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7. Morse—Ekeland Index

2. Consider the linear Hamiltonian systems

Ji(t) + Ar(t)u(t) =0, Ja(t) + Az(t)u(t) = 0,

with A; and A; continuous mappings from R into the space of posi-
tive definite matrices of order 2N. If

Ax(t) < A2)
for all t € [0, 7], then

t(Al!T') S (AZsT)

. Let H € CY(R?*",R) be strictly convex and such that

H0)=0, VH(0)=0,

and let T' > 0. Assume that there exists n € N, v € |27n/T, 2x(n 4
1}/T[ such that

VH() = yutofjul) as |u] — oo
and some k£ > 1 and 8 > (2x/T)(n + k) such that
VH(u)=fu+o(|u]) as |u]—0.

Then the problem
Ju+ VH(u) =0,
4(0) = u(T)

has at least Nk 5*-orbits of nontrivial solutions. Compare this result
with the Exercise 7 in Chapter 6.

Hint. Use Theorem 7.2 and the results of Section 7.2.

8

Morse Theory

Introduction

Morse theory’s object is the relation between the topological type of critical
points of a function ¢ and the topological structure of the manifold on which
the function is defined.

The topological type of a critical point u is described by the crifical
groups of Morse Cy, (i, u) (see Section 8.2) which exhibit the following prop-
erties:

a) in the nondegenerate case, the critical groups are computable by lin-
earization (see Section 8.6);

b) the critical groups are stable under small perturbations of the function
¢ (see Sections 8.9 and 8.10).

If ¢'(u) = 0 and ¢"(u) is invertible, then

dimCulp, u) = §n

where & is the Morse indez of ¢'(u). Recall that this Morse index is an
integer measuring the maximal dimension of the spaces on which ¢”{u)
is negative definite (see Section 8.6). We also present some results in the
degenerate case when ¢”{u) is a Fredholm operator.

The topological structure of the manifold M is described by its Betts
numbers B,. Intuitively, B, is the maximal number of n-dimensional sur-
faces without boundaries on M which are not the boundaries of a (n + 1)
dimensional surface on M (see Section 8.1). For example By 13 the num-
ber of path connected components of M. In the case of a sphere, every
closed curve is a boundary and By = 0. On the other hand, By = 2 for the
two-dimensional torus.

To tllustrate Morse theory, let us consider the classical situation of the
function ¢(z,y, z) = z defined on a two-dimensional torus M C R? tangent
to the plane Ozy (see Figure 8.1). The function ¢ has a critical point u,
with Morse index zero, two critical points u; and u3 with Morse index one,
antd one critical point 44 with Morse index 2. If M; denotes the number of
critical points of ¢ with Morse index k, we have By, = M, (£ =0,1,2),

In general, for an N-dimensional compact manifold, the following relation

is valid
N N
Nk - NT R o1 4o
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FIGURE 8.1.

where Q(t) is a polynomial with nonnegative integer coefficients (see Sec-
tion 8.5). In particular, for ¢ = —1, we obtain the Poincaré-Hopf formula
for a gradient vector field

N N
Y (=DM = Y (1) B,.
k=0

k=0

It is important to notice that a single degenerate critical point can con-
tribute to different numbers M.

The proof of these results makes use of a deformation technique along the
paths of steepest descent along V. The corresponding tools and results
are developed in Sections 8.3 and 8 4.

A first application of Morse theory deals with the bifurcation of solutions
of equations depending upon a parameter. Loosely speaking, a change of
critical groups of the trivial solution implies bifurcation. This result, which
corresponds, in the context, of Morse theory, to Krasnosel’skii's bifurcation
theorem in degree theory, is given in Section 8.9.

8.1 Relative Homology

Let B be a subspace of a topological space A. For every integer n, we denote
by Hn(A, B) the nth singular homology group of the pair (A, B) over a
field F. For n < —1, H,(A, B) = {0}. For any map f : (A,B) — (A", B')
(i.e., any continuous map f : A — A’ such that J(B) C B') there is a
homomorphism

Jar Ha(A, B) - Hﬂ(A’DB')
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called the induced homomorphism. Let C ¢ B; there is a homormorphism
6., H Hn(A, B) hand n—l(B)C)

called the bowndary homomorphism. We shall frequently write f, and 8,
omitting the subindex. The Eilenberg-Steenrod azioms are satisfied:

(a) id, = id.

(b) (g°f)¢ =g.0f..

(c) The following diagram commutes:

HoAB) £ pa,B)
al 8

Ha_y(B,0) Y2 g (0.
(d) (Ezactness). Let

t:(8,C)—(A,0)
j: (Alc) — (4, B)
be the inclusion maps. The homology sequence

+ = Huyi(A,B) 2 Ho(B,C) & Ho(4,C) & Ho(4,B)— ...

is exact (i.e., the image of any homomorphism is equal to the kernel of the
next one).

(e} (Homotopy invariance). If f and g are homotopic (i.e., f = F(o0,.),
g = F(1,-) for some continuous mapping F : [0,1] x A — A’ such that
F([0,1] x B) C B), then f, = o

(f) (Ezcision). Assume that C is an open subset of A such that the closure
of C is contained in the interior of B. Let § : (A\NC,B\C) — (4,B) be
the inclusion map. Then i, is an isomorphism.

(g) I ¢ is & point, then Ha({u},¢) = $n oF, where b, o is the Kronecker
symbol.

We shall also need the following results.

(h) (Decomposition theorem). If (A, B) = Ui, (A¢, B;), where the A; are
closed and disjoint, then

Hn(A, B) = 8., Ha(Ai, B;).
(i) (Mayer-Vietoris sequence). Assume that X;, X, are open in X =

X\UXzandthat Y, C Xy, V3 C X3 areopenin Y = Y UY,. KX:NX; # ¢,
there is an exact sequence

e H(XL )@ Ha(X2, V) 5 Ho(X,Y) A By y(Xi0 XY, nYs)

L Hard(X1,0) 0 Hoo (X2, Ya) — ...

SR

it oed

e



170 8. Morse Theory

called the Mayer-Vietoris sequence of {(X;, Y1), (X2,Y2)}.
Since F is a field, the homology groups are vector spaces and the Belli
numbers B, (A, B) of the pair (A, B) are defined by

Bn(A,B) =dim H,(A, B).
Let R,(A, B,C) be the rank of 8,,. By exactness, we obtain
By, (A, B) = dim R{js.) + Ra(A, B,C)
Bn(B,C) = Rny1(A, B,C) + dim R(i,.) (1)

Bn(A,C) = dim R{in-) + dim R(j-).

A pair (A, B) is admissible if B, (A, B) is finite for each n and zero for all
sufficiently large n. The Poincaré polynomial of an admissible pair (A4, B)
is defined by

P(t, A, B) = fja,.(A,B)t".

Let us also define

Q(t,A,B,C) = Y _ Rns1(A,B,O)t".

If (A, B) and (B,C) are admissible, then (1) implies that (A, C) is also
admissible and that

Bn(A,B)+ Bn(B,C) = B, (A, C)+ R(A,B,C)+ Ro1(A, B, C).
Multiplying this equation by t® and adding over n, we get
P(t,A,B)+ P(t,B,C) = P(t,A,C} + (1 +1)Q(t, A, B,C), (2)

where we have used the fact that Ro(A,B,C) =0.
Assume that Ay D A2 D ... D A; are such that (A;, Ai4,) is admissible
fori=1,...,7 - 1. Applying equation (2) to (Ay, A;, Ai41), we obtain

P(t, A, A + P(1, Ai, Aipr) = P(t, Ay Aigy ) + (14 0Q(2, Ay, Aiy Aigr)-

Adding those equations, we find
j=1
ZP(!,A,,A..‘.[)=P(t,A],Aj)+(l+t)Q(t), (3)
i=1

where Q(t) is a polynomial with nonnegative integer coefficients {by exact-
near Pl A. AV =M
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A subset A’ of A is a strong deformation retract of A if there exists
k€ C([0,1] x A, A) such that

h(t,u) =u whenever ue A’ and t€[0,1],

h(0,u)=u and A(l,u) € A’ whenever u € A.

Assume that A D A’ O C with A’ a strong deformation retract of A.
Define r : (A,C}— (A',C") by

r(u) = h(1,4)

and let
i:(A,C)— (A,C)

be the inclusion map. By homotopy invariance, we obtain
ivor, = (ior), = id, = id,

and, on the other hand, by definition of , we have
rooi, =(roi), =id, = id,

so that r, is an isomorphism between H,(A,C)} and H,(A’, C). In partic-
ular, if C = A’, we see that

Ho(A,A") & Ho(A', A') ~ {0).

Now,if A 3 B D B', with B’ a strong deformation retract of B, we have,
by the above result and exactness,

{0} = Ho(B.B') % Hu(A,B') & H.(A,B) 2 H._\(B,B')~ {0},
and hence
{0} = Im#, = kerj., Imj, = kerd = H,(4, B).
Thus j, : H,(A,B’) — H.(A, B) is one to one and
Ha(A, B') = Ha(A, B).
Let A be a subset of R” containing 0 and let B* be the k-ball. Then, for

k>1,
Ha(A x B* (A x B¥)\ {0)) = Ha_i(A, A\ {0)). (4)

Proof. If k > 2, we obtain, after the identification B* ~ [—~1,1]*,

(Ax B (Ax BE)\{0}) = (Ax B¥ ' x[-1,1),(A x B* ! x[-1,1])\ {o}).
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Thus the result follows by induction from the case & = 1. Let us assume that
k = 1. The suspension LA of A is obtained from A x [~1,1] by identifying
the pair of sets (A x {—1}, Ax {1}) to a pair of points (w_, wy ). By excision,

Hn(A x ["‘1) 1]!(‘4 X [--1, 1])\ {0}) & Hﬂ(EAs LA \ {0})
Let us define the sets
Xy =LZA\{w.}, X_=ZA\{w;},

Yo = Xe \({0}x ]-1,0]), Y- =X_\({0} x[0,1]),

80 that
X+UX_=BA, X...nX-:Ax]—l,l{,

Y, UY. =ZA\{0}, Y,nY_ =(4\{0P)x]-11].

Since X4 and Yy (resp. X_ and Y_) are contractible to w, (resp. w_) we
have, by homotopy invariance and exactness

Ha(X2,Ye) 5 Ho(ws,ws) = {0}

The exactness of the Mayer-Vietoris sequence of {(X4,Y;), (X-,Y.)}
implies that

Ha(X4 UX_, YUY ) % Hooy(Xe NX_, Y, NY.),

ie.,
Ho(ZA,LA\{0}) ~ Ha_y(Ax ]~1,1[,(A\{0})x ]-1,1)
& Hao1(A, A\ {0}),
and the proof is complete. o

In particular, if A = {0}, we obtain

Ho(Be,Be \ {0}) = H.({0} x B* ({0} x B*)\ {0})
& Hpox({0}),8) = 8npoF = bn i F.

Let B> (resp. S°°) be the unit ball ( resp. the unit sphere) in an infinite-
dimensional normed space. Then, since S is a strong deformation retract
of B*®, we have

Ha(B®,B®\ {0}) % Ha(B*®,5%) 2 Ho(S®, 5%) = {0}.

8.2. Manifolds 173

8.2 Manifolds

g i

Let M be a set and V a Banach space. A chart is a bijection z : D(z) C '
M — R(z) C V such that R(z) is open. An eatlas of class C* (k > 0) on

M is a set A of charts such that

(AT1) UzeaD(z) =M.

(AT2) z(D(z)N D(y)) is an open subset of V whenever z € A and y € A.

(AT3) the mapping

yoz™' : z(D(z) N D(y)) — y(D(z) N D(y))
is a C*-diffeomorphism for each z € A and y € A.

A manifold of class C* modeled on V (or briefly a C*-manifold) is a
pair (M, A) where M is a set and A is an atlas of class C* on M. We
will use the same symbol M to denote the C*-manifold (M,.A) and the
underlying set M. The topology of the manifold M is, by definition, the
unique topalogy on M such that the domain of each chart is open and each
chart is an homeomorphism.

-r-{""‘“ e

Example 8.1. The singleton {Id : V — V'} is an atlas of class C* on the
Banach space V.

Example 8.2. Let A be an atlas of class C* on M and let N be an open :
subset of the manifold M. The restriction to N of the charts in A is an vy
atlas of class C* on N, \

Example 8.3. Let G be a discrete subgroup of V and x : V — V/G the
canonical projection. Then

...4""‘ s

{x=! : #(U) ~ U, U is open and x : U — V/G is injective}

is an atlas of class C*° in V/G.

An important example of a manifold is given by the tangent bundle of
a C'-manifold. If z and y are two charts on M whose domains contain &
point u, and if v € V and w € V, let us introduce the equivalence relation
(verify it!)
(v,2,0) ~ (v,y,w) & w = (yoz 'Y (z(u))v

e I

and define the equivalent class
[u,2,9] = {(v,y,w) : u € D(y) and (u,y, w) ~ (u,z,v)}.

The tangent space of M at u is the set T, M of the equivalence classes
[u,2,v] such that u € D(z) and v € V. A vector space structure is defined
on T, M by the formulas '

[u,z,v] + [u, 2, 0] = [u,z, v+ w),
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s[u,z,v] = [u,z, sv).

The chain rule shows that this definition is independent of the chart .
The tangent bundle TM of M is defined by

T™ = U T M,
uChf

and the projection # : TM — M is defined by
*: [u,z,v] - u.

Let M and N be C*-manifolds modeled on Banach spaces V and W,
respectively. A mapping f : M — N is locally Lipschitzian (resp. of class
C*)if yo fozr™! is locally Lipschitzian (resp. of class C*) for every chart z
on M and every chart yon N.If f : M — N isof class C!, the differential
of f is the mapping df : TM — TN defined by

df(fu,z,v]) = [f(u),y,(yo foz™") (2(u))v],

where z is a chart at u and y a chart at f(u). One can check that this defi-
nition is independent of z and y and that the following diagram commutes

df

T™ — TN
T} | =
M LN

If N is a Banach space W, then TW ~ W2 and df : TM — W? is defined
by (taking y = Id on W)

df ([w,z,v]) = (f(u),(f 0 z7") (2 (u))o).
In particular, if z is a chart on M,
dr : N_](D(I)) s Y2
is a chart and {dz : = € A} is an atlas of class C*~! on T'M, such that

dz([u,z,v]) = (z(u), v).

A critical point of p € C'(M, R) is a point u € M such that delr_m = 0.
The change in topology near an isolated critical point is described by the
critical groups. We assume that the C'-manifold M is regular. (Recall that
a topological space is regular if every neighborhood of a point contains a
closed neighborhood.) Let u be an isolated critical point of ¢ € C'(M,R).
The critical groups (over a ficld F) of u are defined by

Calpyu) = Hole* N, o U\ {u}), n=0,1,...,
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wl‘le.re ¢ = ¢(u) and U is a closed neighborhood of u. By excision, the
critical groups are independent of I/,

Let us Fomplete the critical groups in a trivial but important case, namely
w}!en u 18 an isolated local minimum point. Then there exists a closed
neighborhood U of u such that

p(v) > ¢ = p(u)
whenever v € U \ {u}. We obtain therefore
Calp,u) = Ho({u},8) = bnoF, n=0,1,....

8.3 Vector Fields

In this section, M will denote a Hausdorff manifold of class C? modeled on
a Banach space V. A vector fieldon M isa mapping f : M — TM such
that 7o f = Id. If ¢ :]a, [ > M isa C'-mapping, then we define o(t) for
1€ Ja, b by

o{t} = [a(t),z, (z 0 g) (t)(1)] = doft,id, 1],
where z is a chart at o(t).

Proposition 8.1. If S is a locally Lipschitzian veclor field on M, then,
Jor every u € M, the Cauchy problem

a(t) =
{ 30=s6e10) ©

has a solution defined on some open interval containing 0. Moreover, if
oy {1 —“Moendoy: I, = Misa pair of solutions of (5) defined on
open satervals I; (j = 1,2), then oy = oy on 1N [,

Proof. Let £ be a chart at u; near u, the Cauchy problem is equivalent to
dz(5(t)) = dz(f(o(t)))
z(0(0)) = z(u)

or

7(t) = (Podzo foz=")(n(t))

70) = 2(u) ©
where 5 =zo0 and P : V x V — V is defined by P(v,w) = w. Since f is
chally I.zlpschitzian, the same is true for dz o f o0 z~1. The local theory of
differential equations in a Banach space implies the existence of a solution
? :] - €, e[~ V of (6), and each solution of (6} defined on | — ¢, ¢[ is equal
on.

Let T = {tenhini : a,(t) = o2(t)}; this set contains 0 and is closed in
LN 1, since M is HausdorfT. Using the local uniqueness result, it is easy
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to verify that I is open in Iy N Iy, so that I = I N I, and the proof is
complete. [}

Proposition 8.1 implies that the union of the graphs of all solutions of
(5) defined on open intetvals is a solution of (5) defined on an interval
Jw..(u), w4 (u)] with

~o0 Sw_ () <0 < wy(u) € +oo.

This solution is called the mazimal solution of (5) and is denoted by a(-,u).
As in the Banach space theory, the set

D= {(tu) : w(u) < £ <wy(w))
is open in R x M and the flow
g : DM, (tu)—eo(tu)

is continuous.

8.4 Riemannian Manifolds

Let M be a manifold of class C* (k > 1) modeled on a Hilbert space V.
A Riemannian metric of class C*~' on M is a mapping which associates
to each pair (u,z), with u € M and z a chart at u, a positive definite
invertible symmetric operator My(u) : V — V such that the following
properties hold.

(RM1) The mapping M,
D(z) = L(V) : v — M. (u)

is of class C*~? for each chart z.
(RM2) If z and y are two charts at u € M, then

[(yo ™) (@(u)] My (w)[(y 0 27" Y (2(w))] = M. (u).
It follows from (RM2) that the relation
([, 2, 9], [u, 2, w]) = (Mo(u)v, w)
defines an inner product on T, M, and the corresponding norm is given by
llw,2, 0]l = (M (u)v, v)*2.

A Riemannian manifold of class C* is a regular connected manifold of
class C* modeled on a Hilbert space and equipped with a Riemannian
metric of class ¥~ 1,
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Let M be a Riemannian manifold of class C'. A piecewise C path from
u € Mtov € M is a piecewise C! mapping ¢ : [a,b] — M such that
o(a) = u and o(b) = v. We shall denote by C} the set of all piecewise C!
paths from u to v and define the length of o € C¥ by

' ]
L(¢) = f 6(2)] dt.

Proposition 8.2. For eack ue M and v M, the set C! is non-empty.

v

Proof. For each u € M, define A = {v € M : Cy # ¢). Since M is
connected and A # 4, it suffices to prove that A is open and closed.

If v € A, there is a path o : [a,6] — M in Cy. Let £ be a chart at
v = o(b). There is a r > 0 such that B = z~}(B(z(v), r)) is an open subset
of D(z), and thus of M. For w € B, the path & : fa,b4 1] — M defined
by

Ft)y=0(t), a<t<b
5(t) = 27 ((1- (¢~ 8)z(v) + (t - B)z(w)), b<t<b+1

isin C. Thus B C A and A is open.

Now let v be in the closute of A and z be a chart at v. Define B as
before; there will exist w € AN B and then a patho : [a,8] = M inC».
The path & : [a,b + 1] defined by

) =oft), a<t<b
5(t) = 27 ((1- (¢~ )x(w) + (¢~ D)z(x)), b<t<b+41
is in CY. Thus v € A and A is closed. a

Proposition 8.2 justifies the following definition of the geodesic distance
don M
d(u,v) = inf{L(¢) : o € C*).

Proposition 8.3. The geodesic distance d is a distance on M whoase topol-
ogy is compatible with the manifold topology.

Proof. Clearly d is symmetric and verifies the triangle inequality. Let z be
a chart at u € M. By definition, there exists 0 < o < B such that

alh|? < (M:(u)h,h) < AlA]?, heV.

By continuity, there exists r > 0 such that B = z~1(B(z(u),r)) is an open
subset of D(z), and hence of M and such that

(@/2)1h” < (M. (v)h,h) < 281, veB, heV.

For every piecewise C! path ¢ : [a,5] — B, we have

]
L(o) = ] (Me(o(0))(z 0 0)(2), (= 0 0)(1))/2 dt

o

TS b

-fi'"““ BERY

.f-i"‘“ BERY

L
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b 1)
2 (/) [ Iz ooY(ldt (o201 [onwa @
= (a/2)'?((x 0 0)(b) — (z 0 0)(a)|.
For every v € 33, the path & defined by
F(t) =27 (1 - )z(u) + tz(v)), 0<t< 1,

ts such that
1(3) < (28)2 ] J2(v) — 2(u)|dt = (28)"/2z(v) — 2(u)|.  (8)

Let A be a neighborhood of u in M. Since M is regular, there exists a
closed neighborhood C of « such that € € AN B. Define § > 0 by

6 = inl{|z(w) - 2(u)] : we aC). (9

Let ve M. If o : [a,8] — M belongs to C¥, then either ([a,8]) C C or
there is a ¢ € Ja, b such that o([a,c]) C C and a(c) € HC. In the first case,
it. follows from (7) that

L(o) > (a/2)'?)2(v) - 2(u)|.
In the second case, (7} and (9) imply that
Lo} > (a/2)'*[z(0(c)) — z(u)| > (a/2)!/%.

In particular, d{u,v) > 0 for v # « and d is a distance,
On the other hand, if v € M \ C, then (¢} > (a/2)'/26 50 that

{ve M :duv) <(a/2)'/?} C CC A

A being arbitrary, this implies that the topology induced by d is stronger
than the manifold topology. Now (8) implies that

=1 (B(x(u),(20)"’R) C {v € M : d(u,v) < R)
whenever R € ]0,(28)'/r{, showing that the topology induced by d is
weaker than the manifold topology. (]

A subset of a Riemannian manifold of class C* will be said to be complete
if it s complete for the geodesic distance.

Let M be a Riemannian manifold of class C? and let ¢ € %M, R).
The gradient of  is the vector field defined on M by

Vi(u) = [u,2, M () J(p 0 271 (2(w))]

where J : V* — V is the inverse duality mapping.
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If ¢ € C*%(M,R), the Cauchy problem
{ o(t) = —V(o(t)) (10)

o(0) = u

has a unique maximal solution o(.) = e(.,u). Since
d
P = dit(go ox~ oz oag)(t)
= {p ox‘l)'(r(cr(t)), %(: o o)}{t))

= (MM (o) (002 (2o (1), Lz 0 o)1)

= ~(Ve(o(t)), Vi(a(t)))
= —{Ve(e()?,

where z is a chart at o(?), either w(o(t)) = p(u) forallt > O or poois
decreasing. Moreover we have

w(o(2)) = p(o(s)) - f IVeo(o(r))dr, w_(w) <s<t<wi(u). (1)

Proposition 8.4, Under the above assumptions, if wy(u) is finite and the
set {o(t) : t € [0,wy(u)[) is contained in a complete subset of M, then
p(o(t)) — —oco when t — w, (u).

Proof. For 0 < & < t < w,(u), the definition of d and (11} imply that

t t 1/2
Aot o(e) < [ 1Vplordr < (¢ - o2 ( / tw(a(rm’dr)

= (=)' (p(a(s)) - pla(1)))/. (12)
Since wy () < oo, o{t} does not converge as { — w4 (u}, and hence does not
verify the corresponding Cauchy condition. Since o o is non-increasing,
(12} implies that @(o(1)) — —00 as ¢ — wy (u). a

8.9 Morse Inequalities

Let us consider the following framework:
i) M is a Riemannian manifold of class C? and ¢ € C?*~%(M R);

it) X C M is positively invariant for the flow ¢ defined by (10) (i.e.,
o(t,u) € X whenever u € X and { € ]0,w, (u)[);

i}) a < bare real numbers such that the critical points of pin ¢~ 1({a,b))N
X are isclated and contained in the interior of e Y[a, b)) N X;
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iv) @~ !([a,b]) N X is complete;

v) the Palais-Smale condition over ¢~ '([a,8])N X is satisfied, i.e., every
sequence (u;) in @~ '([a,4]) N X such that {¥Ve(u;}} — O conlains a
convergent subsequence.

Mare generally, we shall say that o satisfies the Palais-Smale condition
over a closed subset S of M if cvery sequence (;) C S such that (p(u;))
is bounded and |V(u;)| — 0 contains a convergent subsequence.

Lemma 8.1. Lel M be a Riemannian manifold of class C? and let v be an
isolated critical point of ¢ € C*~%M,R). I the Palais-Smale condilion
is salisfied over a closed neighborhood A of v, then there ezists ¢ > 0 and
a neighborhood B of v such that, if u € B, either o(t, u} stays in A for
0 <t < wy(u), or ot u) stays in A until p(o(t,u)) becomes less than
p(v) —e.

Proof. Let p > 0 be such that B[v,p] C A, ¢ is bounded on By, p], and
C={ueM: p/2<d(uv) < p} is free of critical points. The Palais-
Smale condition implies that

§ = inf{|Ve(u)] : ueC}>0.

Let us define B = By, p/2) Np14#/4 where ¢ = p(v). If u € B is such that
o(t,u) does not stay in A for all 0 < ¢ < wy(u), then there exists ¢ <) <
t7 < wy(u) such that oft,u) € C for &) < t < 8y, d(o(ty,u),v) = pf2 and
d(a(tz,u},v) = p. It follows from (11) that

ta
ploltnw) < loltw) -6 f Viplotr, )| dr
< plu)-b ] 1o, )l dr
S (P(u) - 6d(0(t1 ] “)-U(tL u))
< o+ bp/A— 6(d(o(ts, u),v) ~ d(o(ts, u),v))

c+ Spfd—bpf2
pl(v) - 8p/4,

and the proof is complete with ¢ = ép/4. o]

Lemma 8.2. If Assumptions (A) hold, then, for every u € ¢~ '([a,b]}N X,
either there is a (unique) { > 0 such that ¢(o(t,u)) = a or wy(u) = +o0
and there is a critical point v of v in ¢~ ([a,b]) N X such that o(t,u) — v
when § = +o0.

Proof. If g(o(t,u)) > a for all t € |0,w(u)[, Proposition 8.4 implies that
wy{u) = 400, and hence p(o{t, u)) — ¢ > a when t — too. By (11),

[ 1wetotraier < oo

0

1l
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Consequently, liminf;_ 4o |V(o(t, u))|? = 0 and the (PS) condition im-
plies the existence of a sequence (t;) tending to +co and of a critical point
» such (hat o8, u) ~ v an § =2 38. In particiilar, v & X apd ¢ = p{v). It
follows then from Lemma 8.1 that o(f,u) -+ v as ¢ — +oo. o

Let us define, for ¢ € [a, ],
X={u€X : p(u)<c}

K.={u€e X : p(u) = ¢,dp(u) = 0}.

Lemma 8.3. Under assumplions (A), let ¢ < & < B < b be such that
v~ '(Jo, B[} N X is free of critical points. Then X® is a strong deformation
retract of XP\ K. Moreover, ¢ is non-increasing during the deformation.

TSN

Proof. By Lemma 8.2, if u € XP \ Kp and y(u) > a, either there is a

unique f(u) such that @(o(t(u),u)) = a or (o(t,u)) = a as t — +oo. Iif ;
Wi, u) = p(o(t, u)), then Dyy(t(u), u) = ~|V(a(t(x), u){* # 0, and ¢(u) is

continuous by the implicit function theorem. Define the function p by

p(t,u) o(t,u) if0 <t <t{u)

= o(t(u),u) if t(a) <1< oo

in the first case and by

g i

plt,v) =o(t,u), 0<t<+oo0
in the second case. Moreover define p by
plt,buy)=u, 0<t<+00

whenever u € X*. The continuity of the flow o implies the continuity of p.
Now define the deformation on [0,1] x (X? \ Kz) by

¢
ﬂ(‘:u)=P(m:“); 0$t<1 L

n(l,u) = 'Erg L, u).

e

The continuity of 7 follows from Lemma 8.1 and from the continuity of

p- By construction, ¢{n(.,u)} is non-increasing, and the proof is complete.
a

It is easy to verify that, under assumptions (A), ¢~ !([a, 8))N X contains
at most a finite number of critical points uy,...,u;. The Morse numbers
of the pair (X®, X*) are defined by

J
Ma(X?,X%) =) dimCa(p,w), n=0,1,....

i=1
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If Ma(X* X%) is finite for every n and is equal to zero for n sufficiently
large, the Merse polynomial of the pair (X°*, X?) is defined by

o0
M@ XY XY =3 ML (X, Xopn,
n=0

Theorem 8.1. Under assumptions (A) #f, every erifical point in ¢~ ([a, bN
X corresponds to the same critical value c € la, b, then

Ma(X% X)) = Ba(X*, X%, n=0,1,. ...
Proof. Lemma 8.3 implies that
Ha(X2 Xy 2 Ha (X%, X%) m Ho (X, X0\ K.).

Since K. = {uy,..., u;} is contained in the interior of ¢~ 1([a, )N X, the
critical points have disjoint closed neighborhoods Uy, . .., U/; such that

U= U Ui Ce~ (e, )N X.

i=1
Thercfore we obtain, by the excision and decomposition properties,
Ha(XS, X\K) = H(X°nU,(X°\ K)nu)
Hole™ NU (p°\ K )N

1]

7
B Hale N UL " NU N\ {ue))

i=1

E
@Cﬂ(‘l’: ui),
i=1

and the result follows from the definitions. o

Theorem 8.2, Under assumptions (A), if Mu(X®, X% is finite for every
n and cqual to zero for n sufficiently large, then there erists a polynomial
Q(f) with nonnegative infeger coefficients such that

M(t, X%, X%) = P(t, X%, X) + (1 + ) Q(t).

2

Proof. Let @ < e < ... < ¢; < b be the critical values corresponding to
the critical points in o= "([a,b]) N X. If we take real mrmbers a; such that

a=ag < c; < ay <ep <. <aj <y <a; =¥,
Theorem 8.1 implies that the pairs (X%+1, X"} are admissible and that

F-t J-1
DB, (X, X = Z Mp (X4 X%) = M, (X, X%).
i=0

=0
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It follows then from formuia (3) that

-1

M6, X X% =3 P(6,X™ X%) = P(e, XY, X%) + (1 + 1) Q(1),
=0
where (1) is a polynomial with nonnegative integer coeflicients. ]

Remarks.
1. Theorem 8.2 implies that

M.(X* X%} > B(X% X%, n=0,1,..

‘and that

Lo =] o0
31" Ma (X X% = > (=) Ba(x?, X9).
n=0 n=0
The second relation is an extension of the Poincaré-Hopf formula.
2.1 Ma(X%, X*), Moy (X®, X)) =0 for every n, then necessarily

M(t, Xt X%y = P(t, X%, X°).

The above observation is called the Morse lacunary principle.
Let us now cxtend Theorem £.2 to the case of an unbounded interval
[a,+oo].

Lemma 8.4. Let M be ¢ Riemannian manifold of class C?, let p €
C?*~%M,R), and let X be a subset of M positively invariant with respect
to the flow o defined by (10). If for every d > b, = ([b,d])N X is complete
and free of critical points, and if p satisfies (PS) over e Y[, d)N X, then
X* is a strong deformation retmct of X.

Proof. Let ¥ € X be such that ¢(u) > b. If wla(t,u}y > b for every
t € J0,w* (u)[ then, as in the first part of the proof of Lemma 8.2, there
exists a critical point v of  in X such that w(v) > b. But this is not possible
by assumption. Thus there exists a unique £(x) such that wlo((u), u)) = b
The deformation can then be given on [0,1] x X by

(s, u) = o(t(u)s,u), 0<s<1
ifte X\ X?and by
ns,uy=u, 0<s5<1

ifue Xt O

Let us suppose that, in addition to assumption (A), the following condi-
tion holds.
(B) For every d > b, p~1([b,d[)N X is complete and free of critical points

and s catiofian FDOV cvime o= 14T Y~ v
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‘The Morse numbers of the pair (X, X?) are defined by
Ma{X, X%) = Ma(X%, X").

It M, (X, X?) is finite for every n and equal to zcro for n sufficiently large,
the Morse polynomial of the pair (X, X2} is defined by

M, X, X%) = M(t, X%, X9,

Corollary 8.1. Under assumptions (A) and (B), if M, (X,X*®) is finite for
every n and equal to zero for n sufficiently large, there exists a polynomial
Q(t) with nonnegative integer coefficients such that

Mt X, X% = P(t, X, X°) + (1 + ) Q(1).
Proof. By Lemma 8.4, X% isa strong deformation retract of X so that
P(t,X,X%) = P(t, X}, X%).

The result then follows from Theorem 8.2 and from the definition of M{t, X,
X4, a

Corollary 8.2. Lei M be a complete Riemannian manifold of class C?
and let p € C'“"O(M,R). If

i) y satisfies the Palais-Smale condition over M,

ii) o is bounded from below on M,

1ii) ¢ has only a finite number of critical pownts u, ... vt and dim Cu(p, u;)

is finite for every n and zero for n sufficiently large, i =1,... J

then there exists a polynomial Q(t) with nonnegative integer coefficients
such thal

oo
> " dimCal, uidt" = P(t, M, ¢) + (1 + ) Q(2).
n=0i=1

Proof. Let a < infarp and b > sup{p({u) : Ve(u) = 0}. It suffices to
apply Corollary 8.1 with X = M. (]

8.6 The Generalized Morse Lemma

The generalized Morse lemma, also called the splitting theorem, is the basic
tool for the effective computation of critical groups. The theory of Fredholm
operators provides a natural setting for this lemma.

A linear continuous operator L between two Banach spaces is called a
Fredholm operator if the dimension of ker L and the codimension of R(L)
are finite. This implics that R{L) is closed.
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Let V be a Hilbert space, U an open neighborhood of u € V, and let
¢ € C2(/, R). Define implicitly the linvar operator & : V = ¥ by

(L, v) = ¢"(u)(v, w).

Then L is self-adjoint and we shall identify L with ¢”(u). If ¢"(u) is a
Fredholm operator, V' is the orthogonal sum of R{p"(u)) and ker(p"(u)).

Assume now Lhat u is a critical point of p. The Morse indez of u is
defined as the supremum of the dimensions of the vector subspaces of V on
which ¢”(u) is ncgative definite. The nullity of u is defined as the dimension
of ker ¢”(u). Finally, the critical point u will be said to be non-degenerate
if "(u) is invertible.

Theorem 8.3. Let U be an open neighborhood of 0 in a Hilbert space
V and let ¢ € C*(U,R). Suppose that 0 is a critical point of ¢ with
positive nullity and that L = ¢"(0) is & Fredholm operator, so that V is the
orthogonal direct sum of ker(L) and R(L). Lel w+ v be the corresponding
decomposition of u € V. Then there ezists an open neighborhood A of 0 in
V, an open neighborhood B of 0 in ker(L), a local homeomorphism h from
A into U, and a function p € C*(B,R) such that

A0)=0, ¢'(0)=0, &"(0)=0

and
p(h(u)) = (1/2)(Lv,v) + $(w)
on the domain of h.

Proof. 1) Let @ : V — V be the orthogonal projection onto R(L). By the
implicit function theorem, we can find r; > 0 and a C'-mapping

g : B(0,r)Nker L — R(L)
such that g(0) = 0, ¢'(0) = 0 and
QVip(w + g(w)) = 0. (13)
Let us define ¢ on B = B(0,r;) Nker L by
$(w) = p(w + g(w))
so that, by direct computation and (13),
Vé(w) = (I - Q)Vep(w + g(w))

and
¢"(w) = (I - Q9" (1w + g(w))(Id + ¢'(w)).
In particular
Ve(0) = (I - Q)Vip(0) = 0

oy
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and
O =I-Q"(0)=(I-QL=0.
Let us define, near [0,1] x {0}, the function

Bt v, w) = (1= @(w) + (1/2)(Lv, v)) + to(v + w + g(w))
and the vector field

flt, v, w) 0 ifv=0,

_¢l(tl U,‘UJ) l¢v(tlvrw)|“2¢v (trv' UJ)‘ ir v # 0

1E n{t) = n(t, v, w) is a solution of the Cauchy problem
n=f(t,nw)
7(0) = v

we have

TR0 W) = (0, w) + (B0, 1(0), ), 5(0)

0

and, in particular,

H(w) + (1/2)(Lv,v) &(0,v, w)
(D(la 1, v, w), w)

e(n(l,v,w) + w+ g(w)).

Let us assume that the flow n{t,v,w) is well defined and continuous on
[0,1] x A, where A is an open neighborhood.of 0 in V. Then the local
homeomorphism k is given by

h(u) = b(v,w) = w+ g(w) + (1, v, w).

The local invertibility of h follows from the local invertibility of n(1, -, w).
2} It remains to prove that n is well defined and continuous. Let us define
¥ by
(v, ) = oo +w + g(w)) - $(w) — (1/2)(Lu,v).
We obtain, using (13},
¥(O0,w) =0, W,(0,w)=0, W0,0)=0;

and, consequently

B(v,w) = -/o (1 - s)(®U(sv, wv,v)ds
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1
¥, (v, w) = f W30, w)o d.
[}
Thus, for each ¢ > 0, there exists 8{¢) € 10, ry] such that
[W(v, w)] <elof?, (v, w)] < c|v| (14)

whenever |v+ w] < 6(¢). Since L : R{L) — R(L) is continious and invert-
ible, there exists ¢ > 0 such that

e ol < 1Lv] < clof (15)
for v € R(L). We have, for v 0,
f{t,v,w) = ~¥(v, w)|Lv + t¥, (v,w)]"2(Lv + t¥, (v, w)).
Let ¢ = (2¢)~!. Using (14) and (15), we obtain, for v+ w| < 8(e),
(2,9, 0)] < 2e(c+ e)e Jo]. (16)
Since f(t,0,w) = 0, f is continuous. Let p € 10,é(€) be such that
¥ (v, 0)] < 1 (17)

for |v + w] < p and v # 0. Using (14), (15), and (17), it is easy to verify
the existence of ¢; > 0 such that

Ifll'(tv v, w)l S ]

for [v+ w| < p and v # 0. By the mean value theorem and (16), there
exists co > 0 such that

1t v1,w) — £, 02, 0)| € calvy — vy

for [v; + w] < p, i = 1,2. Thus the flow n is locally well defined and
continuous. Moreover, since n(t,0,w) = 0, n is well defined on 0,1l x A
where A is an open neighborhood of 0 in V. a

Remarks. 1) It is easy to verify that h restricted to R(L) is a local diffeo-
morphism since f,(t, v,0) is continuous.

2) A similar but simpler proof gives the following result, which is called
the Morse lemma,

Theorem 8.3bis. Let U be a neighborhood of 0 in a Hilbert space V and let
¥ € CYU,R) be such that 0 13 a non-degenerate critical point of . Then
there exists an open neighborhood A of 0 in V and a local diffeomorphism
h from A into U such that h(0) = 0 and

w(h(u)) = @(0) + (1/2)(¢"(0)u, u).
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Let now M be a regular C?-manifold modelled on a Hilbert space V and
let u be an isolated critical point of ¢ € C*(M,R). The Morse index (resp.
the nullity) of u is defined as the Morse index (resp. the nullity) of z(u) as
a critical point of ¢ 0 ™!, where z is a chart at u. The critical point u is
called non-degenerate if z(u) is a non-degenerate critical point of poz~1.

Remarks. 1. If y is another chart at u, then, since

1 1

poz ! =poy oyoz~

on D(z) N D(y), it is easy to verify that
(poz™)"(2(w) = (poy™")(v(u))l(y o 2~ (2(u)), (v 0 ==Y (z(w))].

The invertibility of (y o 2! (z(u)) iinplies that the above definitions are
independent of the chart z.

2. In the non-degenerate case, the Morse index is the supremum of the
dimensions of the subspaces along which ¢ is decreasing near the critical
point u.

3. By the implicit function theorem (or by the Morse lemma) any non-
degenerate critical point is isolated.

We now show that the critical groups of a non-degenerate critical point
depend only upon its Morse index.

Corollary 8.3. Let M be a regular C? manifold modcled on a Hilbert space
V and let u be a non-degenerate critical point of ¢ € C*(M,R) with Morse
indezr k. Then

Calp,u) =6, F, n=0,1,....

Proof. 1) Let z be a chart at u and let U € D(z) be a closed neighborhood
of u. Since, by definition

Calp, 1) = Ha(p* N U, N U\ {0))

with ¢ = p(u), it is sufficient to consider the case where M is an open
subset of V.

2) We can assume without loss of generality that u = 0 and ¢ = 0. By
Theorem 8.3bis, there exists an open neighborhood A of 0 in M and a local
homeomorphism h from A into V such that A{0) = 0 and

p(h(u)) = ¢(u) = (1/2)(¥"(0)u, u)
whenever u € A. Let B C A be a closed ball centered al 0. We have

Calp,0) = Ha(¢"Nh(B),e" Nk(B)\ {0})
= Ha(v°n B,y nB\{0)).

From the invertibility of ¢"(0) it follows that V is the orthogonal sum of
V= and V* with 4 negative (resp. positive) definite on V- (resp. V). Let
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v=v" 4 vt be the corresponding decomposition of any v € V. Define the
deformation 5 of B by

[0 xB =B, (tv)—v +(1-fut

so that
B0t 1) = $(o™) + (1= ) (o*).

Thus V=1 B\ {0} is a deformation retract of y° N B\ {0} and V- N B
is a deformation retract of y° 1 B. Since, by definition, k¥ = dim V™, we
obtain, for k > 1,

Ho($* 0 B,4* N B\ {0}) ~ Ha($°N B, V- n B\ {0})

~ Ho(VTNB,VNB\{0}) » H.(B*, St 1) ~ S F,
and for k = 0,

Ha(v® N B N B\ {0}) » Ho({0},¢) =6, 0F. O

Remarks. 1. If the Morse index of a nondegenerate critical point u is
infinite, then all the critical groups of ¥ at u are isomorphic to 0.

2. Under the assurnptions of Theorem 8.2, if the critical points of ¢ in
¥~ ([, b])N.X are non-degenerate, then Mq(X*, X?) is equal to the number
of critical points of ¢ with Morse index n in e s, )N X.

8.7 Computation of the Critical Groups

The use of Morse inequalities depends on the effective computation of the
critical groups in the degenerate case.

Lemma 8.5. Let U be an open neighborhood of v in a Hilbert space V and
let o € CT~OU;R). If v is the only critical point of ¢, and if the Palais-
Smale condition is satisfied over a closed ball Blv,r] C U, then there ezists
€> 0 and X C U such that:

1} X is a neighborhood of v, closed in U;
1) X is positively invariant for the flow o defined by (10);
i} p~Y[e ~¢,c+ ]} NV X is complete, where ¢ = w(v);
iv) the Palais-Smale condition is salisfied over o~ '([c~ €,c+ €]) N X.

Proof. Let ¢ > 0and B C U be given by Lemma 8.1 applied to A = B{v, 7]
and let X be the closure in U of the set

Y ={o(t,u) : ve B,0 <t <wy(u)}.
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By construction, X satisfies 1) and ii). Lemma 8.1 implies that
¢ Hfe—e,c €)Y C By, rl.

Since Blv,r] is closed in {7, the set ¢~ '([c — e,e + ¢]) N X is contained
in Blu,r] and closed in B[v, r]; hence it is complete. By our Palais- Smale
assumption, iv) then follows from iii). o

We shall prove that, in the setting of Theorem 8.3, the critical groups
depend on the Morse index and on the “degenerate part” of the functional,
Thus the computation of the critical groups is reduced to a finite dimen-
sional problem. This result is called the Shifting theorem.

Theorem 8.4, Under the assumplions of Theorem 8.3, if O is the only
critical point of ¢, and if the Morse indez k of 015 finite, then
Cﬂ(‘P; 0)% ank(‘f?‘ 0)! n= 0,],-...

Proof. 1) With the notations of Theorem 8.3, let C' C A be a closed neigh-
borhood of . Setting ¢ = ©(0) = ¢(0) and ¥(u) = P¥{v +w) (1/2)(Lv,v) +
#(w), we obtain
Co(p,0) = Ha(e" NA(C), ¢ NA(C)\ {0})
= Ha(¢v NnC Y NC\{0}) = Ca(v,0).

2) By assumption, 0 € ker L is the only critical point of ¢ € C?(B,R).
Since dim ker L is finite, the Palais-Smale condition is satisfied over any
closed ball B[0,r} C B. Let € > 0 and X C B be given by Lemma 8.5
applied to . Lemma 8.3 implies that X° is a strong deformation retract of

X+ Moreover, ¢ is non-increasing during the corresponding deformation
7. Define the deformation A over I = R(L) x X+ by

A(t,v,w) = v~ + (1 =)ot + 5t w).
I is easy to verify that V'~ x X € is a strong deformation retract of N D}
and that (V= x X°)\ {0} is a strong deformation retract of ¥° N D\ {0}.
Therefore we obtain

Co(¢,0) = Ha(v*ND, ¢ N D\ {0))
Ha(V™ x X5, (V™ x X7\ {0)).
N IFk =dimV~ =0, we have
("n(’j'u 0) = II;.(;YC, ‘Yc \ {0})
= Ha(@5 N X, 8 N X\ {0}) = Cu(,0),

&

and the proof is complete. I & > 1, relation (4) implies that
Co(,0) & HL(RF x X° (R* x X°)\ {0})

(B x X (B x XY\ {0})

Haok(X*, X\ {0)) = Cuok($,0). O

X

&
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Lemma B.6. Let U be an open subset of RP and let v be the anly critical
point of € C*U,R). Then, for every p > 0, there exists ¢ € (72(U, R)
such that the following hold:

a) The critical points of &, if any, are finite in number and non-degener-
ale.

b) If lu— vl 2 p, then G(u) = p(u).
¢) If uel, then

16(u) — () + 16 () — & (w)] + 16" (1) — ¢"(w)) < .

Proof. We can assume that the closed ball B{v, p] is contained in I/. Let
w € CYU/,R) be such that

1 iflu—v <p/2
“’(")*{0 if]u—v|2z/

and let e € R”. The function ¢ € C?*(U, R) defined by
B(1) = p(u) — wlu)(u, )

satisfies b}. It is easy to verify the existence of & > 0 such that c) is satisfied
for |e| < a. Since

V@(u) = Volu) — w(u)e — Vwlu)(u,e),
we obtain
IVE()l 2 |Ve(u)] - lel lw(u)l — [Vw(u)] x| le].

But
§=inf{|Ve(u}] : pf2< u—v]<p) >0

Thus there exists § € ]0,a] such that, for |e| < 3,
inf{IV()] : p/2< |u—v| < p} > 6/2.

By Sard’s theorem, we can assume that ¢ is a regular value of Vi such
that [e] < B. 17 Ju = v] > p, $(u) = ¢(u), so that V@(u) # 0. If p/2 <
|u— v| < p, we have [V@(u)| > 6/2. If ju — v| < p/2, then, by definition

Ve{u) =0 if and only if Vp(u) = e

Since ¢ is a regular value of Vi, the critical points of $ are non degenerate
and, consequently, isolated. Being contained in B[v, p/2], they must be
finite in number, o
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Let U/ be an open subset of R* and let v be an isolated zero of f €
C(U,RP). Assume that » > 0 is such that the ball B[y, r] is contained in U
and v is the unique zero of f in B[v,r]. Then the topological indez i(f,v)
of f at v is defined by

i(f,v) = d(f, B(v,r)).

By the excision property of the topological degree, the right-hand member
is independent of r.

The following theorem gives a relation between the topological index and
the critical groups.

Theorem 8.5. Let U be an open subset of R? and lel v be an isolated
critical point p € CHU,R). Then dim C, (, v) is finite for every n and is
zero for n > p+ 1. Moreover

P
{Vip,v) = Y _(=1)"dim C(p, v).
n=0

Proof. 1) By diminishing U if necessary, we can assume that v is the
only critical point of ¢ lying in /. Moreover, the Palais-Smale condition is
satisfied over any closed ball Bfv,r] C U. Let € > 0 and X C U be given by
Lemma 8.5. The definition of the Morse numbers and ‘Theorem 8.1 imply
that

dimCp(p,v) = Ma(X ¥, X)) = B, (X, X°79) (18)
where ¢ = p(v).

2) There exists p € ]0,¢/3] such that

Blv,2p) C ! ([c— %.c+ -g-]) nx.

Let ¢ € C*U,R) be given by Lemma 8.6. Properties b) and c) of @ imply
that 3¢ = o« Thus g~'(fc —c,e+ PYNX = Y c—c,c+ )N X is
complete. In particular, { satisfies the Palais-Smale condition over $~*([c—
¢,¢+€])NX. Since B[v, p] is contained in the interior of X, property b) of
% implies that X is positively invariant for the flow & defined by

o(t} = ~Vp(E(1))
#(0) = u.

By a), @ has only a finite number of critical points uy,...,u;, all non
degenerate. By b), the critical points are contained in B[v, p], and, hence,
in the interior of g~ '([c - ¢,e + ]) N X.

3) Let ks € {0,1,...,p} be the Morse index of u;, i =1,...,j. [f we de-
note by Mn{X ¢+, X¢~¢) the Morse numbers corresponding to ¢, Corollary
8.2 implies that

J
M“(Xc+¢'xt—¢) = Eéﬂ,h' (19)

- e ———
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In particular, ﬂ"(X‘+',X‘"‘) is finite for every n and equal to zero for
n 2 p+ 1. 1t follows from Theorem 8.2 that

MH(XC'H,XC—() 2 Bﬂ(Xc+c’Xc—t)
and that

P . 4
Z;)(—l)"Mn(X‘“,X“‘) = D (=D Ba(X¥, X7, (20)

n=0

In particular, dim C,(¢, v} is finite for every n and equal Lo zero for n >
p+l. -

4) By definition of the topological index and of the topological degree,
we have

iV, u) = (-1)*.
It follows from (19) and from the additivity of the topological degree that
P _ P b) J
Z(__l)nM"(Xc-H'Xc-() — Z(_l)n (26"_;._) = E(_I)k.‘
n=0 n=y0 i=1 i=1

i

= Y iV, w) = d(VE, B(v,2p)). (21)
i=1
By continuity of the topological degree, we have
d(V, B(v,2p)) = d(Vip, B(v, 2p)) = i(Vop, v). (22)

Theorem 8.5 then follows from (18), (20), (21), and (22). o

Thgorem 8.6. Let U be an open subset of RP and let v be an isolaled
critical point @ € CHU,R). If v is neither a local minimum nor a local
maztmum, then

Colp,v) = Cylp, v) = 0.

P}'(‘)of. 1) By diminishing U if necessary, we can assume that v is the only
cntilca.l point of ¢ located in U. Moreover, the Palais-Smale condition is
satisfied over any closed ball Bjv,r] C U. Let ¢ > 0 and X C U be given

by Lemma 8.5. Then, by Lemma 8.3, X¢ is a deformation retract of X ete
so that

Cnlp,v) = Ha(X, X\ {0}) = Ha(X°*, X°\ {v}).

Let n € C({0,1] x X+¢, X°*¢) be the corresponding deformation.

2) In order to prove that Ho( X+, X¢ \ {0}) = {0}, it suffices to show
that every point u € X+ is connected to a point in X*\ {v} by a continu-
ous path contained in X<t¢. Let p > 0 be such that Blv,p] C X+t Since v

IR Nt a laaal malsiceis dlao. L2 . - nrf

e
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v is connectled to the point w € X¢ \ {v} by a continuous path contained
in X Now, every point u € Xt |5 connected by a continmous path
contained in X*+¢ to y( 1, u), which either is v or belongs to X<\ {v]).

3) Any continuous map

S 87— Bl f et \ {v}

has a continuous extension g1 : B? — Blv, p]. It follows from Lemmas 8.3
and 8.5 that f has a continuous extension g2 : BP — ° Since v isnot a
local maximum, v is not an interior point of g2(BF). Thus f has a continuous
extension g3 : BP — " US; \ B; where § > 0 is small, Sy = S(v, 6), and
Bs = B(v, ). Using the argument of Lemma 6.5, we obtain a continuous
extension gy : BP — p°\ {v) of . Thus H ~1(#°N B[y, p]\ {v}) = 0. Since
Hp{° 0 Blw, p]) ~ 0, we obtain by exactness Colip,v) =~ 0. a

Corollary 8.4. Under the assumptions of Theorem 8.3, if 0 is an isolated
critical point of p with finite Morse indez k and nullity v, then the following
are {rue.

1) dim Ca(p,0) is finite for every n and is equal lo zero if n ¢ {k, k +
I,...,k+ v}

ii) if 0 is a local minimum of 3, then

Cﬂ(‘P:O) = Jn,tF;

i} if 0 ts a local mazimum of ¢, then
Ca(9,0) = bn p4u F;
iv) if 0 is neither a local minimum nor a local mazimum of J, then
Ci(p,0) = Cryu (9,0} = 0;

v) if there exist integers ny # n, such that Cn,(v,0) # 0 and C,,(p,0) #
0, then
[ —na| <w—2.

Proof, By Theorem 8.4, C,(y,0) n-+(#,0), so that Ca(p,0) = 0 if
n <k — 1. it follows from Theorem 8.5 and dim Cal,0} is finite for every
n and is equal to zero for n > k 4 v + 1. It is easy to obtain ii} and 1ii) by
a direct calculation. Theorem 8.6 implies iv). Finally, v} follows from i) to
iv). a
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8.8 Critical Groups at a Point of Mountain Pass
Type

Interesting multiplicity results can be obtained by combining the minimax
theorems and the Morse theory. Let us illustrate this fact by the mountain
pass theorem situation.

Theorem 8.7. Let X be a Hilbert space and Iet # € C*(X,R). Assume
thatl there ezists u, € X, 4y € X and « bounded open neighborhood Q of
up such that u; € X \ Q2 and

inf o > max(p(uo), p(u1)).
Let I' = {g € C([0,1], X) : 9(0) = uo,9(1) = u,} and

= inf .
c¢=inf 'rg[g§]w(9(8))

If ¢ satisfies the Palais-Smale condition over X, and if each critical point
of win K, fsisolated in X, then there exists u € K. such that dim Cy(p, u) >
1.

Proof. Let € > 0 be such that ¢ — ¢ > max{p(uo), ¢{u1)) and ¢ is the only
critical value of p in [c — ¢, c + €. Consider the exact sequence

Co= Hy(ptte ety B Ho(p™5, ¢) Ho(p™ ¢y — ...

where 4, is induced by the inclusion mapping § @ (p°7¢,¢) ~ (p*1, §).
The definition of ¢ implies that o and 4y are path connected in ¢+t but
not in ¢~ Thus, keri, # {0} and, by exactness, Hy(pte, 9°7¢) # {0}.
It follows from Theorem 8.1 that

Mi(et,0°=) = Bi(p™*,47) = dim Hy (9", 0*~) > 1.

Thus p="([c—¢, c+¢]) contains a critical point u such that dim C; (p,u) > 1
and, necessarily, u € K.. a

Corollary 8.5. Besides the above assumplions, assume moreover thaf each
u € K, satisfies the following conditions:

a) ¢"(u) is a Fredholm operator;

b) the nullity of u is less than 2 provided the Morse indez of u is equal
to 0.

Then there ezists u € K, such that

dimCo(ip,u) = 6,1, neN.
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Proof. 1) Let u € K., with Morse index k and nullity v, be such that dim
Cilp,u) > 1. We can assume that u = 0. By Corollary 8.4, k < 1 and
v>1ifk=0.

2) If k& = 0, assumption b) implies that » = 1. It then follows from
Corollary 8.4 that 0 is a local maximum of ¢ and

Cn(?s 0) = 6n,k+uF = ‘sn,IF-

3) If k = 1, then, by Corollary 8.4, either ¥ = 0 or 0 is a local minimum

of ¢. In both cases,
Colg,0) =8 F =81 F O

Corollary 8.6. Under the assumptions of Corollary 8.5, if X =P, there
exisis u € K. such that
i{(Ve,u) = —L

Proof. By Corollary 8.5, there exists « € K, such that dim C,(p,u) = 8, 1.
Theorem 8.5 implies that

14
{Vp,u) =Y (-1)"dimCalp,w) =—1. O

n=0

8.9 Continuity of the Critical Groups and
Bifurcation Theory

The critical groups are continuous with respect to the C! topelogy.

Theorem 8.8. Let U be an open neighborhood of v in a Hilbert space V
and let @, 9 € C-O(U,R). Assume that o and v have v as the only critical
point and salisfy the Palais-Smale condition over a closed ball Blv,r) C U.
Then there ezists n > 0, depending only upon @, such that the condition

ﬁgg(lﬂ)(u) - plu)| +1V(u) — Ve(u)) < 9 (23)
implies
dim Cu(¢,v) = dimCa(p,v), n€N. (24)

Proof. 1) Let ¢ > 0 and X C U be given by Lemma 8.5 applied to . The
definition of the Morse numbers and Theorem 8.1 imply that

dian((P,v) = M,.(Xd",xc_() = B"(Xc+c'xc—z) (25)

where ¢ = p(v).
2) Let p > 0 be such that

B[v,?p]Cip'l([c—%,c-i-%])ﬂx. (26)
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By the Palais-Smale condition,

6 =inl{|Ve(u)| : p/2< Ju—v|<p}>0. (27)
Let w € C*(U,R) be such that
wlu)=1 if |u—v<p/2
wu)=0 if |[u—v[>p

0<w(u) <1 (28)
Y = sup [Vw(u)] < oo,

and let

n = min(e/3,8/2(1 + 71)).

I;’Assume that ¢ satisfies the assumptions of the theorem and define 3 on U
Y

¥(u) = p(u) +w(u)($(u) - p(u)).
It {ollows from (23), (27), and (28) that, for p/2 < |u— v} < g,
V()] 2 [Ve(u)] - w(u)lVe(u) — V()| — [Va(u)| {$(u) ~ p(u)]
2 é-(1+7)n28/2 (29)
We obtain from (23) and (28) that, for v € I,
|9() = p(u)| = w(u) l¥(x) — p(u)] < 7 < /3. (30)
_ 3) Since Wu) = wlu) if Ju — v| > p, relations (26) and (30) imply that
pete = qp‘*‘._Thua v ([e—€, e+ )NX = cp"‘([c-—c,c+c])ﬂX)i;T:r:plet:
It follows easily from (29) that ¢ satisfies the Palais-Smale condition over

" {[c~ 6+ c]) N X. Moreover, B[v, p] is contained in the interior of X,
0 that X is positively invariant for the flow & defined by

5(t) = ~V¥(5(1))
5(0) = u.
Finally, the definition of ¥ and (29) imply that v is the only critical point

of y. If we denote by M,(X°+¢, X°~¢) the Morse numbers corresponding
to 1, we have

dim Ca(¥, v) = Ma (X, X°7¢) = B, (X°+, X9, (31
But, by the definition of ¢,
Cu(¥,v) = Cu(¥,v), (32)
and (24) follows from (25), (31), and (32). o

—_ - - . - . ,
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The preceding theorem is useful in bifurcation theory.

Let V, W be Banach spaces, let U be an open neightwrhood of 0 in V,
and let. A be an open interval. Consider a mapping f € C(A x U, W) such
that f(X,0) = 0 for every A € A. A point (A0,0) € A x U is a bifurcation
potnt for the equation

J(A,u)=0 (33)
if every neighborhood of (X¢,@) in A x I/ contains at least one solution
(A, u) of (32) such that u £ 0.

If f is a C! mapping, the implicit function theorem implies that a neces-
sary condition for (Ag,0) to be a bifurcation point is the non-invertibility
of Dy, f(Ay,0). However, this condition is not sufficient in general, as shown
by the simple example with V = W = R? and

J(wy,u) = (uy = Aug + ud, ug — Auy - u?)
for which
Dy f(1,0,0) =0
is not invertible and which, however, has no bifurcation point, as FOA up, ug) =
0 implies

0 = ug(uy — Auy + 13) — ug(uy — Auy — u)=ui+ul =0

and hence (u;, u3) = 0. Notice however that f is not a gradient mapping
with respect to u. We shall describe a rather wide class of gradient mappings
for which the necessary condition above is sufficient.

The proof of the following simple lemma is left to the reader.

Lemma 8.7. Let K C A be a non-emply compact interval such that K x {0}
conlains no bifurcation point for (33). Then there exisis p > 0 such that
Bl0,p] C U and each solution (A, u) of (33) in K x B[0, p] satisfies u = 0.

Theorem 8.9. Let U be an open neighborhood of 0 in a Hilhert space V,
let A be an open inlerval and let f(X, u) be the gradicnt with respec {o u
of ¢ € CHA x U, R). Assume that the following condilions are salisfied:

a) 0 is a critical point of ¢y = p(A,.) for every A € A and 0 is an
iselated crifical point of p, and @y for some reals a < b in A.

B) @x satisfies the Palais-Smale condition over a closed ball B[0,r] C U
for every A € [a,b].

¥) There exisis n € N such that

dim Cp(2a,0) £ dim Ca(ps, 0).
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Then there ezists a bifurcation point (X0,0) € [a,b] x {0} for (33).

Proof. f [a,.b] x {0} contains no bifurcation point for (33), then, by Lemma
.8.7, there exists p >‘0 such that B[0, o] C U and each solution (A, u} of (33)
in [a,8] x B0, p] satisfies u = 0. We can assume, without loss of generality,

:]l:a: #(A,0) = 0. Since ¢ is of class C?, we can choose £ small enough so
a

ID*V’("““)I + IDAuW(’\1 u)l bt 1

whenever A € [ri-,b] and u € B[0, p]. Thus ¥ and Vi, depend continuously
on A € [a, 8], uniformly on B[0, p). By Theorem 8.8, dim Cn(pa,0) is locally
constant, and hence constant, on [a,b], for every n € N. In particular

dimC,,(1p4,0) = dimC,a(¢3,0), neN,

a contradiction with assumption y). a

8.10 Lower Semi-Continuity of the Betti Numbers

We e.shall prove in this section a lower semi-continujty property for the
Betti r?umbers Ba(e®, ¥*) with respect to the C? topology. It is interesting
to notice that this property is weaker than the corresponding continuity
property of the topological degree whenever both concepts are defined.

Lemma 8.8. et B C F ¢ B CACECA be topological spaces.
Suppose that
Hn(B',B)zH,,(A’,A)z {0}, n=0,1,.. .. (34)
Then
Bu(A,B) < Bp(E,F), n=0,1,.. ..
Proof. Let us consider the following diagrams:
Hasi(A' A) — Ho(A,B) & H, (A, B) — Ha(A', A)

o N 7 e
H.(E, B)

Hn(B',BY — Ho(E,B) & p(E, B') - Ha (1, B)
fiN VA
Ho(E, F)

By exactness, assumption (34) implies that i, and J+ are isomorphisms.
Buti, =g.0f, and j, = g. o fi, so that f, and fi are injections. Thus

he = flof. : Ho(A,B) — H.(E, F)

is an injeclion. 8]




200 8. Morse Theory

. . . 2
Theorem B8.10. Let M be a complete Riemannian manifold of class C
and let p € C?~%(M,R). Suppose that there exists § : M — R,ce R and
€ > 0 such thal
i) supyep lp(u) - pu)] < ¢/3;
i) ¢ is the only critical value of  in [c=~¢ec+e);
i) ¢ satisfies the (PS) condition over ™ ([c—€,c + €]).
Th
en Bn(’Pc+¢’(pc-'¢) S Bn((,f’c+(l2,<ﬁc-tlz), (ﬂ — 0‘ 1, . )
Proof. By assumption i), we have

c—tlﬁ c+([6)C¢’C+'”C‘P:+'~

‘Pc_( C ¢c—(/2 Ce C

It follows from Lemma 8.3 and assumptions ii) and iii) that ¢°7* (resp.
- €
¢ +¢/% is a strong deformation retract of ¢° ¢/ (resp. p°t¢). Hence

Ho(9° =15, 0" ) = Ha(e 9t /Sy =0 (n=0,1,...).
Applying Lemma 8 8, we obtain
Balp™ %, ¢77%) € Ba(@*+/2,657%) (n=0,1,..).

Since Bn(<P°+da,$0c_E) = B, 979,

the proof is complete. ]

8.11 Critical Groups at a Saddle Point

Let X be a Hilbert space and assume that ¢ E C*%X,R) satisﬁes t;lhe
Palais-Smale condition over X. Assume also, as in the saddle_pomt. tXe+-
orem, that X splits into a direct sum of closed subspaces X~ and
ith
" 2<m = dimX~ < +oo,
b= su_p(d = l;_l{lp

S

where S = {u € X~ : |u] = R}. Regard the identity mappings o : S —
Sy as the generator of the homology Hm-1(Sg,¢) and define

e = inf sup @(u),
ar=ea uE|T|

where 7 is any chain of m dimensional singular simplices on X such that
A- — = Tn thic wav we nhtain a natural variant of the saddle point theorem.
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Theorem 8,11. Under the above assumplions, ¢ is a crifical value of .
Moreover, if each critical point of ¢ in K, is isolated in X , then there
exests u € K, such that

dimCp(p,u) > 1.

Proof. 1) Let us show that |r| N X+ is nonempty for any chain 7 with
81 = ¢. Consider the exact sequence

= Ha(X, X\ XY) 2 Hn o (X\X*,8) m Hoa i(S,6) — ...

Since 8[r] = [o] # 0, necessarily [r] # 0. Thus |r] ¢ X \ X*. In particular,
we have that

sup (u) > d
ugjr|
for any chain r with 87 = o. Hence ¢ > d.
2) Using Lemma 6.5, one can easily prove, by contradiction, that K, is
nonempty.
3) Assume now that each critical point of @ in K, is isolated in X. Let

€ > 0 be such that c—e¢ > b and ¢ is the only critical value of pin [c—~¢,c+€].
Consider the exact sequence

o> Hu(0, 057 2 Hono (9774 6) &5 Hi(04,6) — ...

There exists a chain 7 such that ¢ = 8r and |r| C p***. Thus [o} = 0
in Hy_1(¢*t,¢). On the other hand, if [} = 0in Hp_y(p°~%, ¢), there
exists a chain 7 such that ¢ = 87 and |r| C ¢°~*. But this contradicts
the definition of ¢. Thus [0] is a nonzero element of Ker i,. By exactness,
He(p°+, ¢°=¢) # {0}. The conclusion then follows from Theorem 8.1. O

Using Corollary 8.3, we obtain the following result.

Corollary 8.7. Under the assumplions of Theorem 8.11, if each critical
point of p in K, is nondegencrate, then there exists u € K, such that

dimCu(p,u) = 6, ,m, n€EN.

Historical and Bibliographical Notes

The reader can consult [Wal,] for a brief and lucid exposition of singular
homology. Surveys of the mathematical work of Morse are given by [Bot,],
[Cai,), and [Tho,), and surveys of Morse theory are given by [Boty), [Chay],
and [R,Otls].

Morse’s first paper on this theory [Mrs;] already includes such essential
ingredients as the Morse lemma, gradient deformations, and Morse inequal-
ities for a nondegenerate function on a smooth domain in R¥ . It was aimed
as a generalization of the Birkhofl minimax theory [Biry). The theory is ex-
tended to compact smooth manifolds in [Mrs;], which also contains the
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Morse index theorem and applications to the calculus of variations by the
method of “broken extremals.”

The Morse theory was extended to Hilbert spaces by Rothe [Rotg} and
to infinite-dimensional Riemannian manifolds by Palais and Smale ([Paly],
[PaS;), [Smay]). As in the Leray-Schauder theory, the compactness of the
domain is replaced by a compactness condition on the function {the PS
condition).

The classical Morse lemma for nondegenerate critical points was ex-
tended by Palais [Pal] to Hilhert spaces. Because of the loss of two or-
ders of differentiability, the Palais method is only applicable to functions
of class C3. Using the Lyapunov-Schmidt method and the Palais approach,
Gromoll -Meyer [GrM,] succceded in treating the case of degenerate critical
points when the second differential of the function is a compact perturba-
tion of the identity. On the other hand, Kuiper [Kui;] and Cambini [Cam,]
independently gave a proof of the Morse lemma for a nondegenerate criti-
cal point of a C? function. This result was extended to the degenerate case
by Hofer [Hofs] when the second differential is a compact perturbation of
identity. Hofer's proof uses deformations by a gradient flow (see [GoM,] for
extensions). Theorem 8.3 generalizes the previous results. We follow the
proof of Hofer [Hofa} (see [MaW,] for another proof).

The shifting theorem is due to Gromoll-Meyer [GrM;]. A new proof is
given here. Theorem 8.5 was first proved by Rothe [Rots], to whom we also
owe the first results on the continuity of the critical groups and the lower
semicontinuity of the Betti nuinbers in the Hilbert space case [Rotg].

Lemma 8.6, Lemma 8.8 and Theorem 8.10 are contained in the important
paper of Marino-Prodi [MaP;] on perturbation methods in Morse theory.

Of course the genericity of the non-degenerate case is known and has
been used since Morse. Theorem 8.6 is due to Dancer [Dan;] and Theorem
8.7 to Ambrosetti [Amby 3] in the nondegenerate case and to Hofer [Hofs]
in the general case.

Minimax methods were introduced in bifurcation theory by Krasnosel’skii
[Kray] and Morse theory by Marino-Prodi {MaP,] (see the surveys [Chay],
[Rahr,])

The results of Section 8.11 are due to Liu [Liwy].

For Morse theory on Banach manifolds, the reader can consult [Sk;],
[Tr,], and [U,]. The completeness of the Morse inequalitics is studied in
{Joh;] and [Sma,]. Degenerate critical points are considered in [CGR,],
[Dang], and [Ro7]. More results on bifurcation through variational methods
can be found in [Bokh; 2], {Chz], [Clk4], [Dang], [Mar,), [Prod;], [BenP;], and
[Wil,).
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Exercises

L. Let M be a complete C?-Riemannian manifold and assume that p €
C.’(M, R) satisfies the Palais-Smale conditionon M. If ¢ has a global
minimum and x(M) nondegenerate critical points with finite Morse
index, then © has at least x(M) + 2 critical points.

2. Let U be an open subset of R? and let v be an is it i
gel, s > solated critical t
of 9 € C}(U/,R). Then {Ve,v) < 1. P

3. Le_t U be an open subset of R and let v be an isolated local minimum
point of ¢ € C*(U, R). Then {Vp,v)=1.

4. Lelt M be a complete C?-Riemannian manifold. Assume that ¢ ¢
C[0,11 x M,R) and a < b are such that the following conditions

hold:
i) #(A, u) is continuous with respect to X uniformly in u e M,
i) For every A € [0,1), ¢, € C?~%M,R) and Vi, (u) # 0 when-
ever pa(u) € {a,b}.
iit) Every sequence (Aj.4;) such that (#(}j,4;)) is bounded and
Voa,(4;) = 0 contains a convergent subsequence.
Then
P(t. o1, ¢1) = P(1, 08, 8).

Hint. Find 0 < c < (b —a)/2 and, for Ay € {0,1], find 5 > 0 such that
for ]A — Xg| < 5 one has

- a+te a+ - —cfe r
(’0:0 ¢ c 0l fe C o3 efe c V’;+c c W: ¢ c ‘p;od c tp:+ /e c ¢E\+c~

Use Lemma 8.3 and compactness of {0,1].

5. (Principle of symmetric criticality, [Pal,]). Let {T(9)}4ec be an iso-
metric representation of Lhe topological group G over a Hilbert space
X. Let ¥ € C?(X, R) be an invariant functional. f u € V = Fix(G)
15 a critical point of ¥lv, then u is a eritical point of ¢

Hint. Prove that Vy(u) e V.

6. ([Willz]). Let {7(g)},ec and X be as in Exercise 5. Let ¥ € C?(A x
X, R} whete A is an open interval. Asstime that
i} ¥ = ¥(A, .} is invariant for every A € A,

ii) ¢ restricted to A x Fix(G) satisfies the assumptions of Theorem
8.8, where V = Fix(;.
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Then there exists [Xo, 0] € [a,3] x {0} such that every neighborhood
of [X0,0] in A x Fix(G) contains at least one solution (A, u) of

Vin(u)=0

such that u # 0.

9

Applications of Morse Theory
to Second Order Systems

Introduction

The Liapunov center theorem is the classical result which follows easily
from the equivariant Crandall-Rabinowitz bifurcation theorem. Consider
the second order autonomous system

i+ f(u)=0
and assume that 0 is a solution and that

Bi<pri<...<p?

(Br 20,0 < r < 8) are the non-negative eigenvalues of f'(0). The Liapunov
theorem insures that if the geometric multiplicity of 32 is one and if 3, /6; ¢
N for r # i, then this system has a family of periodic solutions with minimal
period tending to 2x/8; and with amplitude tending to 0.

In many applications, the multiplicity of g7 is bigger than one. We prove
in Section 9.2 that, in the variational case (f = VF), it suffices to assume
that 3./5; € N for r # i in order to obtain a sequence (uy) of solutions
with minimal period tending to 2r/8; and with amplitude tending to zero
when k — co.

The application given in Section 9.3 concerns asymplolically linear non-
astonomous systems of the form

ii(t) + VF(t, u(t) = 0.

Since the problem is no more S*-invariant as in the autonomous case, the
results of Chapter 7 are no more applicable. Using the Morse inequali-
ties, one can prove the existence of one or two nontrivial solutions when
VF(t,0) = 0. The basic condition, namely a distinct behavior of VF at
the origin and at infinity, is an extension of the “twist” condition of the
famous Poincaré-Birkhoff geometric fixed point theorem.

Finally, in Section 9.4, a strong multiplicity result for non-autonomous
second order systems with periodic potential and non-degenerate periodic
solutions is given, which corresponds, in the more difficult case of Hamilto-
nian systems with periodic Hamiltonian, to a famous solution by Conley-
Zehnder of a conjecture of Arnold.

T A
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For some of the above results, it was necessary to analyze in more detail
the Morse index of the action associated to non-autonomous linear second
order system (this index is finite here because the system has order two),
and it is the object of Section 9.1.

9.1 The Index of a Linear Second Order
Differential System

Let A be a conlinuous mapping from R into the space of symmetric ma-
trices of order N. We consider the periodic boundary value problem

i(t) + A(t)u(t) =0 )
u(0) — w(T) = u(0) — a(t} =0

where T° > 0 is fixed. The corresponding action is defined on HL by

T
xr(u) = / (/D)2 ~ (A(L)u(t), u(t))] dt.

Definition 9.1. The indezr j{A, T) is the Morse index of yr.

Let us define the linear operator K on H} (with its usual norm and inner
product) by the formula

T
{(Ku,v)) = / (u(t) + A() u(t), v(t)) dt.
0
It is easy to check that K is self-adjoint and compact, and that

2xr(u) = ((v - Ku,u)).

The space 11} can be written as the orthogonal direct sum of ker(] — K),
H* and H= with I — K positive (resp. negative) definite on H* (resp.
H7™). Since K has at most finitely many eigenvalues (having, moreover,
finite multiplicity) greater than one,

(A, T) =dimH~ < oo,

i.e. the index j{A,T) is finite.
Definition 9.2. The nullity (A, T) is the dimension of ker(I — K).

It is easy to verify that the nullity is equal to the number of linearly
independent solutions of (1), so that fhe nullity v(A,T) is less or equal to
2N. The linear operator I — K is a Fredholm operator of index zero and
hence is invertible if and only if (A, T)=0.

In the antonomous case, it is easy 1o compute the index and the nullity
aftam Ainenca | LS S )
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Proposition 9.1, Letay < a2 < ... < ayn be the eigenvalues of the
constanl matriz A. Then

. Y 4x2;5?
J(A,T):#{k:m,>0}+22#{j€N': J <a,,}

2
k=1 T

N 4.".23'2
V(A,T):#{k:a§m0}+2z#{j€N': T =cq,}.
k=1

Let us now consider the functional ¢ defined on H} by

T
wlu) = ] (/D) — Ft, u(e))) e

where F € C*([0,T] x RV, R). Since

" (uo)(u,v) = Arl(ﬂ(i), o(8)) — (D F (8, uo(8))u(t), v(t))] dt,
every critical point ug of  satisfies the following properties:
i) The Morse index of ug is equal to F{A,T) where A(t) = D2F (1, uo(t)).
ii) The nullity of ug is equal to v(A,T).
iit) ¢"(up) is a Fredholm operator.
iv) up is non-degenerate if and only if A T)=0.

By Corollaty 8.4, if ug is an isolated critical point of p, then dim C, (¢, tg)
is finite for every n and equal to zero except if n € {HAT),i(AT)+
Lo HAT) + 5(A,T)).

9.2 Periodic Solutions of Autonomous Second
Order Systems Near an Equilibrium

We consider the existence of small non-trivial periodic solutions for the
autonomous system

u(t)+ VF(u(t)) =0 (2)
where F € C(R™ R) is such that

VE(u) = Au + of|u))

as lu| — 0. Let
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(6, > 0,0 < r < s5) be the non-negative eigenvalues of the symmetric
matrix A.

Theorem 9.1. If §; is such that 8, /8; ¢ N for all r # i, then there exists
a sequence (uy) of periodic solutions of (2), with minimal period T) such
that |ugloc — 0 and Th — 2x/f3; as k — oo.

It is easy to verify that u is a periodic solution of (2) with minimal period
2x) if and only if u(t) = v(t/A) where v is a solution of

#{1) + X2VF(p(t)) =0 (3)
v{0) — v(2r) = 9(0) — v(27) = 0

with minimal period 2x.
Let us define p on R x Hl, by

o) = pa(u) = [ /2O - X F(u(e)) dt

80 that the solutions of (3) are the critical points of ¢, . For each A € R, 0
is a critical point of @x. Let us also define the operators K and N on Hl
by the formulas

[Qt
((K"hv))=_,0 (u(t), v(t)} dt
2r
(Vo) = [ (TR, v,
so that
(P4 (w),0) = ((u — Ku— XNu,1)).
The proof of Theorem 9.1 requires the following lemma.

Lemma 9.1. Let A € R and r > 0. The functional o), satisfies the Palais-
Smale condition over B[0,r].

Proof. Let (;) be a sequence in B{0,r] such that Voa(u;) — 0, Le.
u; — Ku; — A*Nuj = f;, j€EN*,

with f; — 0 in Hj,. Going if necessary to a subsequence, we can assume
that u; — u in H}, and that v; — u uniformly on [0,2x]. This implies
that Ku; — Ku and Nuj — Nu. Therefore, u; — Ku+ AMNu.

Proof of Theorem 1. 1) Let us first prove that (1]5;,0) is a bifurcation
point for the equation

Vpau) = 0. )
By assumption, if ¢ € ]0,5;/2[ is sufficiently srnall, we have A8, ¢ N for
r # i whenever

XE[1/(Bi+€),1/(Bi — o).
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We shall apply Theorem 8.8 with a = 1/(6i + ¢) and b = 1/(B; — ¢).
Proposition 9.1 implies that

v(a*A,2x) = v(b?A4,27) = 0

and
J(b%A,2r) — j(a® A, 2x) = 2m

where m is the multiplicity of 82 as an eigenvalue of A. Thus, 0 is an
isolated critical point of @, and ¢, and, if n = j(a?A,2x), Corollary 8.3
implies that

dim Ca{a,0) = 1 # 0 = dim Cr(s,0).

By Lemma 9.1 and Theorem 8.8, there exists a bifurcation point {Ag,0) €
[a,b] x {0} for (4). Letting € — 0, we obtain the desired conclusion.

2) By the first part of the proof, there exists a sequence (A, v;) of solu-
tions of (3) such that Ay — 1/6;, vy # 0 and v; —+ 0 in H},. Since vy -+ 0
uniformly on [0, 27}, we have

IV F(ve) — Ave]leo
vk lloo
In particular, there exists C' > 0 such that
WPl o g (6)
loalle = '

Let wy = vy f]|ve|co. It follows from (3) and (6) that (||| ) is bounded,
and so is {||tt||oc) by the Sobolev inequality. Using the Ascoli-Arzela the-
oremn, we can assume, going if necessary to a subsequence, that w; — w
and 1y — w uniformly on [0, 2x]. It follows then from (5) that

—0 as k — o0. (5)

VF{v) - Aw“ ~ (0 as k- o0. )]
lloe |loo w0
By (3) and (7), we obtain
W(t) + E%Aw =0

w(0) - w(2x) = w(0) — (27) = 0.
Since |jwl|e = 1 and, by assumption, £, /8; € N for r # i, 27 is the minimal

period of w. Thus, for k sufficiently large, 2x is also the minimal period of
wy and, hence, of vy, which completes the proof. m}

Remarks. 1) If the multiplicity of 5 as an eigenvalue of A is equal to one,
then Theorem 9.1 follows from the classical Liapunov Center Theorem.

2} By Theorem 9.1, the small periodic solutions of system (2) are related
to the periodic solutions of the linearized system i + Au = 0. This is not

s P IR P .
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the case in general, as shown by the following examples where, respectively,
the nonlinearity is not a gradient and the diflerential operator is not of the
second order, .

Example 9.1. Assume that u = (u;,u;) is a T-petiodic solution of the
system
i+ +u)=0

fig +uy —ul = 0.

After multiplying the first equation by uy, the second by u;, integrating
from 0 to T" and subtracting, we obtain

T
f [uz(t) + ud(t))dt = 0,
0
i.e. u = 0. On the other hand, all the solutions of the linearized system are
2mr-periodic.
Example 9.2. Consider the Hamiltonian

H(u) = H(uy,uz, ua,uy)
(1/2)(le + ug - u:j' - ui) + (uf + ug + ug + nf)(u;;m — muy).

If u is a solution of the corresponding system
Ju+ VH(u)=0,
then
a(ulm + uauz) = 4(uzng — viup)? + 2uld + 2ulnul.

Since the right-hand side is positive for u %0, we conclude that u = 0 is
the unique periodic solution of the system. But, in this case also, all the
solutions of the linearized system are 2x-periodic.

9.3 Periodic Solutions of Asymptotically Linear
Non-Autonomous Second Order Systems

We consider the existence of multiple solutions of the periodic boundary
value problem

W)+ VF(t,u(t)) =0 8
4(0) - u(T) = (0} — §(T) = 0 (8)
where F € C*([0,T] x RY R) satisfies the conditions

VF(t,u) = Ap(Du+o(ju]) as ju|—0 (9)
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and

VEQu) = Ago(thu + of[u]) as [u] = oo, (10)
uniformiy in ¢ € [0, T]. We shall write Jo = j(Ag,T) and j, = J{Aw,T).

':‘l;:,aorem 9.2. Assume that T > 0 is such that the following conditions
old,

Al. V(AD,T) =0
Az v(A, T) =0
A3, Jo # joo.

Then the problem (8} has at leas! one non-zero solution. Assume, moreover,
that

Ayl jo — Joo| > 2N.
Then the problem (8) has at least two non-zero solutions.

;I‘he solution of (8) are the critical points of the functional @ defined on

T
o) = [ 10/ - o)) de
Let us also define the operator L and the functional % on H} by
T
((Lu,0)) = jo (8(8) - Aco(t)u(t), v(t)) dt
Y(u) = p(u) — (1/2)((Lu, u)).

Assumption A, implies that L is invertible. Since

I((V¥(u), v))]

T
jo (Aco (t)u(t) — VF(L, u(t)), v(t)) dt

< NAwu = TFC, 0)llgallolles
< Ao = VF(, w)llgallol,

it follows from (10) that for every ¢ > 0, there exists e(¢) > 0 such that
IVl < elfull + <(e) (11)

for every u € H}.

Proposition 9.2. Under assumptions (10) and A, there exists p > 0 and
& € C(H} R) satisfying the Jollowing conditions:

a) Vo(u) = 0 implies |[ul < p.
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b) é(u) = 1 if 0 < |Jull < p and &(x) = 0 if [lull = 20.

c) the functional p(u) = (1/2)((Lu,u % w) is s a S
Vi e il ;é;-) (1/2)((Lu, w) 4+ () (u) is such that |[Ve(u)|l 2

Proof, Taking ¢ = ||L~}]|~"/9, there will exist by (11) e1(¢) such that
IVl < ellull + 1 (12)

on Hj. Therefore, by the mean value theorem, we have

T
ju ((V¥(st), ) ds + [$(0)]
(e/Djull? + exflull + (O

Thus, there exists ¢, > 0 such that

()l

IA

1A

()l < elivll® + c2. (13)
Let
p=1+ (1+Cx+3—;2) [e.
It follows from (12) that
1V (u)ll 2 Iellull - elull — 1.
Thus, the critical points of ¢ satisfly the a priori estimate

Null S e1/8e<p

and {a) is verified.
Let o € C(R,R) be such that

o(s)=1 fors<0
=0 fors>1
-3/2<d'(s)<0 fors€R.

The function & defined on H} by

satisfies (b). If p < ||uj| £ 2p, we deduce from (12) and (13) that

Luto ("_“|_|p:£) Tip(u) + o' (“—uﬂ’-’:—’)) f—l(‘s‘)—‘u

> Gep—2ep—c1— (3/20)(4ep* +c2) 2 ep— 1 — (3/2)ec2 21,

IVe(u)ll =
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and the proof is complete. n]
By Proposition 9.2, Vip(u} = 0 if and only if V() = 0. Thus, in order
to solve problem {B), it suffices to find the critical pointe of .

Lemma 9.2. Under the assumplions (20) and A,, every sequence (u;) i
Hy such that Tp(uj) — 0 conlains @ convergenl subsequence.

Proof. Assumption Az and Proposition 9.2 imply that jlu;lj < p (5 € N).
Thus,

Vi(u;) = Ve(u;), (FEN)
Arguing as in Lemma 9.1, we can conclude that (u;) contains a convergent
subsequence. 8]

Lemma 9.3. Under the Assumplion (10) and Ag, there ezist @ < b such

that the critical points of  belong to ¢~ 4(Ja,b]) and
P(t, ", ¢%) = .

Proof. Define
a= inf $—1, b= su p—1,
Blﬂ.ulv ' B[O,gp]‘P
and @oo(u) = (1/2)((Lu, ). Proposition 9.2 implies that ¢~ (Ja, b)) con-
taina the critical points of ¢ and that ¢° = 9%, ¢* = b, Hence

P(t.¢", %) = P(t, ¢bor ¥50)-

Since, by assumption Az, 0 is the only critical point of the quadratic func-
tional poo, it follows from Theorem 8.1 and Corollary 8.3 that

P(tgh %) = ti=. O

Proof of Theorem 9.2. We can assume that problem (8) has only a finite
number of solutions, i.e. that ¢ has only a finite number of critical points.
By Lemma 9.2, ¢ satisfies the Palais—Smale condition over H}. Theorem
8.2 and Lemma 9.3 imply the existence of a polynomial Q(t) with non-
negative integer coefficients such that

M(1,¢%,¢") = = + (1 + 1) Q()- (14)
Assumptions (9) and A, and Corollary 8.3 imply that
dim Ca($,0) = bn o (19)

Since jo # Jjoo, We obtain from (14) and (15) the existence of at least one
non-zero critical point.

Now assume that |jo — joo! > 2N and that u is the only non-zero critical
point of ;. Since, by (14),

o + 2 dim Cn((pl,u)t" = ti= + (1 + t)Q(t),

n=0

e e
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we necessarily have
dim C_(p,u) > 1

and either dim Cj,_,(3,u) > 1 or dim Ciot1($,u4) > 1. Let us consider the
case where dim Cj, (i, u) > 1, the other one heing similar. By assump-
tion, jo — I # jo. Since the nullity of u is less or equal to 2N, Corollary
8.4 implies that

lio— 1 = joo] 2N -2,

Hence, we obtain |fo — jo,| < 2N — 1, which is impossible since |jp — joo| >
2N. ]

9.4  Multiple Solutions of Lagrangian Systems

We consider the periodic boundary value problem

d
ED,L(t,u(t), f‘(!))-z D,L‘(t,u(t),ﬁ(t)) (16)
u(0} — (T} = 4(0) — a(T) = 0
where I = L(t, 2, y) satisfies the assumptions (L1) to {L4) of Section 4.2.

Theorem 9.3. Under the above assumptions, if all the weak solutions of
(16) are non-degenerate, then (16) has at least 2V geomelrically distinct
weak solutions.

Proof. The weak solutions of (16) are the critical points of the functional
@ defined on H} by

T
ww = [ L uw, i)
0
By Proposition 4.1, » is bounded from below and continuously differen-
tiable. Since, by assumption {Lj),
p(u+Tie) = plu), 1<i<N,

it is natural to define ¢ on the manifold M = TV x P—!}, where TV is the
N-dimensional torus and

T
0l = {uqu'u :f u(t)dt:O}.
L]

By Proposition 4.1, ¢ satisfies the Palais-Smale condition over M. Without
loss of generality, we can assume that ¢ has only a finite number of critical
points ty,...,u;. By a classical result of algebraic topology,

Pmmm=mmﬂmzi(f)m

n=0
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By Corollary 8.2, there exists a polynomial Q(t), with non-negative integer
coeflicients, such that

oo F N
3.3 dimCofp, u)t" = 3 ( ’: ) £ + (1 + O)Q(t). (17)
n=0i=1 n=0

Since the critical points of p are non-degenerate, Corollary 8.3 implies that
dimCalp, u;) = 6,4, (18)

where k; is the Morse index of u;. It follows from (17) and (18) that ¢ has

at least .
N — 9N
Z n

n=0

critical points in M, so that (16} has at least 2N geometrically distinct
weak solutions. 8]

Historical and Bibliographical Notes

Theorem 9.1 was proved by Berger [Ber;] using the Lyapunov-Schmidt
method. Example 9.2 is due to Moser. The existence of a non-zero solution
in Theorem 9.2 follows from Amann-Zehnder [AmZ,} and the existence
of two non-zero solutions from Dancer {Dan,)]. These authors use a finite-
dimensional reduction which is in fact Cesari’s method [Cesy)] and a wide
generalization of Morse theory, the Conley index (see [Cony, CoZ,]). By
the same method, Conley and Zehnder were able to solve the Arnold’s
conjecture for a torus {[CoZ.]) and to consider general first order asymp-
totically linear Hamiltonian systems [CoZ,]. But, since those problems are
variational, it suffices to apply Morse theory or minimax methods. Chang
(Ch,] uses Proposition 9.2 and some deformation arguments which are in
fact superfluous. The simple approach of Section 9.3 is also applicable to
first order Hamiltonian systems and to semi-linear wave equations after a
finite-dimensional reduction.

An earlier application of homology to obtain multiple critical points was
made by Castro-Lazer [Cal.i]. See also [Cha,] and [Coty 5] for applications
of Morse theory to related problems.

Other applications of Morse theory are given in [Ambg], [AmbL,], [Che g},
ITSW]], [MerPl], [TS]].

We have not considered here the important concept of Conley’s index
and its generalizations. See [Ben 5], [Ryby,56.8], [RybZ,] and, for applica-
tions to Hamiltonian systems [Bart,], [BentZ], {CZ3)], to boundaty value
problems [Danj 45 8], [Ryba s 7].

The Arnold conjecture is considered in [Chapy), [Hofy].
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Concerning singular dynamical systems, the reader can consult [AmCy],
[Cotgag] for a treatment by Morse theory and [Bena), [CGSy], [CaSa],
[Gora.q), [Grez a4, [PiTa), [DGM,] for a treatment by minimax methods.

Exercises

1. Assume that F € C?([0,7] x RN, R) satisfies conditions (9) and (10}
of Section 9.3. If

Al (A, T) =0

A2, (A, T)=0

A3. joo =04 jo,

then the problem (8) has at least two non-zero solutions.

2. Assume that F € C2([0,T] x R, R) satisfies condition (9) and (10)
of Section 9.3. If

Al (A, T) =0

A2 (A, T) =10

A3 jo=0, jo=1,

then problem (8) has at least two non-zero solutions.

3. Assume that F € C([0,T] x R R) satisfies conditions (9) and (10)
of Section 9.3. If

Al ¥(A,,T)=10
A2. joo € [do, o + #( A, T,

then problem (8) has at least one non-zero solution.

10

Nondegenerate Critical
Manifolds

Introduction

After recalling some preliminary notions from differential geometry, this
chapter presents the local and global aspecis of the theory of nondegenerate
critical manifelds. These manifolds are a natural extension of the notion of
non-degenerate critical point.

The theory is applied to proving the existence of infinitely many periodic
solutions of the forced superlinear second order equation

i+ {ulfPu= (1), pe2 o0

The periodic solutions of the forced equation are obtained from the periodic
orbits of the corresponding autonomous equation

i+ |uff2u =0

by a global perturbation argument. This approach depends upon a precise
description of the solutions of the autonomous equation.

The last section is devoted to the existence of T-periodic solutions of the
periurbed second order equation

(L) + g(u(t)) = S()
near a T-periodic orbit of the autonomous equation
i(t) + g(u(t)) = 0.

Since this equation is conservative, 1 is a Floquet multiplier with multiplic-
ity 2 of its variational equation, so that classical perturbation arguments are
not applicable. The periodic solutions are obtained here by combining the
Liapunov-Schmidt method with an elemeniary variational argument. An
application is given to the subharmonics of the forced pendulum equation.

10.1 Submanifolds

We define a class of sets locally diffeomorphic to a subspace of a Banach
space.
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