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We investigate the spontaneous emergence of transverse patterns in lasers by using both the standard two-level
model and the so-called cubic approximation, which is generally valid in the threshold regions. The stationary
intensity configurations fall into two distinct classes. The first includes solutions of the single-mode type with the
frequency and spatial structure of one of the transverse resonances. The solutions of the second group involve the
simultaneous oscillation of several cavity modes, operating in such a way as to produce a stationary intensity profile.
The stationary character of these multimode configurations emerges from the fact that the transverse modes of the
resonator lock onto a common frequency during the nonlinear transient. We call this phenomenon cooperative

frequency locking.

1. INTRODUCTION

The spontaneous formation of stationary spatial structures
in homogeneous systems has been the object of extensive
investigations in such fields as nonlinear chemical reactions
and developmental biologv.!-? Here the instabilities that
are responsible for the emergence of spatial patterns arise
from a diffusive mechanism and are usuallv referred to as
Turing instabilities.?

Optical systems are much more widely known for their
propensity to produce temporal structures in the form of
spontanecus oscillations of the regular or chaotic tvpe 3¢
Onily recently has a Turing instability been discovered -1 in
an optical model. Here, the resulting stationary pattern is
produced by the interplay between diffraction and nonlinear
coupling and not by a diffusion process. The optical ar-
rangement found to produce these interesting new effects
can be described as follows. A passive medium is contained
in an optical ring or Fabry-Perot cavity fitted with an addi-
tional pair of lateral mirrors that act as a waveguide for the
radiation field. With an appropriate selection of the state of
polarization of the incident field, injected along the z direc-
tion, the electric field in the resonator acquires a uniform
profile along the transverse y direction. The input field is
uniform along the transverse direction, and its carrier fre-
quency is almost resonant with the transition frequency of
the intracavity medium and with one of the longitudinal
modes.

Under normal conditions, the cavity and the output fields
are also uniform in a plane transverse to the direction of
propagation. When the input intensity exceeds a certain
threshold level, diffraction may cause an instability that
evolves, spontaneously, to a stationary spatial pattern along
the x direction.

A typical condition for the emergence of this instability is
that the frequency spacing between the resonant longitudi-
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nal mode and the nearest transverse resonances be of the
order of the cavity linewidth. This situation creates a com-
petition between transverse and longitudinal modes. The
end result is the loss of stability of the spatially homoge-
neous stationary solution. At the same time the input field
imposes its oscillation frequency on the competing modes. so
that the eventual stationary state displays no temporal in-
tensity modulation.

Our aim in this paper is twofold. First, we extend the
description of the spatial pattern formation to the case of an
active system, such as a homogeneously broadened laser
with detuning between the atomic transition frequency and
the longitudinal cavity modes. Second, we show that in the
case of the laser the occurrence of the spatial patterns is
accompanied by a new phenomenon, which we propose to
cali cooperative frequency locking.

The novelty here resides in the fact that a typical laser
system operates either in a single or in a multimode configu-
ration and that in the multimode case the output intensity
undergoes oscillations caused by the interference among the
competing modes. The stationary spatial structure de-
scribed in this paper corresponds to a different type of multi-
mode operation in which the coexisting modes select, coop-
eratively, a common operating frequency and enter a regime
of synchronous oscillation at the end of the transient evolu-
tion. The absence of beat notes produces a stationary out-
put pattern instead of the more familiar pulsations.

In Section 2 we describe the details of the geometrical
configuration of our model. The mathematical description
of this system is given in Section 3 for the case of a ring cavity
and in Section 4 for a Fabry-Perot configuration. In Sec-
tion 5 we reformulate the time-evolution equations in terms
of modal amplitudes. In Section 6 we carry out a linear-
stability analysis and identify the domains of instability.
Section 7 contains a classification of the different station-
ary-intensity solutions, Section 8 illustrates the results of
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the numerical integration of the modal equations of motion.
An overview of our predictions and some concluding com-
ments are presented in Section 9.

2. DESCRIPTION OF THE CAVITY

We consider a cavity defined by four mirrors with transmit-
tance coefficient T «< 1. Two mirrors are orthogonal to the
longitudinal z axis and are positioned at a distance L; the
other two are orthogonal to the x axis and at a distance b
from one another (see Fig. 1). The cavity is open along the »
direction and contains a homogeneously broadened medi-
um, which is pumped into a state of inversion, as required for
laser action. We fix the geometrical arrangement in such a
way that the inequality

L»tb {(2.1)

is satisfied. This ensures maximum gain along the z axis,
which also becomes the direction of emission of the laser
radiation. This requirement must be balanced by the as-
sumption that the Fresnel number,

bﬁ
E= 1, 2.2)
A (2.2)
is sufficiently large to maintain the parameter
1
a=—— (2.3)
2x=T

of the order of unity {or smaller), even if 7 <« 1; A, as usual.
denotes the wavelength of the laser light.

We assume that the magnetic-field component of the cavi-
ty field is parallel to the v axis so that both the electric and
magnetic fields become independent of the variable ». If
the walls of the resonator are made of a conducting material,
the cavity modes have the structure

E, « cos(k x)sin(k,z), (2.4a)
E, = sin(k_x)cos{k,2}, (2.4b}
H, o cos(k,x)eostk,2), (2.4c}
where
mh LELSS
k, = b k,= 7 (2.5)

and n and n, are nonnegative integer numbers. In particu-
lar, the choice n = 0 corresponds to the set of longitudinal
modes of the resonator.

Our analysis is based on the paraxial approzimation

Fig. 1. Schematic representation of the Fabry-Perot cavity config-
uration discussed in this paper. The four mirrors have a transmit-
tance coefficient 7 <« 1. The cavity is open in the ¥ direction, which
is also the direction of the magnetic field H.

Lugiato et al,

k, <k, (2.6)

In addition, because the transversality condition requires
that

E,/E, « k_/k,,

we will neglect the small component E, in view of expression
(2.6). Itfoliows that the electric field is essentially polarized
along the x direction and is given by a superposition of modal
functions of the type

cos(% nx)sin(% nzz). (2.7)

Reference 10 describes in detail the ring version of this
cavity, whose modal functions have the structure

* 27
cos(E nx)exp(z e ) (2.8}

where L still denotes the length of the resonator. and the
parameter a that appears in Eq. (2.3) is now defined as
1 2
= . 2.9
e 4xFT (

For both Fabry-Perot and ring configurations we assume
that the initial parameters were selected in such a way that
the atomic line is in exact resonance with the longitudina!
cavity mode, corresponding to a selected integern, = m,, In
this case the laser above threshold approaches a stationary
state, and the field oscillates with the frequency of the m.
mode. At this point we detune the laser awav from resc-
nance and look for instabilities of the stationary state.

3. THE RING RESONATOR MODEL

We describe the medium as a collection of homogeneously
broadened two-level atoms with transition frequency o..
We denote by v, and v. the relaxation rates of the atomic
polarization and population difference, respectively, and
with ¢ the inversion per atom induced by the pump.

We consider first the simpler case of a ring cavity. The
derivation of our model from the Maxwell-Bloch equations
in the paraxial approximation is described in detail in Ref.
10. We introduce two main approximations:

{a) The uniform field limit, defined by the conditions

al « 1, T«1, (3.11
with
alo
s — 3.2)
27 (

arbitrary, where « is the gain coefficient of the electric field
per unit length and C is the pump parameter. Note that the
adjective uniform refers only to the longitudinal direction.
(b) The limit
T—'LE <« 1, (3.3}
2rc
which ensures laser operation in a single lengitudinal mode.
To be more precise, condition (3.3) selects the longitudinal
mode n, = m,, which is the closest to the atomic line center.
Note that the transverse modal index n, instead. remains
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free to vary over the range 0, 1, 2, ... so that our medel
accounts for the evolution of an infinite number of trans-
verse modes.

As a consequence of approximations (a) and (b), the elec-
tric field has the structure

E = E(x, t)exp(i 2L_rr mzz)exp(—iwat) + c.c., (3.4)

where wy is a reference frequency that can be chosen arbi-
trarily. As a consequence of Eq. (2.8) the field envelope can
be represented as the linear combination of modal functions
according to

E{x, t) = Z fo(t)cos(xnx’), (3.5)

n=0

where f. denotes the nth modal amplitude and the scaled
space variable is defined by

x' = x/b. {3.6)

With this choice we see that the envelope E obeys the reflec-
tivity boundary condition, dE/dx" = 0, on the lateral mirrors
atx'=0and x" = 1.

The space-time-dependent equations have the form!?

3E _ _x[(l + i6)E — 2CP ~ ia "'Eq]‘ (3.7)
at dx’s

‘:i: = —y_[(1+iA)P - ED], (3.8)
%1!3= —y.[D =1+ (E*P + EP")], (3.9)

where the normalized variables P and D describe the atomic
polarization and population inversion, respectively. The
variables E* and P* obey the complex-conjugate equations
{3.7) and (3.8). The cavity damping constant, or cavity
linewidth, &, is defined as

cT

K= T. (3.10)

The cavity detuning parameter, 4, and the atomic detuning
parameter, A, are given by
wWe ™ W .
p=t "R A=
K ‘Y.L

Ja W
S4a" %R, (3.11)

where wr = 2xcm,/L is the frequency of the resonant longitu-
dinal mode. The variables E, P, and D) depend on both the
time and the scaled space variable x’; the term *E/ox"?
corresponds to the transverse Laplacian after taking into
account that E is independent of y.

In what follows we choose the reference frequency wg as
the laser carrier frequency in the single-mode regime of
operation corresponding ton, = m,and n = 0. Thus wg is
given by the mode-pulling formula

K, + v, w
wg = e B (3.12)
K+ 7y,
which is equivalent to the relation
A=—f, (3.13)
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which we can verify at once by using Egs. (3.11). Infact. the
time- and space-independent sclutions of Eqs. (3.7)-(3.9)
lead to Eq. (3.13) and to the results

_1+in 1+6

. D=l
2C ¢ 2C

a

|E2=20-1—~6, P

(3.14)

with an arbitrary phase for E. Equations (3.14) give the
transversally homogeneous stationary solution of our prob-
lem.

In the good-cavity limit

K <K 7#;‘7‘“ (315)

we can eliminate the atomic variables adiabatically by set-
ting aD/at = dP/at = 0 in Eqgs. (3.8) and (3.9) and obtain the
field evolution equation

18 o
ot

(3.16)

2
E(1+i8)(1— 2C )'55

TS ia o’
1+ 8%+ (EF ax’”

In the threshold region, where |E|? is much smaller than the
guantity 1 + 8%, we can introduce the approximation

1 1 [ER
- = - _, (3.17)
1+6+[E2 1+ (1489
so that after
1.2
z= 20 F

1442
= 2 (3.18)

1+8°

are defined, the approximate form of the field equation
becomes

-

19 ~Z(1+iEF - r) + 1o 53%- (3.19)
8t P

This equation supports the spatially homogeneous station-
ary solution
|12 =, (3.20)

Above threshold, i.e., for r > 0, the number of independent
parameters in Eq. (3.13) can be reduced by defining the
scaled quantities

T = xrt,
E =E/r7,
a =a/lr, (3.21)
so that Eq. (3.19) acquires the final form
E B+ BIER - 1) + o’ E (3.22)
or ax’?

The variable E'*, of course, obeys the complex conjugate of
Eq. (3.22).

4. FABRY-PEROT RESONATOR MODEL

In the case of a Fabry-Perot cavity, we must replace Egs.
{3.4) and (3.7)-(3.9) with10
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E,=Eix, t)cos(% mzz)exp(—iwot) + c.c. (4.1)
and
aE
3? = A{(l +iNOE - 2C
+% 2
x j dncos g Plx', 0, t) — ia G_E;:l, (4.2)
-x ax’
‘?: —+ , [{(1 +iA)P — 2ED cos 1], 4.3)
aD .
e =yy[D =1+ (E*P + EP*) cos 7}, (4.4)

where the variable n takes into account the standing-wave
structure of the field inside the resonator. The parameter a
is defined as in Eq. (2.3); the quantities « and C are given by

c= o, =222 (4.5)

instead of Eqs. (3.10) and (3.2), respectivelv.

Also in the case of the Fabry-Perot geometrv we can
introduce the good-cavity limit (3.15) and a threshold region
approximation similar to Eq. (3.17). The result is given
again by Eq. (3.19), as we can easily verify with appropriate
redefinitions of the parameter r and of the proportionality
constant that links Eto E. Infact Egs. (3.19}and (3.22} are
valid in the threshold region for both ring and Fabrv-Perot
cavities and for homogeneously and inhomogeneousiv
broadened active media.

5. MODAL AMPLITUDE EQUATIONS

It is convenient to reformulate the basic equations of our
model in terms of the modal amplitudes f,. p,. and d, de-
fined by Eq. (3.5) and by the corresponding expansions

Pila’, t) = 3’ Polthcos(mnx’), (5.1a)
e

D(x'.t) = Y‘ d,(t)cos(mnx’). (5.1b)
n=0

In this connection it may be useful to stress that the set of
functions jcos, mnx’|, n = 0, 1, . is complete over the
interval (0, 1) and obeys the orthogonality relation

1
j dx’ cos(rnx’)eos(mmx’) = Yold b0+ 8. 0).  (B.2)
V]

In what follows we analyze in detail only the ring-cavity
model [Eqgs. {3.7)-(3.9)] and the universal cubic limit de-
scribed by Eq. (3.22). On inserting Eqgs. (3.5} and (5.1} into
Eqs. (3.7)-(3.9) and taking Eq. (5.2) into eccount, we obtain
the following set of equations for the modal amplitudes:

df,
d:

dpn_ - Y‘ * -
e n[“ i8)p, — 2{1+5 7;;;@1], (5.4)

= —«l{1 + if)f, — 2Cp, + ia(n)f,], (5.3)

Lugiato et al.

dd, _ d —b .+ 1
ar Yot Gr T Onp m

X Z Z Ump* + fm‘pl)}- (5.5)

m 120
where we have defined
ain) = ar®n? (5.6

and where the asterisk applied to the summation sign indi-
cates that the sum is restricted to theterms 1 =n 4+ m,1=n
—m,1=m-—n,and1 = —m — n, provided that 1 = 0. The
spatially homogeneous stationary solution (3.14} corre-
sponds to the amplitudes

7,12 = (2C - 1-8%5,,

1+6
pn 2C fﬂ’
3
¢=1;fam, (5.7)

with an arbitrary phase for f,. If we ignore all amplitudes in
Egs. (5.3)-(5.5) except those labeled by n = 0, the resuiting
set of equations reduces to the well-known single-mode Lo-
renz-Haken model.

In a similar way, if we introduce the expansion

Eix, b= T fo(ticos(znx’ (5.8
et

n={

into Eq. (3.22), the corresponding set of modal equations
hecomes

HE 1+W[h—*meV‘ ?“mnp]—mmm,
1 s=0

dr 4(1+ 5, ) s
m
GR:H
where we have introduced the notation
a’(n) = a'z’n’® (5.104

and where the asterisk implies that the sum is restricted to
terms with positives and withs = tn £ m £ 1. Note that ali
combinations of upper and lower signs must be included.

The spatially homogeneous stationary solution (3.20) cor-
responds to the amplitudes

If,? =5, (5.11)

with an arbitrary phase for fo. The parameter al{n) defined
by Eg. (5.6) represents the frequency spacing between the
nth transverse resonance and the longitudinal mode n =0, as
measured in units of the cavity linewidth x. Infact, for k, «
k. we have

n

k e
w-—c(k2+k2)12~w +Cé? (5.12)
where
wy = we = ck, = 2rem, /L.

On taking into account that &, = wn/b, k, = 2z/A, and Eqgs.
(3.10), (2.2) and (2.9}, we find that
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w, — &y

= ar?n? = a(n). (5.13)

.4

6. LINEAR-STABILITY ANALYSIS

We investigate now the stability of the hemogeneous sta-
tionary solution against the growth of transverse modes with
n = 0. For this purpose we introduce the fluctuation vari-
ables &f,, 6p,, and 6d,,, describing the deviations of the corre-
sponding modal amplitudes from their stationary values
(5.7), and we linearize Egs. (5.3)-(5.5) with respect to these
fluctuations.

A remarkable feature of the linearized equations is that
the fluctuation variables 8f,, &f»*, 8p., 6p.*, and 4d,, obey a
self-contained set of equations for &l] values of the index n.
These equations are given by

5
dd':" = —«[(1 + i#)8f,, — 2C ép,, + ia(n)if,], (6.1}
dsp, . 1+¢°

dt = —Tl[(l - "B)apn fﬂadn 2C 5fﬂ]’ (6.2)
dad,, 1

dt = P-Y!(édn + /ﬁfﬂ Bpn + {’jpnnt

1 e 1 ,
+ o [0+, + 19)6fn]}) (6.3)

where we used Eqgs. (5.7} and set
fo=(2C—1-6317 (6.4)

fixing, in the process, the arbitrary phase of the steady-state
field. (Note, however, that the following results are inde-
pendent of this choice.) The variables &f,*, and ép,* obey
the complex-conjugate equations (6.1) and (6.2}). The an-
satz

8f,(2) b,

6fn"(t) n

6pa(t) | =M |u, (6.5}
op,*(t) Uy -

ad,(t) w,

leads to a linear, homogeneous, algebraic set of equations for
by, Cn, Un, Un, and s, which admits nontrivial solutions when
A obeys the eigenvalue equation

A+ a M+ a0+, N +a, N+ gl =0, (6:6)

The explicit expressions of the coefficients a? i =0, 1,...
4) are reported in Appendix A. For n = 0, the characteristic
equation [Eq. (6.6}] reduces to that of the Lorenz-Haken
model with detuning.!? As a result, our model predicts the
Lorenz-Haken instability, as a special case, which is well
known to yield temporal cscillations. Here we put our em-
phasis on instabilities that produce stationary spatial struc-
tures; these are identified by the condition!? ag™ < 0. On
the basis of Eq. (A5) of Appendix A, this condition takes the
form
26{02 I

- =—Z2@C-1-6. 7
am S - R g 1=. 6D
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)
2 - — = :8 _________
a(m) | /"/
1t o
/ Unstable
[ .
0 1+62 10 2C

Fig. 2. Ring-cavity configuration. Domain of instability in the
plane of the variables a(n) = ar?n?and C ford = —1.

Hence the instability of interest to this work requires the
validity of the following two conditicns:

(a) # must be negative or, equivalently, A must be positive
{see Eq. (3.13)];

(b) At least one of the numbers a(n) = ar?nfforn =1, 2,
... must satisfy Eq. (6.7).

The values of n such that a(n) obeys inequality (6.7} identify
the transverse modes that become unstable.

Figure 2 shows the instability domain in the plane of the
variables a{n) and C for § = —1. Note that this instability
arises in the vicinity of the threshold Cip, = (1 + #)/2 when
a(l) = ar?issmali. For C— =, the boundary of the instabil-
ity domain defined by Eq. (6.7) has an asymptote for atn} =
—26. In terms of the definition of A and a{n) in Egs. (3.11)
and (5.13), the condition ain) < —2¢ can be restated as

Wy = wp < wp T Wy {6.8)
In a similar way we can work out the stability analssis of the
homogenecus stationary solution {5.11) of the universal cu-

bic model {(5.9). The result is the quadratic eigenvalue
equation

AT+ 24 + a'(n)[a’(n) + 28] = 0, (6.9)
leading to the instability cendition
a’(n) = =28 or a(n) < —26r. (6.10)

With the help of Eqgs. {3.18), we can verify immedistely that
expressions (6.10) coincide with the first-order approxima-
tion of Eq. (6.7) for r « 1.

7. NONUNIFORM STATIONARY-INTENSITY

SOLUTION

In the unstable region defined by Eq. (6.7) [or Eqg.%6.10}] we
search for other stationary-intensity solutions of the form

E(x’',t) = exp(—idat) E (x')}, (7.1a)
P(x', t) = exp(—idxt) P,(x"), {7.1b)
D(x’, t) = D (x"). (7.1c)

When Eqgs. (7.1) are substituted into Eqgs. (3.7)=3.9), the
field equation becomes

&E, -
ax? (7.2)

i8E, = {1+ iB)E, — 2CP, — ia
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while the atomic equations yield

14 iA+éx)

=E ———— i, {(7.3a)
) 1+ (8 + 6c) + IEF
1+ + 67
s = o (7.3b)
14 (8 + 82+ EJ I
where
K=Ky (7.3c)

By inserting Eq. {7.3a) into Eq. (7.2) and on multiplication
by E,*, we obtain

BIE|?= (1 + )E)? - 2CIEF

1+i+o) . OE
1+ 6+ +I|ES ax

E>. (7.4)

Adding and subtracting Eq. (7.4) and its complex conjugate
vields

0= IE"2 1-— 2C 5 T + lg’ T(?ﬁ
‘ L+ 8+ 6y + E- 2 ox

OE > OF.
X{E o —E*— | {(7.5)
< o
o=|E”|6—-5- _,_QCEQ-i%“_L‘ B
‘ 1+ (6 -6V +IE[T 2 ox

o

{7.61

AE > oE, | 0F,
X(E, ——+E* " )+a|—:
R .

' 3

Next we integrate over the variable x" in the range (0. 1) and
take into account the boundary conditions. If we denote the
integral operation with angle brackets, the result can be
expressed in the form

FRE
(EJH =2C — =) (7.7
14 6+ +IESF

|E”
|E,|12) (6 — 8) = 2C (6 + o8") { —————— -
( ( "IN1+ 6+ a?+|ES

_ a( 2>. (7.8)

On substituting Eq. (7.7) into Eq. (7.8}, we obtain

, {Zh

OE,
dax’

dE,
dx’

= (7.9
1+« (EJ
In terms of the modal expansion
E(x) = [, cos(znx’), (7.10)

n=0

and with the help of Eqgs. {5.2) and (5.6}, we can recast Eq.
(7.9) in the more useful ferm

Lugiato et al.

i £ a(n)

b= —— (7.11)
2l + > IfF

n=1

which expresses the frequency é as an average of the parame-
ters a(n) weighted over the distribution If,/2. Note that the
stationarv-intensity solutions depend on «" by way of ¢,
whereas in the case of passive systems they do not depend on
the cavity linewidth.?-10

If instead of using Eqgs. {3.7)~(3.9) we begin from the cubic
model {3.22) and follow the same procedure, we arrive at the
same result [Eq. (7.11)] but without the factor (1 + &'}
Furthermore, Eq. (7.7} is replaced by the simpler-looking
relation

(E?) = (IE}). (7.12)

On the basis of Egs. (5.3)-(5.5) or Eq. (5.9), the stationary-
intensity solutions can be classified into two distinct groups.

{a) Let k = 0 be an arbitrary integer. The first group of
solutions is characterized by modal amplitudes f, and p..
which are different from zero only for n = (25 + 1)k, withs =
0,1.2....,andd, is different from zero for n = 2sk.

{b) Let k > 0 be an arbitrary integer. The second group
of solutions is characterized by modal amplitudes f.. p. and
d,, which are different from zero oniv for n = sk, withs = @,
L2 The modal amplitudes p, and d,. of course, are
defined by the expansions

P.x = N P, cosimna’). (7.13a

n=0

Dix) = d, cosiznx’}. (7.13b

n=0

Note that a special case of the solutions of type (a) for k= 0 is
the spatiatly homogeneous stationary solution for which
onlv the components fo, Po, and dp are nonvanishing, and 6 =
0. The other solutions of type (a) corresponding to k > 0
have the amplitude fx and its odd harmonics as their only
nonvanishing field components. Our numerical resuits
show that the harmonic components are actually quite
small; thus these types of solution are essentiallv of the
single-mode type and have the spatial structure of the &th
transverse mode.

If we neglect all amplitudes except for fi, px, do. and dz in
Egs. (5.3)-(5.5), we obtain the following approximate ex-
pression for the amplitudes of the single-mode solutions

7,12 =§|2c- [1+ 8+ 8L (7.14)
with
5= 0K (7.15)
14+

Note that Eq. (7.15) agrees with the general relation of Eq.
{7.11) and that in terms of Eqs. (3.12) and (5.13) the oscilla-
tion frequency, in this case, is given by
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Kowg + oy wy
e

w, = wp+ ok = {7.16)

K+ 7y,
which is again the usual mode-pulling formula. In the case
of the cubic equation, instead, we obtain

Iyl = % and §=a(k) (7.17)

in place of Eqs. (7.14) and (7.15), respectively.

The existence of the single-mode solutions for ¥ » 0 ex-
tends to the transverse modes a property that is already
known from the plane-wave theory: as shown, for example,
in Ref. 13, an infinite number of stationary solutions can be
found, each corresponding to a different longitudinal mode.
The modes are defined for an empty cavity, so that the
existence of single-mode stationary solutions in the presence
of an active medium is certainly & nontrivial result. As it
turns out, under uniform field conditions, the nonlinearity
induced by the medium produces only a small admixture of
the odd harmonics of the fundamental mode.

The solutions of type (a) for k > 0 are indeed inhomogen-
eous stationary solutions that emerge when the laser under-
goes a transition from the longitudinal mode k = 0 into
another modal configuration corresponding to a different
value of k. However, these solutions are not especially in-
teresting from the viewpoint of spatial pattern formation.
Much more intriguing, instead, are the solutions of type (b)
in which the longitudinal mode n = 0 coexists with a number
of other transverse modes of comparable strength. As in the
case of the stationary solutions of Refs, 7-10, here also we
have the formation of potentially complicated and interest-
ing spatial patterns.

An additional important feature of solutions of this class ic
that they represent a new type of operation for the laser. In
fact, from traditional laser theory we recognize two tvpes of
behavior:

(i) Single-mode operation, in which one mode suppresses
all the others.

(ii) Multimode operation, in which different modes coex-
ist and compete with one another.

In the usual multimode behavior each mode oscillates with a
different frequency; thus the total electric field takes the
form

> fualxVexpl—ic,t) + c.c. (7.18)

where w,’ is the mode-pulled frequency of the nth mode and
the factor g,(x") describes its spatial structure. In this case
the field intensity acquires a time dependence because of the
interference of the modes with one another.!* In our case,
instead, Eqgs. (3.4} and (7.1) lead to a field structure of the
form

E = Z fncos(mnx’dexpli QL—W m.z)
h

X exp[—i (wg + o)} + c.c. {7.19)

so that the intensity is stationary in time. In this type of
operation the modes do compete with one another, but, in
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the course of the nonlinear evolution, they acquire and
maintain a common frequency of oscillation. For this rea-
son we call this new phenomenon cooperative frequency
locking. This behavior eliminates the beat notes, or perhaps
one can even say that the modes beat against one another in
space and not in time. According to Eq. ¢7.11) the common
oscillation frequency falls within the range spanned by the
mode-pulled frequencies of the coexisting modes.

8. NUMERICAL RESULTS

We consider the ring-cavity model of Egs. (3.7)-(3.9) and the
corresponding eigenvalue equation {6.6). With the help of
the Routh-Hurwitz criterion? applied to Eq. (6.6), we can
construct the instability domain in the plane of the variables
a(l) and fo®. A few examples are shown in Fig. 3 for »’ = 0.1,
¥1/v1 = 1,and afew values of §. Depending on the selection
of the parameters, we can have two or even three demains of
instability. The lower domain [in relation to the vertical
a(1) axis] is defined by the condition g™ < 0, ie., by in-
equality (6.7); the upper domains originate from the remain-
ing conditions of the Routh-Hurwitz criterion. In Fig. 3(d)
we note the coalescence of the two upper instability do-
mains, which are still distinct in Fig.3(¢). This feature is
common also to other parameter values.

We have solved the nonlinear time-dependent modal
equations (5.3)-(5.5} with a fourth-order Runge-Kutta algo-
rithm; in our simulations we have used, typically, a maxi-
mum modal index nmay = 15 and performed frequent checks
of convergence with a larger number of modal amplitudes.
A typical scan proceeds by selecting £, 4", v, /4, , and f,? [this
fixes the value of the gain parameter C by way of Eq. (6.4)]
and by varying the parameter atl) = gr? Each tun begins
with an initial condition corresponding to the spatially ho-
mogeneous solution (5.7), perturbed by a small amount of
(Gaussian random noise.

In this paper we consider oniy those cases in which the
unstable medes fail inside the lower instability domain, such
as we havefor »" = 0.1, v:/y, = 1,0 = —0.6, and /¥ = 2 (see
Fig.3). The result of the scans can be summarized as shown
qualitatively in Fig. 4. Depending of the value o a(l), we
can divide the lower instability domain into thee zZones,
labeled A, B, and C for convenience. Values of a(3) in zone
A leed to stationary single-mode solutions, in excellent
agreement with the analytic formulas (7.14) axd (7.15).
Values of a(1) in regions B and C lead to multimode station-
ary solutions with cooperative frequency locking. Region C
corresponds to values of a(1) such that not only made n = 1
but also » = 2 is unstable.

We now consider the case x* = 0.1, iy, =1,§=0.6, and
fo'= 2 in some detail. The value a(1) = 0.65 lies inregion A;
the mode n = 1 builds up initially, and the system éppears to
approach a multimode stationary solution, which, however,
turns out to be unstable in this case. As a result, the system
eventually develops a single-mode structure of type{a) with
k = 2, as described in Section 7. The values of |2 for the
odd harmonics of n = 2 are smaller than |f.l? by = least 3
orders of magnitude. The evolution of the transvese inten.-
sity profile toward its asymptotic state is shown in Fig. 5, and
its final configuration is shown in Fig. 6(a). Theperiod of
oscillation of the solution, in units of x~1, is 2.65, wiich is in
excellent agreement with the prediction of Eq. (7.1},
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Fig. 3. Instability domain in the plane of the variables a(1} = ar®
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Fig. 4. This figure illustrates qualitatively the regions A, B, and C
discussed in the text.
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Fig. 5. Time evolution of the transverse intensity profile toward
steady state for &’ = 0.1, yi/y _ = 1,8 = —0.6, o = 2, and a(1) = 0.87,
(a) and (b) Show the evolution looking backward and forward in
time, respectively.

For values of a(1) slightly above region A and following a
small initial perturbation around the homogeneous station-
ary solution (5.7), the system returns to the homogeneous
state because of the stable character of the linearized solu-
tion. If we begin, instead, with a large initial perturbation.
the system approaches a single-mode stationary solution of
the type found in region A. This indicates the existence of a
hard-mode excitation domain yielding solutions that are
direct continuations of those obtained within the unstable
domain A.

The value a(1) = (.55 yields a solution in region B. Corre-
sponding to this parameter the system reaches a muitimode
stationary configuration with the transverse profile shown in
Fig. 6(b). After atransient evolution, modesn=0andn =1
dominate the steady-state picture, as shown in Fig. 7. Here
we display the behavior of the aymptotic values of the modal
intensity If.|? as a function of a{1) in region B; Fig. 7(a) shows
the behavior of If,|? for n = 0, 1 and Fig. 7(b) for n = 2. 3.
Figure 8 displays the variation of the period of oscillation 7
in units of x~! over the same interval of a(1). Note that the
period seems to diverge as a(1) approaches region C from
above. The increase of the period is accompanied also by a
marked lengthening of the time required to reach the neigh-
borhood of a stationary solution. When expressed in units
of k1 this time is typically of the order of 100; for af1) = (1.2
{not shown), the time is instead of the order of 800. We
interpret this phenomenon as the result of critical slowing
down caused by the incipient instability of mode n = 2.

For a(1) = 0.12, modes n = 1 and n = 2 are unstable; the
system again approaches a multimode stationary state with
frequency locking and the transverse intensity profile shown
in Fig. 6(c). In this case the odd modes vanish in the long-
time limit. Hence this stationary solution is of type (b} with
k = 2, according to the classification introduced in Section 7,
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Fig. 7. (a) Plot of the stationary modal intensities forn = 0andn =
1 as functions of a(l) over the domain labeled B in Fig. 4. The
remaining parameters are the same as in Fig. 6. (b) Is the same as
Fig. 7(a) but for modes n = 2and n = 3.

whereas in region B the long-term solution was of type (b)
but with ¥ = 1. The quantity |f.|?, in particular, is larger
than both |ff2 and I£%

Finally, for a{1) = 0.05 the modes n = 1, 2, 3 are simulta-
neously unstable. The long-term solution is a multimode
stationary state with odd harmonics that are stronger than

300
200 *

100 r ‘
|
: e |
0.0 Q.2 0.4 a{ly 06
Fig. 8. Behavior of the oscillation period T = 27/ over the same
domain of a(1) considered in Fig. 7.

their even neighbors [see Fig. 6(d)]. Thus we agam have a
solution of type {(b) with k = 1. A fuller descriptias of our
numerical analysis will be given in a future publication.

9. CONCLUSIONS AND COMMENTS

In a sense the analysis of this paper is complementaw to that
of Ref. 15 in spite of the differences between th¥ chosen
geometrical configurations {Ref. 15 deals with a tmditional
ring cavity). These two studies share a common theme: the
competition between & longitudinal mode and a setaf trans-
verse resonances. The parameters selected in Ref.15]ead to
an intermode spacing for the transverse modes, which is of
the order of the cavity free spectral range and, ferefore,
much larger than the cavity linewidth. As a comequence
the resulting instabilities produce spontaneous ostillations
of the output intensity instead of stationary spatialgatterns.

Our present model, which is based on Egs. (37)-(3.9),
predicts both temporal instabilities of the Hakes-Lorenz
type, which require the bad-cavity condition, x > 4, 1! and
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spatial instabilities that are permitted even in the good-
cavity limit. In addition, the eigenvalue equation (6.6} pre-
dicts also a large variety of interesting spatiotemperal beha-
viors for values of &' that are not necessarily small and that
will be analyzed in a subsequent publication.

A class of lasers that comes close to the waveguide configu-
ration considered in this paper should include most semi-
conductor devices. On the other hand, we can also suggest
different types of arrangement. For example, we could
eliminate the two lateral mirrors. In this case, we find again
the same type of spatial instability involving, now, continu-
ous frequency bands instead of discrete modes [the unstable
band is defined by Eq. (6.7)]. This problem is similar to the
modulational instabilities described in Ref. 16 for passive
systems, but in our case the instability is of the soft-mode
type, i.e., it emerges at zero frequency; hence, presumably, it
leads again to stationary spatial patterns instead of the dy-
namical spatiotemporal structures discussed in Ref. 16.

An alternative type of configuration that we could consid-
er in connection with the problem of spatial pattern forma-
tion is that of a standard cavity with spherical mirrers. In
this case the starting point would coincide with that of Ref.
15 but with a significant difference: the frequency spacing
between the radial resonances must be of the order of the
cavity linewidth., We may hope that this will lead to the
same general picture as illustrated in Section 7. Unfortu-
nately, the spatial structure of the empty cavity modes is
governed by Gauss-Laguerre instead of simple trigonomet-
ric functions, which is a feature that makes the prospects of
analvtic progress rather dim. Theoretical efforts along this
direction. however. should be encouraged because the stan-
dard nature of the cavity geometry with spherical mirror
appears significantly more accessible for experimental stud-
ies.

APPENDIX A

The coefficients a;*' that appear in Eq. (6.6) are giver: by the
following expressions:

a/M =2y 4y + 2 (Al)
03(’” =2v,v +1,9 fﬂ? + 2x(24 _+17 )

+ (6 =y 1+ 6+ kfaln)an) + 28], (A2)
a," =y L+ 8+ Py v iy )f

+ 2y v (2 + fu'z)

+x%a(n)2y | + v Man) + 28], (A)
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0, = 2y _yuls + v P+ &y Laln) [ain)
X2y +y, HE+y oy (4[] (AD
aoln) = KE‘I'LE'YFG(”)EG(H)(l + 62+ fog) + 25[’1'2]. (AD)

where f; is defined by Eq. (6.4).
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