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Rearrangements of Functions,
Maximization of Convex Functionals, and Vortex Rings

G. R. Burion

1. Introduction

This paper studies the maximization of a convex functional over the set of
rearrangements of a fixed function. Our results ensure the existence of weak
solutions of free boundary problems for certain semilinear elliptic equations
having unknown monotone nonlincarities, and are especially relevant to
Benjamin’s theory for vortex rings in an ideal fluid [5]. For the purpose of this
Introduction we take (2, .#, u} to be a finite, separable, nonatomic (positive)
measure space (definitions will be given in Sect. 2), we let 1 £ p < oo, let g be the
conjugate exponent of p, let f e LP(u) and let .# be the set of rearrangements of f, on
Q; that is, fe . if and only if u(f ~'[B, ©))=u(fy '[B, )} for every real §. The
L-topology on LP(u1) is the weak topology if 1 S p < oo, or the weak™® topology if
p= 0. Our main resulls are as follows:

Theorem A. Let W be a real strictly convex functional on LF(u), sequentially
continuous in the L3-topology on LP(u). Then ¥ attains a maximum value relative to
F.If [* is a maximizer and g e L%(y) is a subgradient of ¥ at f* (such a g must
exist) then [* =g almost everywhere, for some increasing function .

Recall that when 6 is a domain in R¥ then W™(8) denotes the space of locally
Lebesgue integrable real functions on & whose distributional partial derivatives of
orders up to and including m are locally integrable functions. Two measures are
said to be equivalent if each is absolutely continuous with respect to the other.

Theorem B. Suppose 2 is a domain in RY, suppose p is a finite measure equivalent to
Lebesgue measure on £, let 1 Sp< oo, let m=1 and let
F= T afx)D*
15|a|Sm
be an m-th order linear partial differential operator in  with measurable coefficients,
and having no O-th order term. Suppose K : LP(y)— L%y) is a compact symmetric
positive operator such that Kue W*(Q) and £ Ku=u almost everywhere in 2 for all
ue L*(u), and suppose ve LA(p)nW™(£d) satisfies Lv=0 almost everywhere in .
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226 G. R, Buron

Let fo e LP(u) be non-negative, let I be real and suppose there are f, and f, in #
satisfying

§ fivdp<I<] fovdp.
) a

Then the functional
‘f’(f)=l‘l}ﬂ<fdu
attains o maximum relative to the set
{fe‘l|!]fudp=l}.
If % is a maximizer and u= Kf* then u satisfies
Fu=ge(u—2Av)
almost everywhere in Q for some increasing function ¢ and some real A.

These results are proved in Sect. 3, where Theorem A occurs in a slightly more
general form as Theorem 7 and Theorem B occurs as Theorem 9.

It transpires that the maximization of linear functionals relative to .#
plays a crucial role in the proofs of Theorems A and B. Accordingly we fix
g€ L) and study in Sect. 2 the problem of maximizing the functional

foay= !Jfgd#

over fe.#. We show that a maximizer exists, and is unique only if g ge .# for
some increasing function ¢; the maximizer is then @og. If 1<p<oo and
*=pnrge.# for some increasing function ¢, we show that every maximizing
sequence for { -, g) relative to .# converges to f* in the p-norm; it then follows that
J* is the unigue maximizer for # on Conv.#. I .# denotes the closure of .# in the
L2 topology on LP(u), we show that .# is convex,

As applications of Theorems A and B, we consider in Sect. 4 two variational
problems for vortex rings in an ideal fluid, arising from work of Benjamin [ 5]. Let
W be a bounded axisymmetric domain in R? having C? boundary, let r, ), z be
cylindrical coordinates with the same axis as W, let IT be the half-plane defined by
#=0,and let =/TnW.Fix t <p<oo,letp ' +g4 '=1,let v be the measure on Q
having density 2nr with respect to Lebesgue measure, and let % be the linear

differential operator
18/1a 1 3%
5“’“*@(:5?)”?@7
There is a strictly positive, symmetric, compact linear operator
K L2(8, v)— 13(£2, v) satisfying
FKo=v inQ
Kv=0 on ¢
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for ve LP(Q,v), We fix a non-negative f,e LP(Q,v), we let .# be the sct of
rearrangements of f, on £ with respect to v, and study the problems

v maximize§ § fKfdv—111r¥fdy
fer 2 ]
(V2 maximized | fKfdv.
fer 1}
[eifdv=1
n

Forany realt 4, Theorem A guarantees the existence of a maximizer £* for problem
(V1), and u=K f* satisfies

Pu=gpu—41ir?) (1)

for some increasing function ¢. If I is positive and satisfies a certain feasibility
condition, then Theorem B guarantees the existence of a maximizer f* for
problem (V2), and u=Kf* satisfies (1) for some real 1 and some increasing
function ¢.

If u is one of the solutions constructed above, then (1) ensures that u—Ar?/2 is
the Stokes stream function for a steady axisymmetric flow of an ideal fluid in W, At
the boundary of W, this stream function reduces to -- Ar2/2, which is the stream
function for a uniform flow with velocity 1 in the negative z-direction; the normal
component of velocity therefore matches that due to the uniform flow. The region
where %u>0 is called the vortex core; outside it the flow is irrotational.

Benjamin [5] was concerned with flows defined throughout R?, and posed
problems (V1) and {V2), with different boundary conditions, in a rectangular
domain . He put forward a strategy for proving the existence of maximizers for
(V1) and (V2), and then for constructing a solution defined throughout IT by
taking 2 large. We prove our results by a method different from the one envisaged
in {5]. It is possible to prove the existence of maximizers for (V1) and (V2) on
bounded domains with Benjamin’s boundary conditions using Theorems A and B,
but we do not give the details in this paper.

Benjamin in fact included in additional constraint

!)zfdv:O (2

in his variational problems, and showed by a symmetrization argument that if
maximizers exist unconstrained by (2) then maximizers satisfying (2) must also
exist. We make no use of any constraint analogous to (2).

In Sect. 5, we investigate the relationship between problems of the type
considered in Theorem A, and certain dual variational problems formulated
according to the theory of Toland [147. In the case of problem (V 1), the dual turns
out to be a variational principle similar to problems studied by Mossino and
Temam [13} in connection with “queer differential equations.”

2. Measures, Rearrangements, and Linear Maximization

A measure space is defined to be a triple (Q, .4, 1) where Q is a nonempty sct, . # is a
a-algebra on Q and p is a positive measure on €2, That is, Qe .# and . # is closed
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under complementation with respect to @ and under countable unions,

0 < u(4) < oo for each A € 4 and y is additive over countable disjoint subfamilies

of .#. We say Qs finite if ()< co. 1 (2, #, u)and (£2', .#’, u') are two measure
spaces with u(£2) = ¢’(8') and f and g are real measurable functions on £ and '
respectively, we say that f is a rearrangement of g if u(f ~'[B, o)) =u'(g " '[B, «0))
for ali real 8. Supposc further that £ and £ are finite. Then p(f = ()= p'(g™ *(A))
for every Borel set A C R. [t follows that if p : R— R is a Borel measurabie function
then o f is a rearrangement of g o g. If additionally we fe L'(z) then

Jwofdu= [ weogdy
n 7

which may be proved by applying Fubini's theorem to the ordinate sets of y - f and
yeg. In particular, if 1 £p< oo and fe LP(u) then ge L*(u) and || f |, = llgl,; the
case p=co follows easily from the definitions. When p and g are conjugate
exponents, g € Lf(u) and he L¥g) we write

<g.hy={ ghdp.
A standard result, presented in Hardy et al. [11] for example, shows that if f,
and g, are non-negative Lebesgue measurable functions on (0, o) and f§, g8

denote the rearrangements of f;, and g, as decreasing functions on (0, o), then the
inequality

T ras T fe0 3)
[+ 0

holds for all rearrangements f, g of f;, g, on (0, ). An analogue of (3) for functions
defined on a domain in R can be found in, for example, Bandle [4] and Mossino
[12]. Our first theorem is an analogue of (3) for functions on measure spaces. The
methods employed in this section are elementary.

Lemma 1. Let (2,.#, u) be a finite measure space and f:Q—R a measurable
Junction. For real @ define

Fl@)={xeQ|f(x)2a},
a(a)=p(Fla)).
Define
SAsy=max{x|o(@)2s}
Jor 0 <s<u(£2). Then
fiE)za < ala)zs

Jor real o und 0<s<p(§d). Further f* is the essentially unique decreusing
rearrangement of [ on (0, u(£2)).

Proof. The function o is decreasing. If a is real, 0<s<u($2) and {a,};%, is an
ncreasing sequence converging to a with a{x,) = s for each n, then

o(a)=u(F(a))=u(fjl F(w)= lim w(F)2s
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so the maximum in the definition of f4is indeed attained. Clearly [ is a decreasing
function.
For real « and 0<s < u(Q2) we have

fAs)za < max{Blo(f)zs}2a
< o(f)zs forsome fza
< o{u)Zs.
Thus
{s € (0, (M) | fAs) Z a} = (0, o) ]\ { (D)}

which has measure o(x) = u{F(«)). Therefore /4 is a rearrangement of f,
Finally note that two decreasing rearrangements of f can differ only at points
of discontinuity, which are countable.

Lemma 2. Let (2, .4, u) be a finite measure space, let 1 Sq < o, let g€ Li(p), let
Ue & and let a=u(U). Then

Jgdus Jg'.

v 0
Proof. Let m denote one-dimensional Lebesgue measure, and let g, and g, be the
positive and negative parts of g, s0 g=g, —g, and g% = g% +(—g,)". Write

w=pu(2)
G ={(x,5)eQxR|0Zs55¢,(x)}
Fis)={xef|g,(x)zs}.

Then by Fubini’s theorem we have

[oudp= | § 16,00 Msdu(x)= | | 16,(x, s)du(x)ds
v v o o
f
1]

H(F (UM< zm({re(o, @) | g0 2 shds
= I gi.
1]

The same argument applies with U, g, and « replaced by &\U, g, and w—a. We
obtain

o w
—lgo=—1{g2+ [ g2 —Jgi+ | gi=— |
v b v 0 0 -
Hence the result.

Theorem 1. Let (£2, .4, u) be a finite measure space, let 1<p< oo, let 4 be the
conjugate exponent of p, let w= p(82), let f, € L#(u) and let g, € LYp). Then for ail
rearrangemenis [ of f, and g of g, on Q we have

I fydus | ff93.
n ]

s
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Proof. Suppose first that f, is bounded below. We may assume without loss of
generality that f,=0. Write
G={(x,ne2xRj0=t= f(x)}

F(s)={xe ] f{x)=s}
a(s) = p(F(s)
for real s. Then by Fubini's theorem and Lemma 2
{ fadu=[ § 1g(x, )gx)dsdp()= § § 16(x, s)g(x)dp(x)ds
2 20 0 n
an aw ofs) 2]
=1 f gduas< TV atrdrds=1 rdat.
0 Fis) 2 o [1]

For a general f,, write f;(x)=max{f(x),s} for xeQ and s<0. Then
{ fgdu< | 1298
n 0

and letting s— — oo gives the result.

t
Lemma 3. Let (Q,.#, ) be a finite measure space, let 1<p= oo, let q be the
conjugate exponent of p, let w=u(R2), let f € LP(y) and let g € L*(y1). Suppose fhasa
rearrangement f* that satisfies f*=gog almost everywhere, for some increasing
Sfunction @. Then

§ frgdu=1{1"g".
E) 1}
Proof. We have noted above that pog? is a rearrangement of ¢-g. Thus

= og* Writing p(s)=sp(s) for real s we therefore have

[ f*gdp=[weogdu
n R

T o | ? A
[['g'=Tveg
0 0
and the two right-hand integrals are equal since y o g? is a rearrangement of - g.

Theorem 2. Let (Q,.#, ;1) be a finite measure space, let 1<p <o, let q be the
conjugate exponent of p, let fo€ LF(y), let ge L), and let F be the set of
rearrangements of [, on Q. Suppose there is an increasing function ¢ such that
fr=geged If {f,}2, is a sequence in ¥ such that

(g Sf 9

as n—w then | f,—*(,—0.

Proof. First consider the case when f; is bounded. Then we may supposc without
loss of generality that ess inf f, =0 and esssup fo = A, say. Let f&.# and for real s

define
F(sy={xeQ|f(x)Zs}
F*(s)={xeQ|f*x)zs}

P
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Observe that fi(s) is finite for 0<s< 4, and since ¢ is increasing, that
xeF*s) = g(x)eq™ '[s,0) = g(x)2f(s)
xe \F*(s) = g(x)¢o '[s,00) = g(x}=P).
Since p(F(s))=p{ F*(s)) for cach 5 we have
WEF*(SNF(s)y= p(FsNF*(5)).

We now have

A A
*—fog>=1 § gdpds—] | gduds
0 F%® 0 ¥F(s)
A
= I( i (g-BsNdu+ | {/f(s‘)—g)du) ds
0\ F*{5)\F(s) F{s)\F¥s)

and the inner integrals of the second line have non-negative intcgrands.
Fix #>0 and choose M >0 such that

u{xeQ|lg(x)zM)<s.

Introduce the notation I(t,£) for the open interval (t—¢,t+¢£). For each
te[ —M,M] we may choose §(t)>0 such that

p({xeR|0<|gx)—t] <2ED)}) <.

By compactness we can choose ¢, ....tge[—M, M] such that
K
[-M,M]C hL_)l 10, S, -

Write
E=min{{(y}1SksKY.
Consider s€(0, A). If f(s)>M then F*(s)Cg™ (M, o) so u(F*(s)) <e, hence
{ (9 BNduz 0> (FH\F() — )8
FHsN\F(s)
whereas if f(s)< —M then @ F*(s)Cg~'(—o0, —M}s0 WENF*(s)) <&, hence
I (B(s)—@duz 0> (u(F(S\F*s) ).
FispF*(s)
Now suppose —M SB(s)sM so f(s)eI(t, E(t)) for some k. Consider the
possibility that ¢(1,) 2 s, so t, = f(s). Forany x e F(s)\F*(s) we have @ - g{x) <s 50
g(x)+ 1, and g(x) £ f(s). Hence if x € F(s)\F*(s) and g(x} > f{s)— & then 1, —2(r,)
< ¢{x) <1{,. Therefore
u({x e F(sNF*(s)1g(x)> fs}— {1 <e
and consequently

B 2 FON ) — o)L
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Consider the other possibility that @{1,) < s so , < fi(s). For any x € F*(s\F(s) we
have @og(x)Zs so g{x)+1, and g(x)=f(s). Hence if xe F*(s)\F(s) and g(x)
< fi{s)+ £ then £, <g(x) <1, +2{(t,). Therefore

u{xe F*s)\F(s)lg(x) < B(s)+ 4N <e
and consequently

J ’(g —B()du 2 ((FHSNF(s)) —e) -

F*is)\Fis)

We now have

a2 g (F*(N\F(s)) —e)ds

=27 Sl e
If {f*~f, yg><2" "¢ then
DI —S I SNS* = IYP AT P SRR A+ 1)1 e AT 1P

It follows that any maximizing sequence for { -, g) relative to .# must converge
to f* in the p-norm.

Now consider the general case when f;, may be unbounded. By Theorem 1 and
Lemma 3 we have

S = max S

Let { f.}2L, be a maximizing sequence for ¢ -, g) relative to .#. Fix N> 0 and for
real s define

71(s}=min{0,s+ N}
ya(s)=max{0,5s— N}
72(8) =5—7,(8)—73(s).

Then y,, y;, and y; are increasing functions. For 1 £i<3 notice that y,0f, and
y,of* are rearrangements of y,of,, that y,c¢ is increasing and that y,f*
=(y;c@)og. We have

3
S ~fugr= 1=21 iof* vl
and by Theorem 1 and Lemma 3
e S*—viefngr20
for 1 £i£3. Since
S*=fog>—0
it follows that

e f*—vi0 0,820
for1Zig3.
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Let > 0,and choose N so large that |y, < fyll, <z and fiys - full, <& Since yp - fy
is bounded we can apply the first part of the proof to show that

lyzoS*—72 °fu"p_’0

as n—co. For all sufficiently large n we now have

i =Ll e f i+ My allpH vz e M * =y e Ll g+ lyse o+ lva s il <S¢
hence the result.

Theorem 3. Let (Q, #, p) be a finite measure space, let 1 Sp< o, let g4 be the
conjugate exponent of p, let foe LP(u), let ge L3(p), and let # be the set of
rearrangements of f, on Q. Suppose there is an increasing function @ such that

*=gpoge . Then f* is the unique maximizer of the functional -, g7 relative to
conv.J.

Proof. It follows from Theorem 1 and Lemma 3 that /* maximizes the functional
{ -, g» relative to conv.¥. For 0<s< w define

ws)=inf ((f*—1, g (fe# and [f* 1,25}

Then v is increasing, (0} =0, by Theorem 2 we have y{s) >0for 5> 0, and we have
w(s)= oo for all sufficiently large s, say s=a. For all fe.# we have

vl * =S =Lf*-1.9>.

Let v be the lower semicontinuous convex lower envelope of . Then y(0) =0 and
we show that g(s) >0 for s > 0. Choose ¢ with 0 <5 < sand y(a) < oo and define the
continuous convex function & by

P _{0 for 0=2t<o
= \wo)t—ala—a) for (2.

Then w2 0 so p = 8, and 8(s)> 0. Therefore {s) > 0. Further 1 is increasing. We
have

PUS*—fl)—<S*~fg>s0 - ' @

for all fe .. The left-hand side of (4) is a lower semicontinuous convex functional
of f. Hence the set of f e LP(u) for which (4) holds is a closed convex set containing
#. Therefore (4) holds for all feconv.#. Suppose feconv.# and {f, g>={/* ¢>.
Then 3(I/*—f1,)=0 by @) so | f*—f1,=0. O

There exist examples of finite measure spaces (2, #, i) with f; e LP(y) and
g € L%u) such that the supremum of {f, g) as f varies over the rearrangements

of f, is strictly less than
uifh

I fée*
(4]

Accordingly we make further assumptions on our measure spaces.

The measure space (£2,.#, u) is called nonatomic if for every U e .# with
#(U) >0 there exists Ve .# with VCU and 0< p(V) <u(U). The measure space
(L2, A, p}is called separable if there is a sequence {U,}; ; of measurable sets such

T
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that for every Ve . # and £>0 there exists n such that .
HNAU) +pUnV) <e.

It 15 a standard result that any finite separable nonatomic measure space is
isomorphic to an interval of R, in a sense we now describe. Let (£2,.4, 1) and
{2, A, 1') be two measure spaces, and let their respective families of null sets be . 47
and .#". Regard two members of .4 as cquivalent if their symmetric difference lics
in 4", and write .#/.4" for the space of equivaience classes. Similarly define .4 /4.
An isomorphism from (Q, . #, p) to (', .#', ') is a bijection &: . #/ 4" — #'| 4"
having the properties
HNV)=D(UND(V)

¢(CJ lf,):g@(m

H(B(U))=u)

for all U,V, V,e.#, where we have abused notation by failing to distinguish
between measurable sets and their equivalence classes.

Isomorphism Theorem. Let ($2,.#, i) be a finite separable nonatomic measure
space. Then (Q, . #,n) is isomorphic to the interval (0, () with Lebesgue
measure.

A proof of the Isomorphism Theorem may be found in Halmos [ 10]. Note that
any lechesgue measurable set in R, with any measure that is absolutely
continuous with respect to Lebesgue measure, is separable and nonatomic.
Further, separability and nonatomicity are hereditary properties.

If (82, . #, p) is a measure space, the functions on @ having the form

an
Z anl.ﬁn)!
n=1

where {x,} , is a sequence of real numbers and {A(n)}7., is a partition of 2 into
sets from .#, are called simple functions.

Lemma 4. Le: (02, #, p) and (S, 4, ') be isomorphic measure spaces and let ¢ be
an isomorphism fromQto €Y. Let 1 < p < w, let q be the conjugate exponent of p, and
let V and V' be the respective linear subspaces of LP(p) and LP(u') consisting of
simple functions. Define T,: V-V by

T;; (ng.l a1 A(n)) = ”gl anlO(A(nl]'

Then T, extends to a unique linear isometry of L(p} onto LF(y'), satisfying:
() If [ and ge LP(u} with fZg almast everywhere then T,f < T g almost
everywhere.
(i} If fe LP(p) und ACR is a Borel set then
(LAY "(=o(f (AD

apart from a null set.
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(itiy If fe LP(y) and g€ L(u) then
S (L) Tgdy = | fgdy.

{iv) T, is a homeomorphism of LP(u} and L) with their L-topologies.

Proof. 1 is routine to verify that T, is a well-defined linear isometry of V onto V.
The existence and uniqueness of the required extension follow by density. 1t is
readily verificd that (i) holds for simple functions, and the general case follows
easily by taking limits.

To prove (ii) first consider the case when A = (&, cv) for some reala. Let { f,1,%
be a decreasing sequence in ¥ converging in LP(p) to f. From the definition of T, for
simple functions it is immediate that

(T, HA=2(f, ' (A).
Since f, | f and T,f,| T,/ almost everywhere we have

£= 0 L7

TN W= 0 @7

apart from null sets. We now have
(TN "(A=2(f '(4) (5)

when A=[a, o). But the family of sets A for which () holds is closed under
complementation and under countable unions. Therefore (5) holds whenever Aisa
Borel set.

It is casy to prove (iii) in the case when @ has a countable partition into
measurable sets, on each of which f and g are constant. The general case follows by
approximating { and g.

When 1 Sp<co the fact that T, and T, ! are bounded operators gives (iv).
When p=cc we have the formulae T, =(T; ')* and T, ' = T)* for the adjoints, so
T, and T, ' are continuous in the weak* topologies.

Theorem 4. Let (82, .#. u) be a finite separable nonatomic measure space, let
1< p< w, let g be the conjugate exponent of p, let fe LP{p)and y € L(p). Thenthere
is a rearrangement [* of [ on £ that satisfies

Htn

[ rrqdu="1 19",
Proof. For real a define
ola)=p{{xe 2| f(x)2a})
Gol@)={x € Q| g(x)>a}
H{x)={xeQig(x)=no}
Gla) = Golayo H{x).
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Let 2,,a,,... be those numbers for which H{x,) has positive measure. The
Isomorphism Theorem shows there is an isomorphism @ from (£, .#, y) to the
interval (0, w) with Lebesgue measure, where w = u(£2); we can further assume that
®(H(a,)) is an interval for each i. In view of Lemma 4 it is now enough to consider
the case when 2= (0, w), u is Lebesgue measure, and cach H(w,) is an interval

H{x) =B, B+ 7).

For 0 <s<w define

r(s)=G(g*(s)) if gis)+a, foralli,
I(s)=Golg*(sNo(Bi, Bi+s—m(Gola)) if gs)=0,.
We have
HI@s)=s,
if0<s<e<w then
risycr)
and almost every point of 2 belongs to some I'(s).

Write
kix)=inf {re(0,w)|xel(t)}

which is defined and satisfies 0 < k(x)<w for almost all xe 2. If 1 is real and
x € I'() then k{x) = t. Conversely if k(x)=<t then x e I'(t) for all t>1. Thus

racixlk(x)sagc ) re.

Therefore {x € 2|k(x)=t} has measure 7, and differs from I'(z) by a set of zero
measure.

Define f4 as in Lemma 1, and let f*=f4.k which is defined almost
everywhere in £2. Neglecting a set of zero measure in €, for real & we have f*(x)2a
if and only if a(a)=k(x), and the set of x for which this inequality holds has
measure g(a). Therefore f* is a rearrangement of f.

For real x write
Fla)={xef2|f*(x)2a}.

Then F(a)is essentially ['(o()), and the decreasing rearrangement of g restricted to
F(a) is therefore g? restricted to (0, o(a)). If M >0 then by Fubini's theorem we
“have

@ o fofa— M)
[, M 5 e= § Gt eme=( S g)du=1( () in
F(— M) Fl— M) F(—-M) 0 \Fla— M) 9 4]
o{ — M} P y o — M) A A o(— M)
= [ (f+Myg'= | fYg+M | ¢*
0 . [+] (1]
and therefore

a{ ~ M)
{ frq= [ fo%*,
0

Fi- M)

letting M — oo gives the result.
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Theorem 5. Let (82,.#, u) be a finite separable nonatomic measure space, let
1 £ p< o, let 4 be the conjugate exponent of p, let fy € LP(p) and g € L), and let #
be the set of rearrangements of foonQ.If {-, g has a unique maximizer f* relative
to . then there is an increasing function @ such that f*= ¢ -g almost everywhere.

Proof. For aeR let
Gola)={xeR2|g(x) > a}
G(w)={xef2|g(x)2a}
H(a)={xe2|g(x)=a}
and define
@) =essinf f*(G(a)).

Then ¢ :R—R is an increasing function. We first show that f*(x) < p(x) for
almost all x € \G(x). Suppose this is false, so for some set B'C{\Gy(x) having
positive measure and some real § we have f*(x)>f> () for all xe B'. By the
definition of @(x) we can choose a set C’C G{«) having positive measure such that
@la) < f*(x)<fforall xe C. Since B’ and C’ are isomorphic to intervals in R we
can choose subsets BCB' and CCC’ with u(B)=u(C)>0. There is then an
isomorphism @ from B to C. Let T, : L*(B)-» L*(C) be the linear isometry induced
by @ as in Lemma 4. Clearly BnC =§. Define

T(f1B)(x) if xeB
Tf(x)={ T, '(JIO)(x) if xeC
J(x) il xe(BuLC)

for fe LP(u), which provides a linear isometry of LP(u) onto itself. Observe that Tf
is a rearrangement of f by (i) of Lemma 4. Now

[(Tf*—f*ygdu= | (Tf*—f*)g—a)du
e Bul
since
i(Tf"'f')d#=£(f*—Tf')d#-
We have
§Tr*g—o)duzBi(g—a)du since Tf*<f and g=<a onB,
B B
£f'(g—a)dp§ﬁf(g—a)dp since f*>f and gsa on B,
B
in‘(g—u)dpgﬁg(g—a)du since Tf*>f and g=a onC,
{f*(g—a)dygﬁ‘j;(g—a)dp since f*<f and gza onC,
hence
{ Tf*gduz | f*gdp.
n 0
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Since f*|B > fand f*|C < B we have T/ ™ + [ * contradicting the uniqueness of the
maximizer. Therefore f*(x) £ @(x) for almost all x € \G(a). In particular we now
have f*(x)=(x) for almost all x in H{a).

Finally we show f*(x) = g(g(x)) for almost all x € £2. Suppose this is false. Then
we can choose fe R and a set SC£2 of positive measure such that f*(x)>fi
> @(g(x)) for all xe S or f*(x)<fB<p(g(x)) for all xeS. If there is a real « for
which u( H(a)nS5) > 0 then we have a contradiction since f*{x) = p{g{x)) for almost
all x e H(e). Hence u(H(x)nS) =0 for every a. Therefore we can choose o such that
SnG(a) and $\G(a) both have positive measure. Consider the case f*(x)>f
> @lgi{x)) for all xeS. Since ¢ is increasing, taking x & §nG{x) we have @l(g(x))
2 @(a). Therefore () < §. But for almost all x e S\G(a) we have f*(x) = p{«)
giving a contradiction. Now consider the case f*(x) < f < @(g(x)} for all xeS.
Taking x € S\G(a) we have ¢(g(x)) < @(x) since ¢ is increasing, hence g(o) > . But
for almost all x € SNG(a) we have f*(x)Z @{a). From this final contradiction we
conclude that f*(x)=¢{y(x)) for almost all xe Q.

Theorem 6. Let (2, . #, u) be a finite separable nonatomic measure space, let
1<p=< o, let q be the conjugate exponent of p, let fe L*F(y), let # be the set of
rearrangements of f on § and let F denote the closure of # in the Li-topology on
LP(ut). Then # is convex.

Proof. Wefirst take any f,, [; € # and 0 <l <1, and show that Af, + (1 —A)f, € 7.
Let £>0 and let {F(i}|ie N} be a partition of £ into measurable sets on each of
which f, and f; have essential oscillation less than e. Let a, and §; be the respective
means of f; and f, on F(i) and write

g1= 2 ol
i=1
&= 1221 B Fiy-

We show that dg, +{1 —A)g; € # and then letting ¢ tend to O it follows that
Af,+{(1 - A)f,€.#. There is an isomorphism & from (2, .4, ) 1o the interval
f=(0,u(£2)). The lincar isometry T,:LP(u)—L*(I) provided by Lemma 4 is a
homeomorphism of the Li-topologies. We may therefore suppose that =1 and
that p is Lebesgue measure; further we may suppose F(i) is an interval

F(i)=(x; x;+ k)
for each i.
Define functions ¢; and y, on R satisfying

@;1(0, k) is a rearrangement of f, | F(i)

il thi i 'h)=0 |

@; is 4~ 'h-periodic

wil(0,A(1—4) 'h)=0

Wl (A1 —A)" 'h, (1—2)" 'k} is a rearrangement of f5| F(i)
¥; is (1 —A4)" "h-periodic.
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Write

G(x)= T o (x= ) lx)

()= 3 w1 =2 (= x)) )

i=1

for x & Q2 and n a positive integer. There are disjoint sets A” and B"in Q with g{A")
= Au(£2) and p(B")=(1 —2)u(£d) such that ¢" and y" vanish outside A" and B"
respectively; further ¢"| A® and y"|B" are rearrangements of f(4 'x) and
JU1 —2)" "x) respectively. Hence ¢"+y" € #. As n— o we have "} F(i)— la, and
Y| F(y—=(1—-4)f; in the L¥-topology of LP(n). It now follows that ¢"+y"
—ig,+(1—A)g; in the L-topology on LP(u); this uses the observations that when
1 £p< oo the series defining " and " converge in the p-norm uniformly over n,
and that when p= co the functions that vanish outside a finite union of F{(i)’s are
dense in L'(tx). Thus ig, +(1—-A)g, €7, hence Af, +{(1 - A f,¢.# for all f, and
Jye #. 1t now follows that Af, +{1—-A)f,e.# for all f, and f,e.#.

Lemma 5. Let (Q, #, 1) be a finite measure space, let 1 p<L oo, let f,e LP(p) be
non-negative, and let # denote the set of rearrangements of f,on Q. If f*econv.#
(CLA(4)) then

Hi{xe Q1 f*(x)>0})z u(ixe 2] fo(x)>0}).
Proof. Let feconv.#, say
w
f= % Ak,

where l,=20and fieFfor1snsNand 4, +. . +4 =1 Fixa>0and 0<fi<1
and write

S(m={xeR|ffx)za}
T={xe|f(x)zaf}
for 0£n<N. We prove that
#(T) 2 (u(S(0)) — Bu()/(1-f).
We have

N
féa gl Anls(n)
and therefore

‘_\E.:] lnls(n)(x};ﬂ} C T.

{xeﬂ

I
[ )::] Antsndpt S p(T)+ (D) — 1 T)).

in

Hence
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We also have
| T A= T Auu(Sm) = SO
S0
H(S(0)) £ i(T) + Blu() — u(T))

and therelore

H(T) 2 (u(S(0)) — Bu(€2)/(1 — B) .

This inequality also holds with f* in place of f, by taking a limit. It now follows
that

u(ix e Q11 *(x)>0) 2 p({x e Q| f*(x) Zap}) 2 (u(S(0) — Bu(D) | (1 - B) .

Letting « and § tend to 0 we obtain the result,

Lemma 6. Le: (2, #, u) be a finite separable measure space, let 1 Sp< oo, let q be
the conjugate exponent of p, let fo € LP(u) and let # denote the set of rearrangements
of [, on Q. Let F denote the closure of # in the L3-topology on L*(u). Then Fis
sequentially compact in the L*-topology.

Proof. Forall fe # we have || f{,= foll,, hence .# is bounded. The result follows
from this when 1<p<co. The separability of (£, .4, #) ensures that L'(p) is
separable, so if p=co then £ is a bounded weak* closed set in the dual of a
separable Banach space, hence ¥ is weak* sequentially compact. Consider finally
the case p=1. We have

lim | |fide=0

M—~w |[flxHzM

uniformly over f € #. The weak sequential compactness of # now follows from the
Dunford-Pettis criterion for weak compactness in L'(g), see [6, p. 294].

3. Maximization of Convex Functionals

Let (2, .#, 1) be a measure space, let 1 S p= w0, let ¢ be the conjugate exponent of
p, and let ¥ : L()~R be a convex functional. If ue L*(y) and ¥(u) is finite, the
subdifferential d¥(u) of ¥ at u is defined by

OP(u)={we L) | Y2 Py + {v—u,w) Yoe LP(u)}.
If % (1) + 0 then V¥ is said to be subdifferentiable at u, and elements of 8¥(u) are
called subgradients of ¥ at u. The following is a variant of a standard result:

Lemma 7. Let (2, .#, u) be a separable measurable space, let | Sp £ oo, let g be the
conjugate exponent of p, let ¥:LP(u)—R be convex, and let ue LP(y). If ¥ is
sequentially continuous at u in the L%-topology on LP(y:) then ¥ is subdifferentiable
al u.
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Proof. A fortiori ¥ is norm continuous at 4, and an application of the Hahn-
Banach theorem shows there exists a bounded linear functional f on Lf(u)
satisfying

Y()z¥ W)+ fv—u) (6)

forall v e LP(u). In case 1 £ p < oo this is sufficient to establish the result. In the case
p= oo we must further that f is weak* continuous on Lf(u). Inequality (6) together
with the weak* sequential continuity of ¥ at w ensures that f is weak* sequentially
continuous, The separability of (2, #, u) ensures that L'(g) is separable, so the
relative weak* topology on any bounded set in L®(u) is metrizable, hence [ is
continuous in the bounded L'-topology on L=(u). It now follows that f is weak*
continuous on L®(yu) by Theorem 6 on p. 428 of [6]. Thus f can be represented by
an L' function.

Theorem 7. Let (8, #, u) be a finite separable nonatomic measure space, let
1 Sp=< o, let q be the conjugate exponent of p, let ¥ L?(u)—R be convex, let
fo € LP(u) and let # denote the set of rearrangements of fu on £.

(i) Suppose that ¥ is sequentially continuous in the L*-topology on L*{(u). Then
¥ attains a maximum value relative to F.

(i) Suppose ¥ is strictly convex, that f* is a maximizer for ¥ relative to . and
that gedP(f*) (CL%(u)). Then f*=¢pogy almost everywhere in Q for some
increasing function ¢.

Proof. To prove (i} let # denote the LS-closure of # in LP(x). Then J is
Li-sequentially compact by Lemma 6. Hence ¥ has a maximizer f relative to /. It
follows from Lemma7 that ¥ is subdiffercntiable at f;, so choose
he d¥(f,)C L9yu). By Theorem 4 there is a maximizer f* for (-, h) relative to .#.
By L*-continuity the supremum of (-, A on .¥ is equal to the supremum on #.
Hence

SINOF LG AN IR
By subdifferentiability we now have

YUNZY)+S S 2 ¥U)

so f* maximizes ¥ on J.
Now suppose the assumptions of (ii) apply. If fe #\{f*} then by strict
convexity we have

PP P) S-S
and therefore
gy <{Sha.

Thus f* is the unique maximizer of { -, g on #,50 f* =g almosi everywhere,
for some increasing function ¢, by Theorem 5.

Corollary 1. Let (2, #, p) be a finite separable nonatomic measure space, let
1< p= oo, let g be the conjugate exponent of p, let fo € LF(p) and let # be the set of
rearrangements of f, on 2. Let ¥ be a strictly convex Gateaux differentiable

T RO

g e
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Junctional on LP(u) and suppose ¥ is sequentially continuous in the L"—mpulo_yy_ on
LP(p). Then ¥ attains @ maximum value relative to ¥, and i [* is any maximizer
then f*=@oY(f*) almost everywhere for some increasing function .

Let (£2, .#, 1) be a measure space, 1 = p = oo and g the conjugate exponent of p.
A bounded linear operator K : L?(yz)— L) will be called symmetric if

fuKwdu= | wKudu
n 14
for all uw and we LP(u).

Corollary 2. Let (2, #, ) be a finite separable nonatomic measure spuce, let
1= p<ao, let g be the conjugate exponent of p, let foe LP(u), let ve L3(p) armf let
K : LP(1)— L%u) be a compact strictly positive symmetric linear operator. Define

W)=} SKfdp— | ofd

for fe LP(u). Then ¥ atiains its supremum on the rearrangements of f on €2, and if
f* is a maximizer then [* =g (Kf*—uv) almost everywhere for some increasing
Junction ¢.

Theorem 8. Let (2, .#, u} be a finite separablg nenatonic measure space, let
1< p<a, let g be the conjugate exponent of p, let fo € L?(u) and let .¥ be the set f’f
all rearrangements of f, on Q. Suppose ve L3(u), let I be real and suppose there exist
fi and f,€ ¥ satisfying

S <I<{fnv).
Let 'V be a weakly sequentially continuous convex functional on L*(), such that for
each feconv.#, each ge dW(S) and each real A such that [ maximizes (-, g—4iv)

relative to Conv.#, there is an increasing function y such that ye(g— iv)e #.
Then ¥ attains a maximum value on

{(fes|{fivp=1}:
if f* is any maximizer and g€ d¥(f*) then
*=pa(g—iv)
almost everywhere, for some real A and some increasing function @.

Proof. Writc A= (ue D <oy = 1.
We claim that C =conv.# is weakly compact. When 1< p< oo it is sufficient to
observe that C is closed, bounded, and convex. When p=1, Lemma 6 shows that
#, the weak closure of .#, is weakly compact, and C =% by Theorem 6.

The weak continuity of ¥ now ensures that ¥ attains a maximum relative to
AnC. Consider any maximizer £*, and let g e 9¥( f*) which is nonempty by weak
continuity. For fe AnC we have

PZPNZPUN %>
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and hence

L2 9.

Thus * maximizes (-, ¢> on ANC.

The existence of f, and f, ensures that f; and ¢ are both nonconstant. Further g
is not a multiple of v, for otherwise y(0) € # for some increasing function y, which
isimpossibie since f, is nonconstant. Let E be the 2-dimensional linear subspace of
I%(y) generated by g and v, let E* C LP(41) be the annihilator of E, let J C L2(1) be a
2-dimensional linear subspace complementary to E' and let n: Lf(u)—J be
the linear projection map having kern=E*..

Since f* maximizes the functional F=<¢-,g> on AnC, it foliows that nf*
maximizes I over AnzC. The inequalities

(nf,,u)((nf*,v)=l<(rrf2,v)

ensure that A intersects the relative interior of nC, but that =C is not contained in
A. A Hahn-Banach argument shows that I'| AnJ has an affine extension I}, to J
such that xf* maximizes I on 7C. We can represent I, by

T N)=<frg—Avd>+p

for feJ, where A and f arc some fixed real numbers. Now f* maximizes
-, g— 4} on C. By hypothesis there now exists an increasing function ¢ such that
@o{g—Av)ef. From Theorem 3 it follows that @o(g—Av) is the unique
maximizer of <-,g—4iv) on C. Therefore f* = (g— iv) almost everywhere,
and in particular f*€.#, so f* maximizes ¥ on An.#.

Theorem 9. Let 2 be g domain in R", let p be a finite measure that is equivalent to
Lebesgue megsure on £, let 1 £ p < w0, let q be the conjugate exponent of p, let mz 1
and let

F= ¥ afx)D°

135lelzm

be an m-th order linear partial differential operator in  having measurable
coefficients and having no 0-th order term. Suppose K : LP(u)— L) is a compact,
symmetric, positive operator such that Kue W™ and £ Ku = u almost everywhere
in Q2 for all uelP(u), and suppose ve LN(u)nW™Q) satisfies v=0 almost
everywhere in 2. Let f, € L*(y1) be non-negative, let .# be the set of rearrangements of
Jo withrespect to pon Q, let I be real and suppose there are f, and f, in .# satisfying

<l <{fpv).
Then the functional
'f’(f)=llf7fKﬁ1#
attains a maximum relative to the set
fefIKfivp=1}.
If [* is a maximizer and u=Kf* then u satisfies
FLu=po(u—Av)

almost everywhere in 82, for some increasing function ¢ and some real 1.
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Proof. In order to apply Theorem &, it remains only to let feconv.#, note that
AW(f)={Kf}, let A be a real number such that f maximizes {-,Kf—Av> on
conv.#, and show that @<(Kf—Aif)e.# for some increasing function ¢. The
existence of f, and f; shows f is not zero. Write

w=Kf— v
S={xe|f(x)>0}
y=essinfw(S).

We next show that w(x) < y for almost all x € £AS. Suppose this is false. Then we can
choose § with y < i< co such that the sets

B'=(xeS|wx)<p}
C'={xef\S|w(x)>p}

both have positive measure. Since B’ and C’ are isomorphic to real intervals, we
can choose BC B and CC L’ such that

wB)=p(C)>0.

Let @ be an isomorphism from B to C, let T, : L(B)— L?(C) be the linear isometry
induced by @ as in Lemma 4 and let

T,(h| B){(x) for xeB
Th(x)={ T, "(h|C}{x) for xeC
h(x) for xefA(BUC)

for ke LP(2), which defines a linear isometry of L) onto itself, such that Thisa
rearrangement of A. Then
,f, (Tfw> {j’ fw.

Since T(F)=.# it follows that T(¢onv.#)=conv.# so Tfeconv.#. But f maxi-
mizes -, w) over conv.#. This contradiction shows that w(x}<y for almost
all xe Q\S.
Now consider € R and let
H{x)={xef2|w(x}=a}.

We show that H(z)nS has zero measure. Since w e WT(Q2) the partial derivatives of
wof orders 1, ..., m vanish almost everywhere in H(«) by, for exampie, Lemma 7.7
of Gilbarg and Trudinger [9]. Thus £w=0 almost everywhere in H(a). But
#w={>0 almost everywhere in 5. Therefore u(H{x)n5)=0.

We now construct ¢. Let w = p(f2). For real « define

Fla)={xeR|f(x)2a)
Glo)={xeQ|w(x)20a}
o(@) = u(F(a))

ta) = p(G(a)) -
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For 0 £s<w define
esssupf, if s=0
fsy= 1 fs  if O<s<w
essinff, il s=w.
For real i define
0 if t=
o= {fn”(r(:» i >y

Since f and t are decreasing and f’ 20 it follows that ¢ is increasing. We show
that f,=¢ow is a rearrangement of f;. If & Zessinf f, then

u({xefd|fy(x)za)=w=0(x)
whereas if « >esssup f,, then
wixe@|f0za)=0=0lz),
s0 suppose essinff, <x<esssup fy. Then o(x) <w. For all xe @,
flxyze < fP(w(x))Za
< o(a)Zt(w(x));

this fo_llows from Lemma 1 if 0 < 7{w(x)}) < w, and is immediate from the definifion
of f if t(w(x))=0 or w. We have o(x) < u(S) by Lemma 5. Consider firsi the case
0 < a(a) < u(S). Now u(H(f#))=0for each f >y so t is continuous on (y, w}; further
(fy—u(S) as f—y+ and t(f)—0 as f-oo. We can therefore choose d€(y, «0)
with 1(8)=a(x); take é to be the least possible. Then
t(w(x))Sa(e) <> w(x)2d
< xeG(d).
Thus

H({x e QL fi(x) Za})=u(G(8))=(d) =0(e).

Next consider the case o(x)=p(S). If x e S\H(y) then t{w(x))=u(S) and since
SN H(y))=0 we then have

w({xe 2| f3(x)2a}) 2 u(S).
Since the sets G(f) are totally ordered by inclusion we have
#(lJ {Gw(x)) | r(w(x)) = u(SH) < u(S)
and so
u({x e Q| f3(x)za})=pu(S)=o(x)

in this case also. The last to consider is when o(a)=0. Then fP(s) 2 « only when
s=0, so if fy(x)Za then t(w(x))=0 which occurs for almost no xe 2. This
compietes the verification that f;=¢cw is a rearrangement of f,.

g
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It now follows from Theorem 8 thai ¥ has a maximizer f* relative {o

{fef|{f.vo=1}
and that f*=g@o(Kf*— iv) almost everywhete for some increasing function ¢
and some real 2. Then u= Kf™* satisfies

Lu=@o(u—Ar)

almost everywhere in Q.

4. Applications to Vortex Rings

We begin by defining the compact operator K needed to study the problems (V1)
and (V2) introduced in Sect. 1. We write

M={(r.2)e R?|r>0}CR?,

we define the measure v on 7 having density 2nr with respect to Lebesgue measure
i, we take €2C IT to be a bounded domain having the cone property (defined in [1]
for example) and let % be the operator

18 (1du 1 2u
““’“*?é:(:a)‘:fé?
Modifying the approach of Amick and Fraenkel [3], we define the Hilbert space H
to be the completion of the {Schwartz) test functions on Q with the scalar product

1
uydy=§ 5 Vu-Podv.
ar

Lemma8. Let 1<p<coandp '+q '=1. Then for ve LP(2,v) there is a unique
Kve H that is a weak solution of Fu=v in Q. Further
(i) K:LHQ v)—H is a bounded linear operator,
(ii) K: LA, v)— L%, v) is symmetric, strictly positive, and compact,
(iti) if ve LF(Q,v) then Kve W),

Proof. For ve LP(£2, v) define
@, (u)=ullf— [ uedv
i)
for ue H. The embeddings H— W, () LA(Q, )~ LY, v) are bounded. It
follows that @, is continuous, coercive, and strictly convex on H. A semicontinuity
argument now shows that @, has a mizimizer Kv on H, and Kv is the unique

stationary point of @, by strict convexity. A function ue H is a weak solution of
Yu=vif and only if

Cuywiy=Jowdv YweH M
n

which occurs if and only if u is a stationary point of @,, hence the existence and
uniqueness of the solution in H.
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The linearity of K follows from the linearity of & and the unigueness of
solutions in H, and from (7) we have

IKoliE S Noll, I Kol < const o | Kol

where the p- and g-norms are calculated with respect to the measure v, and it
follows that K : L*(£2, v)— H is bounded. The compactness of K : LP(2, v)— L@, v)
now follows from the compactness of H—+ L%, v).

If » and v"€ LP(€2, v} we may take u=Kv and w=Kv' in (7) to obtain

(Kv, Kv'dp= [ oKvdv.
fl
from which we deduce that K is symmetric; further taking v = v’ & 0o we have Ko+ o
and hence

foKvdv=>0
n
so K is strictly positive.
For ve LF(£2, v) it follows from Theorem 6.1 of Agmon [2] that Kve WP,
hence (iii). -

Lemma 9. Suppose  is the intersection of IT with a 3-dimensional domain with C?
boundary, cylindrically symmetric about the z-axis. Let S<p<ou and let
ve LA, v). Then Kve C'(€d) for 0<a < 1—5/p,and Kv=00n 04 At any point af
002 on the z-axis we have Kv=0(r*), r " '6Kv/0z-+0 and r '3Kv/0r approaches a
finite limit.

Proof. We can identify IT with a hall-plane in R®. Then Q can be expressed as
Q=Un{l where U is a bounded domain in R* having a C? boundary and having
cylindrical symmetry; here and in what follows, cylindrical symmetry is about the
z-axis, which forms the edge of JT. We shall use r to denote distances from the z-axis
in R* aiso. Modifying the approach of Amick and Fraenkel in Sect. 2 of [3] we
define the Hilbert space E to be the completion of the (Schwartz) test functions on
U with the scalar product

Cu,vdp= | Pu Fedld,
v

where the measure 1 has density =~ ! with respect to Lebesgue measure on R,

Thus E is a renorming of W' *(U). Every function on @ extends to a cylindrically

symmetric function on U, undefined on the z-axis if this intersects [/. With this

convention, a formal calculation shows that if w and v are test functions on £2 then

(oD ={r tu,r i)y, (8)

The transformation u — r~ 2u thus maps H isometrically to a subspace of E, and (8)
holds for all u and v in H.

Suppose ¢ is a test function on U that vanishes near the z-axis. We can write
@ =o{x,t) with xe Qand t € §, where SCR* is the sct of unit vectors perpendicular
to the z-axis. Then for any test function v on £ we can catculate formally that

G, 2ol )y = J}V(r 2u)- Fplx, ridv(x)
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for cach t € S, where V is the S-dimensional gradient operator. Integrating over ¢
with respect 1o the Lebesgue measure w on S, suitably normatised, yields

£<u1 rZ‘p('a l))Hdw(I)=<r_zu= ‘p)E' (9)

The integrand of the left-hand side is continuous over (u, £) € H x §, hence (9) holds
for all ue H.
Consider ve LA, v) and ¢ as above. Then

§ § v(x)rte(x, Hdvix)dw(t) = | vpdA.
sn v

From this equation and (9) we deduce that
ro 2K, pdp= [ vpdi. (10
U

The test functions on U that vanish near the z-axis are densc in E; this is proved by
the device cmployed in Lemma 2.3 of {3] as follows. Let v be an increasing C*
function on R that satisfics p(s)=0 when s < 1 and tp(s)=1 whens 2 2.Ifpisatest
function on U then w{nr)¢ defines a test function vanishing near the z-axis, that
converges in E to ¢ as n— 0. We deduce that (10) holds for all @ € E. In particular
r~*Kv is a weak solution of —du=vin U.

For any y and w in E such that Aye L*(U) we have

{pwie= ,Lfr(—dy)wdl. (11)
Let ve LP(82,v) and u=r"2Kve E. Then from (10) and (11) we have

fu{— Aw)di= | owdd (12)

v v

if we E and dwe LYU). Since U has a C* boundary, E contains
C2(0)={we C¥(0)| w=0 on 3U}.

Therefore (12) holds for all we C3(U). Thus u satisfies the hypotheses of Theorem
8.1 of Agmon [2], and it follows that ue W2P(L)). Since p>5 we now have
ue C4(0) for 0 <a <1~ 5/p, and since u is a limit in E of test functions it follows
that u=0 on dU. Hence Kve C*({J) for 0<a<1—5/p, and Kv=0 on 1N
Since u is bounded we have Kv=0(r?) as r—0 if 4Q intersects the z-axis, hence
Kuv=0 on 0. Since Fu is bounded it follows that r~*9Kv/dz—~0 and r™ ' dKv/or
has a limit at any point of 32 on the z-axis.

The following result is an immediate consequence of Theorent 7, Theorem 9,
and Lemma 8.

Theorem 10. Let 1 < p< o, let QC IT be a bounded domain having the cone property,
{et K be as in Lemma 8, let fy e LP(£2,v) and let # be the set of rearrangements of f,
on Q with respect to v.

(i) If A is any real number then the functional

é!)fodv—‘H!)r’fdv
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attains a maximum over f€.#.If [* is any maximizer and w = K™ then u satisfies
Pu=pu—Ir’/2) (13)

almost everywhere in Q for some increasing function @.
(i) Suppose f, =0, suppose | is a positive number, and suppose there exist f, und
f, in 7 satisfying

frifidv<I<[rifydv.
) )
Then the functional
1§ fKfdv
o
altains @ maximum over the set

{fe.lllj;rzfdm’:I}.

If f* is any maximizer and u=K f* then u satisfies (13) almost everywhere in Q for
some increasing function @ and some real A.

Let us make some remarks on the physical interpretation of the solutions u
found in Theorem 10. The stream function u— Ar?/2 gives rise to an axisymmetric
velocity field v whose components in cylindrical coordinates r, 6, z are given by

1du _1du =
(—;a"”;a "‘)-
If the stronger assumptions on £ of Lemma 9 are made, and p>5, then the
tangential derivative of u at 302 vanishes, so the normal component of v at points of

1882 matches that due to the uniform stream (0, 0, — 2). At points of 3Q lying on
the z-axis, v is axial. The vorticity curlv has the form

curlv=(0, w,0)
w=r%u.

Benjamin’s approach to vortex rings seeks a solution for which w/r is a
rearrangement of a prescribed function f;, and for which a value is prescribed for
either the speed A of the uniform flow matched at the boundary, or the impulse
which is given for a fluid of unit density by

I={rw.
ll

One of the virtues claimed by Benjamin for his approach is that I and the measures
of the sets {w/r = o} are preserved in all axisymmetric (including unsteady) motions
of an ideal fluid in R?, so the quantities I and f, are physically meaningful.
Although this was not assumed in Theorem 10(i), the assumption f;,=0 is
appropriate to the physical problem in hand, and, at least for flows in the whole of
R?, one would also expect 1>0. Problems for vortex rings with our boundary
conditions have been studied by Fraenkel and Berger [8] as approximations to

i

g T

~n
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flows defined throughout R®, and by Amick and Fraenkel [?] who prpved a
uniqueness theorem for the known explicit examples of llows in a ball with a/r

constant in the voriex core.

5. Duality Theory

Let (2, .#, 1) be a finite separable nonatomic measure space, let1g€psw.letg bg
the conjugate exponent of p, let fo € LP(u), let S be the set of rearrangements of fo
on Q, let we L%(u) and let x be the characteristic function of #, that is

_jo if ue.f
x(v)= oo if we LP(p)F .

Define

R OELCRDORS ((HR
For any functional ¥ : L#(;)— R the conjugate convex functional ¥*: L)~ R of
¥ is defined by

w*p)= sup {u,v)— VYW
welLFim)
for v & L%(u); this definition as a supremum of linear functionals ensures that ¥'* is
convex and lower semicontinuous in the L*-topology on Li{(u).
If ¥ is finite-valued, the problem of maximizing ¥ — (-, w) over ¥ is the same
as that of maximizing ¥ — x,, over LF(z). In the duality theory of Toland [14] the
dual functional of ¥ —y,, is x4— ¥*. By Theorems 1 and 4 we have the formula

@

o=,

0

where m=p(Q), and therefore

XS0 =x*@—w)= | w-mf
for all ve Lu).
Lemma 10, With the above assumptions, for each pe L) the set Fndgn(v)
consists of all maximizers of (-, v—w) relative 1o 5, and is therefore nonempty.
Proof. For fe LP(u) we have
fedxi(v) = vedyi*(f)

by, for example, Proposition 5.2 on p. 22 of [7]. 1t follows from Propositiop 4.10n
p. 18 of [7] that x** is the largest convex function that minorizes x,, and is lower
semicontinuous in the L%-topology on L#(u). Thercfore

oo {0 i fEC
& (f)_{co it felP(unC.
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where C is the L'-topology closed convex hull of .#. It follows that ve dy3*( /) il
and only if f maximizes {-,v—w)> on C. Now

sup{fiv—wh=sup{f,v—w).
FeC fef

The result follows from this and Theorem 4.

Theorem 11. Let ¥ : LP(u)— R be convex and everywhere subdifferentiable. Then
under the above ussumptions we have

sup xu()—P*(v)= sup P(u)-y.(u).

vel.2u) ve LP{p)

{f uis a maximizer of ¥ —y,, and ve 3¥(u) then ve dy,(u) and v is a maximizer for
X —'"P*. Comversely if v is a maximizer for y4—¥* and ue #nyh(v) then
ue d¥*(v) and u is a maximizer for ¥ —y,.
Proof. The subdifferentiability of ¥ ensures that ¥ is lower semicontinuous in the
L%-topology on LP(); the equality of sup g — ¥* and sup ¥ —y,, is now immediate
from Theorem 2.2 of Toland {14]. Suppose ¥ —y,, has a maximizer « and let
ve 0%¥(u). Then v is a maximizer of y* —‘¥* by Theorem 2.3 of [14]; during the
proof of that resuit it is shown that v e dy,(u).

Now suppose v is a maximizer of y&— ¥*. Then by Lemma 10 there exists
ue Fndgt(v), so we have

Xul) = (1) = {u, 0> — u(v).
From the definition of ¥* we have
Pu)z (u,v) — P*(v)
50
¥ (u) — . (u) 2 x2(v) — ¥*(0)
which shows that u is a maximizer for ¥ —y,,. The proof of Theorem 2.3 of [14]
shows that ue d¥P*(v). [

We now apply the above duality theory to one of the variational problems for
vortex rings in a bounded domain, discussed during Sect. 4. Let t <p < oo, let g be
the conjugate exponent of p, and let /7, 2, v, &, K, and H be defined as at the
beginning of Sect. 4 and in Lemma 8. For e L?(Q2,v) recall from the proof of
Lemma 8 that Ku is the minimizer of the functional

vty — § uvdv
n

over ve H. Define
Y(u)=1 [ uKudv if uelLP(2,v)
n
L ! [Pof*dv il peH
&)= ‘o rt
o il vel®(Q vAH.



252 G. R, Burton

Lemma 11. In the usual duality between LP(82, v} and LY(2, v) we have ¢* =¥ and
Pr =,

Proof. Let ue LP(L2, v). It is immediate from the definition of Ku as a minimizer
that writing v = Ku we have

D )= Juvdv—1| lzll?vlzdv
n ar
= | (uv— v Lv)dv
n
=§£uvdv=‘}’(u).

Using the compactness of the embedding H — L3(£2, v} it is easily shown that ¢ is
strongly lower semicontinuous, and since @ is convex it follows that @ is weakly
lower semicontinuous, hence ®** =&. Since ¥* = ¢** the proof is complete.

Fix a real number 4 and uy € L?(£2, v}, and let .# be the set of rearrangements of
uy in LP(£2, v). Then using Theorem 11 and Lemma 11 we have

@ 1
sup3 f uKudv—A [ 4riudv=sup [ud(v—4ir?)? 4§ = |Fv|%dv, (14)
ues 0 0 veH O nr

where w=v(£2). Maximizers u of the left hand side and v of the right-hand side
occur in dual pairs connected by the relations

v=Ku

u maximizes | (v—4Ar¥)udv over #.
1]

The variational functional in the right-hand side of (14} is of the form arising in
the study of “queer differential equations,” and similar functionals have been
studied by Mossino and Temam [13].

We have not found a duality theory appropriate to the variational problems of
Theorem 9.
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