 and the
spectrum (34) reduces to
Snu)w',‘N(Nn)(——— 2 LA Yo )
(w-w P+ ¥, dHw—w ~HD' 49, 4{w-—w +20)+¥
(36)

where 3, and ¥, are the one-atom linewidths (see equations (23) and {24)) being taken
fur the case of exact resonance:

Fo= ¥ P+ 1+1Q] cos ¢ ] (37}
¥, =93P+ Q| cos 8. (38}

It is clear from relations {36)-(38) that in the case of exact resonance the elastic
component vanishes, the intensities of all three inelastic components are proportional
to N and are independent of the parameters of squeezed vacuum while the linewidths,
and consequently the peak intensities, are dependent on the parameters of the squeezed
vacuum and hecome the phase-sensitive quantities. For an illustration we assume the
squeezed vacuum Lo be in a highly squeezed minimum-uncertainty state, ie. P»1and
Q- (P+P) 7 we have

L o=p il b =

{‘Yu Py .ll"d> 0 (39)
Yoo ¥/BP il = 7w
o .

{Y‘ Py =0 (40}
y, » 2Py it -

Thus, the sidebands are broadened while the central peak has a supernatural or
subnatural linewidih by changing the phase difference ¢ by
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In the off resonance case, as is clear from equations (32) and (33) the linewidths
contain the one-atom { v, v, ) and collective parts (y.{R).) and they are, in the general
cise, dependent an the parameters of the squeezed vacuum. For large numbers of
atoms { N > 1) from the relation for (R} given in the appendix one finds

Y AR = by N|sin® 8 —cos” ¢ ifcot” 641, (43)

Thus, forthe case of N » 1, the collective part of the spectrum linewidths is independent
of the parameters of the squeezed vacuum and dominates over the one-atom parts y,,
v, . Consequently the spectrum linewidths are approximately independent of whether
the vacuum is squeezed or not.

In contrast to the exact-resonance case the intensities of the spectrum components
are strongly dependent on the parameters of the squeezed vacuum. In figures 1{a)-(d)
the reltive intensities of the two sidebands, ie. the quantities [ /N =
sin' 0(R,.R,)>/ N (broken curves) and [, /N =cos® 8(R, R ;}s/ N ({ull curves), are
plotted as Munctions of the parameter cot’ # for various values of P, |Q| and ¢. In
figures 2(a)~(h) the relative intensity of the central line (the sum of elastic and inelastic
components), i.e. the quantity I,N? =sin’ 8 cos® 8{R./ N, is plotted as a Tunction
of the parameter cot” # for the same values of P, [Q] and ¢. It is clear from figures |
and 2 that, except for the point of exact resonance, the intensities of the spectrum
components are strongly dependent on the parameters of the squeezed vacuum and
become phase-sensitive values. In unsqueezed vacuum (see curves marked A in figures
I and 2 the intensities of the two sidebands are equal and the spectrum is symmetric.
In the squeezed vacuum (see curves B and C in figures 1{a}-(d} the intensities of the
two sidebands are quite different for the ofl-resonance case cot” ## t and the spectrum
becomes asymmetric. For a large number of atoms (N = 1) from the relations for
(R R, s, (R R, and (R3¢ given in the appendix, one finds

1, =cos' ANJ|X -] ilcot” 8 =1
[, =sin* ONX/|X -1 ifcot’ 951
[ sin® B cos® 9| NT—4N/(X - 1)] ifcot” 8 -1
7 sin® Bcos” A[NT-ANX/(1- X} ifeot’ 6= 1
(b)
. 3F (a) o3f
C r i C
02F A A 0.2¢ A A
- 5
B
01 [} 0
o 0 70 30 0 10 70 33 -
o' 8 it @

Figure 2. The relanive intensnes L,/N" as funchons at the parameter cot' # for N =25
ta) and N SO R The curves A, B oand U correspond o0 £ - |Q -0 P2 | -
PP o 0 and P2 Q) TP P g m respedtively
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In another case when P< L and Q =(P+ P we huve

[')7:);'7(;‘*\/”’5] 3"_!‘)' ifg=0 ()

?u*?(é"\ﬁ’-)f-;y ir¢:ﬂ

{y'ﬁéy(;—ﬂiwh ifg=0 (a2
Foo= oy VP gy if ¢ =m -

Thus the narrowing or expansion of the linewidths of the central component and
sidebands 1akes place depending on the phase difference ¢. We note that the narrowing
or expansion of the linewidths is sufficiently large when the squeezed vacuum is in a
highly squeezed (P> 1) minimum-uncertainty state (see relations {39)-(40)).

ia}

)

I N

o 10 2.0 36
wtia

Figure 1. The relative ntensities {1, /N (full curves) and | /N (broken curves) as
functivns of the parumeter cot® 8 for N =25 (g, b) and N =50 (¢, d}. The curves A, B
and C carrespond 10: P=[Qj=0; P=2, [Q[=(P T+ P} =0, and P=2, |Q|=
(P +P)VE, = m, respectively.
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und thus in the olf-resonance cuse the intensities of spectrum companents are strongly
depeadent on the squeezed vacuum even for a large number of atoms (N >» 1) when
the spectiam linewidibs arg ingependont uf ong,

4. Photon statistics of the spectrum components

In this section we discuss the influence of the squeezed vacuum on the photon statistics
ol the spectrum components.

As is clear from the previous section and equation (19}, the operators
cos® R, sin ¢ cos R, and —sin #R,, can be considered as operator-sources of the
spectral lines centred at frequencies w = w +2{}; w, and w, —2{}; for later use these
operators will be denoted by §3,, Sy = 5, and §* |, respectively. Following Bogolubov
el at (1987a) and Loudon (1980) we introduce the degree of second-order coherence
for the spectrum component $;(1 =0, £1) in the following form

(\.337(5; 5/ 8iS0s
e 3
((S78)s

The quantity G}’ describes the phaton statistics of the spectrum component S,
Using equations (14) and (19) one finds

Gl = (RYs/ (RN (45)

(1=0,%1). {44}

and
Guli, 17 (RIERIZRZIRZt)S/((RIIR.’.I)S}z = Glllf (46)

where the expectation values (RDy, (R, (R2Ry)s and (R, R, R, R,,)s are given in
the appendix,
For the one-utom case, by using the operator relation {26) one finds

Gi=1,  GY=GY_, =0

Thus the photon statistics of the central component remains Poissonian and the
sidebands have sub-Poissonian statistics as is the case in the unsqueezed vacuum.

For the collective case, the degrees of second-order coherence for the spectral lines
given in equations (45) and (46) are dependent on the parameters of the squeezed
vacuum and become phase-sensitive quantities. The behaviour of the degrees of
coherence G}, and G' ,, as functions of the parameter cot” 8 for fixed N =25 and
for various values of P, |Q| and ¢ is as plotted in figures 3 and 4, respectively. As is
clear from figures 3 and 4, except for the point of the exact resonance cot® 8 =1, the
parameters of the squeezed vacuum, including the phase difference ¢, play an important
role in determining the photon statistics of the Mallow triplet.

5. Conclusions

We have considered the problem of collective resonance fluorescence in the squeezed
vacuum. For the intense external field the analytical solution for the steady-state
density operator for the atomic system has been found. Analytical formulae have been
derived for the spectrum of the resenance fluorescence and for the degrees of the
second-order coherence for the spectrum components.

s
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0 0 76 36

Figure . The degree of second-arder coherence G4 as a function of the parameter cot’ §
for fixed N = 25. The curves A, Band C correspondto: P =1Q)=0; P =2 |Q!- (P74 PY2,
& =0, and P=2,(Ql = (P +P)"?, ¢ = m, respectively.

0 10 70 30
cot’ e
Figure 4. The degree of second-order coherence GY) ., as 4 function of the parameter

cot’ ¢ for fixed N =25 The curves A, B and C correspond to: P =|Q|=0, P=2,]Q|=
(P14 P)2 g0, and P=2,[Q]= (P + P)"%, ¢ = m, respectively.

It has been shown that in the case of exact resonance the intensities of the spectrum
components are independent of the squeezed vacuum while the linewidths are sub-
natural or supernatural in their dependence on the parameters P, {Q{ and phase
difference ¢ of the driving field and the squeezed vacuum. ln contrast to the exact
resonance case, in the off-resonance case the intensities of the spectrum components
are dependent on the squeezed vacuum and the spectrum becomes, in the general case,
asymmetric while the linewidths are approximately independent ol the squeezed
vacuum for a large number of atams (N » 1},

We have also shown that in the collective and off-resonance cases the photon
statistics of spectrum components are dependent on the parameters of the squeezed
vacuum and become phase-sensitive quantities.
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Appendix

In this appendix we give the explicit expressions for the steady-stute averages of the
atomic operators that can be calculated with the use ol the density matrix (14).

(Ris—Z INXY—(N+DXM '+ X)X 1Y (A1)
(Ripg=Z '[NXN QN+ 2N- DXV (N+ DX Y - X - XX -1
(A2)
(RIDs=Z 'IN' XN - BN '+IN AN+ DXV AN +eN —) X V7
SANTHINTHINF DX+ X 4 X+ X)X - 1Y (A
{(R¥) IN'XNM ' (AN +4AN 6N 6N —1) XM

HOENH1IZN =6 NT— 12N+ )X M
ANY+F 2N+ 6N - 12N - 1DDXN?
HNSHAN HANH DX = X X - UXT - XX -1 (A4)

(Rudy = N = 2R,y (A.5)
(R = KR} ) —4N(R, )5+ N* (A.6)
(R,;R;,),,.:~(Rf,).,+(N+l)(R.,)5 (AT
(R Ry = ~(Ri)s+ (N < IMR s+ N (A)
(R)= IG(R‘:,) —12N{R )+ 24N"* YR~ BN’ (R,,)\+N (A.9)

(RIZRIZRJI.R_‘I)S'
= (R~ AN +2HR )+ INTH SN +5HRT )
“(NTHIN +2)(Ry ). (A-10)
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