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and uncountable families of steady configurations
for a vortex
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G. R. BURTON(H

Umiversitv of Bath
Bark, Englund. UK

1. Introduction

Kelvin [13] studied steady planar flows of an ideal fluid. confined in a bounded region
with solid boundaries. He supposed the vorticity to have a given value in a region of
fixed area. outside which the flow was irrotational, and considered possible configura-
tions of the vortex. In the case of a circular region, he observed that infinitely many
steady configurations exist. and one can easily verify that any radially symmetric
configuration is steady, Less obviously. he claimed that in a dumb-beil shaped region.
infinitely many steady configurations can be obtained by dividing the vorticity between
the ends of the dumb-beil in an arbitrary proportion, and seeking the configuration that
maximises the kinetic energy subject to this restriction.

In this paper we prove two results on the existence of infinitely many steady
configurations for a vortex, based on Keivin's principle of stationary kinetic energy.
We admit flows in which the vorticity may be nonconstant in the vortex core (the
region of non-zero vorticity), and seek steady flows in which the vorticity is a
rearrangement of a given function; this more general formulation is based on 2 theory
of 3-dimensionat vortex rings proposed by Benjamin {1]: additionally. we prescribe the
circulations of the velocity around the connected components of the boundary. We first
show that in a bounded planar region of arbitrary shape, for a given non-negative
function §. the Kinetic energies of steady ideal fluid flows whose vorticities are

(') This research was conducted under a grant from the University of Bath, when the author was on
leave from University College London.
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rearrangements of 2., and having the prescribed circulations. realise all vidues botween
a maximum and 4 minimum. This result is proved using a saddle-point theorem tor a
convex functional relative 1o a set having convex sections. Our second result applies to
a simply connected region comprising two cavities connected by a constricted aper-
ture. generahising Kelvin's dumb-bell. We prove the existence of steady flows for
which the vorticity vanishes in the aperture, and for which the restriction of the
vorticity to each cavity is a rearrangement of a prescribed non-negative function. This
is proved by a maximisation argument, and yields a disconnected vortex core that
avotds the boundary of the region. By assigning varying proportions of the vorticity to
the two cavities, uncountably many steady flows are obtained, all of whose vorticities
are rearrangements of one given function.

The main abstract resuits of the paper are Theorems 3.2 and 3.3 in Section 3 and
the applications to fluids are given in Section 4.

2. Measures and rearrangements

When (Q..ff.1) is a (positive) measure space and I=p==x_ then L (u) will denote the
space of real functions on € that are p-integrable with respect to 4. If Q=R |s
Lebesgue measurable. we denocte by L7(Q) the LP-space with respect to Lebesgue
measure. Whenever we refer to Sobolev spaces. we intend that Lebesgue measure 15
used in their definition. We denote the Lebesgue measure of a set 4 by (A

A measure space (Q..f. ) is called a measure interval if w=u(2} is fimte and
positive, and there exists a bijection x 1 82—10.w], such that for A=Q we have AE {1 if
and only if (A) is Lebesgue measurable. and for all A €. we have ulA)=ly(AY. Tt iy
wetl-known that any Lebesgue measurable subset Q=R". together with anyv nontriviai
finite positive measure on € that is absolutely continuous with respect to Lehesgue
measure. is a measure interval: this can be deduced. for example, from a very general
result in Royden [10], p. 270, Theorem 9. Measure intervals are a subclass of the finite
separable nonatomic measure spaces studied in [3].

Two measures on the same set are called equivalent if each is absolutely continu-
ous with respect to the other.

Let (82, .. w) and (Q', 4", 1") be (positive) méasure spaces with ((C)=.'(Q"). Reul
measurable functions fon Q and ¢ on Q' are rearrangements of each other if

(B =n=wig . =). VBER:

if additionally 1=p=> and f€L"(u) then it follows that g €17(++') and LA l=lig!l,
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It w=u(2) is finite and positive. then every real measurable function fon € has an
increasing rearrangement f* defined on {0, . and for l<€p=<x the inequality

Hf*_g*”ps”f_ﬁ'nn- VﬁHELp{IJ) (1)

is well-known. A particularly neat proof of (1). for l=p<x and non-negative fand g.
can be found in Crowe et al. [6].

The convexity assertion in the following lemma is due to Ryff [12] (who considered
the case p=1) although it can be deduced (for I<p<=x) from previous work of Brown
(2] and Ryff [11]; it was subsequently rediscovered by Migliaccio {9] and the author [3].
The compactness assertion is easily proved.

LeMma 2.1, Let (Q, M, 1) be a measure interval, let lsp<x, let L€ L), and F
be the set of rearrangements of fy on Q. Then the weak closure F of Fin LP(u) is
convex (thus F is the closed convex hull of F), and 7 is weakly compact.

The next lemma is due to the author [5], Lemma 2.15.

LEmMA 2.2, Let Q be a nonempty open set in R™, let u be a finite measure on ©
equivalent to Lebesgue measure, and let

F= > ax)D

I<iasm

define an m-th order linear partial differential operator, where the a® are finite-valued
measurable functions on Q and there is no O-th order term. Let l=p<x, let q be the
conjugate exponent of p, let fo€ L*(u) be non-negative, let F he the set of rearrange-
ments of fo on Q (with respect 10 ), and let F denote the weak closure of . Suppose
there exist f€ % and w € L) W' (Q) such that

(Y Zy=f almost everywhere in Q, and

(i) jn ftpd,us_fn Fydu for all fE .
Then f€ F, and there exists an increasing function ¢ such that

f=¢ou'

almost everywhere in .

We now prove:
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Lessa 230 Ler Q0w be a measwre interval. et =), der 1Ep<= et
Joegn € LM and et F and 4 be the sets of rearrangements on €Q of fiy and e, with
weak closures # und 4.
() Let f€. 7 Then
infif—ell, =ilfr—eill..
vE & ’ !
and the infimum is attained.
(i) Let fE€ 7. Then

inf [ f=gll, <l £5—gxil,.
vE &
and the intimum (s attgined.

Proof. There is no loss of generality in assuming that Q={0. ] and u is Lebesgue
measure,

To prove (i) all that is required in view of (1} is to construct g €4 satisfving
=it =107 — el By aresult of Ryff [11]. we can write f=f¥c o where ¢: Q—Q is a
measure-preserving transformation: that is. o is measurable and |o™'(A)={A! for every
measurable set 4=€. We define ¢=g} oo. Then ¢€ 6. and f~ g is a rearrangement of
fi—gi.hence jif—gil =l fr-ghl.

To prove (if), observe that ||f—g', is a weakly lower-semicontinuous function of
e€L"w). and % is weakly compact. so the infimum is attained. The function
¢: L7(w)—R. defined by

o fr=infllf-gl

vE
is weakly lower-semicontinuous. being continuous and convex. and the inequality
SO =5 —gdll, (2)

holds for all /€ # by (i} hence (2) holds for all f€ #. .

3. Saddle points relative to sets of rearrangements

Notation. When X 1s any topological vector space and @: X —R is Gateaux differentia-
ble at ¥ €.X. the derivative is denoted ddue). If additionally X is a product of two
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topological vector spaces, the derivatives with respect to the first and second variables
are denoted 3,®(u) and 3:P(w). The bilinear pairing of X and its dual space X* will be
denoted (- , -),

THEOREM 3.1, Let C, and C, be ronempty sequentially compact sets in topologi-
cal vector spaces X, and X», and suppose Cyis convex. Let ©: X, X X>—R be u Gateaux
differentiable sequentially continuous convex functional. Define

Dy(u) = inf D(u.v). w€C,.

vEC,

Then
() ®q attains its supremum relative to Cy. and for each u€ C, the infimum in the
definition of @ is attained.
(D) If 4 is a maximiser for &, relative 1o Cy and & is a minimiser for di, - )
relative to C,, then
O minimises (3,4, 0), - ) relative 1o Cy. and
# maximises {3, ®(a, 6}, - ) relative to C,.

Remark. Theorem 3.1 does not give a saddle point of & in the classical sense.
Instead it gives a point (4. 0) such that (4, &) is a saddle point of (3d(4, 6}, - ) relative
to C]XC:.

Proof of Theorem 3.1. It follows from sequential continuity and compactness that
the infimum in the definition of @ is attained. Write M = sup ®y(C,), and let {u,}”_, be
a maximising sequence in C, for ®,. For each n let v, be a minimiser for tb(u,,, )
relative to C, By sequential compactness we can replace {w,}: , and iv,}>., by
subsequences such that u,~su, and v,—uv,, for some 4, €C, and v,€ C,. We now have
D(u,. v,)—>Dluy, vy) and so D(u,. v)=M. We show that ®fu)=M. If v€ C, then
P(u,, v)2P(u,. v,) for each n, hence letting n-—»x we have Dlug, v)=Dlu,, vy). This
shows that vy minimises ®(u,, - ) relative to C. 50 Dlug) = D1y, vy)=M. Now u, is the
required maximiser for &,

Consider any maximiser & for ®, relative to C). and let ¢ be any minimiser for
®(a. - ) relative to C,. For any v€C, and 0<r<1 we have Uv+tv—0)€ C, by convexity,

SO
tNDa, G+ Hu—5))~ D, 6)) = 0,

19898286 Acta Mathematica 163. Imprimé Je 20 decembre 1989
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Letting 1—0 we obtain
(3D, oy, u—v ) =4

for every €, s0 U minimises (3.®(i, 0). - ) relative to C..
Now let € C,, and choose a minimiser v for ®{u, - ) relative to C.. Then using the
convexity of @ we have

i, 0) = Dytu) = Blu. v)
=00, 0+ (8, P, 0), u—1t) + {3, P, o). v—0)
=2®, 0)+ (3, P, 0). u—1).

hence
(3P o) u—iy=0

which shows that 7 maximises {(3,®(i, £}, - ) relative to C;. C

We now prove three general results about boundary value problems. which are
applied to planar vortices in Section 4. The results are applicable to a wide class of
elliptic equations. For the remainder of this section we make the following hypotheses.

Hvpotheses (H). Let Q<R" be a nonempty open set. let u be a finite positive
measure on § equivalent to Lebesgue measure. and let ex=u(£2).
Let

F= z a“(x)z”
I€a=sm
be an mth order linear partial differential operator with no Oth order term, where the a*
are finite-valued measurable functions on €2.

Let I<p<=x, let g be the conjugate exponent of p. and suppose there exists a
bounded linear operator K : L7(u)}— L% ) such that Kv€ W, 1(Q) for all v € LP(u). and

loc

FKv=v

E
almost everywhere in Q. for every v€ L7(u).
Suppose that K is positive, in the sense that

f vKvduz0, velLlu),
0
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that X is symmetric. in the sense that
j qudy=J' vKudu, u v€L(u).
o] 2

and that K is compact.
Let hELP(1)n W '(Q) be a function satisfying

Fhz=0

almost everywhere in 2, and let ® be defined by

‘I’{u)=-l—[ vaa',u«t—f hvdu, vELP(u).
2 Q 9]

THEOREM 3.2. Let the hypotheses (H) be satisfied. Let f,,f,€L"(u) be non-
negative functions satisfying f,fr=0 almost evervwhere in Q, and let the sets of
rearrangements on Q of f, and fr be F, and #, respectively, with weak closures %, and
F1. Define

Cylue) = inf D(u+v), u€F,.

€,
Then.
(i) There exist 4 € F| and 0€ %, such that

sup ®ylu) = Qi) = Dlia+).
uE ¥,

(i) We have 4€ #,, 6€ F. and 75=0 almost evervwhere in Q (thus 4+0 is a
rearrangement of f,+£-).
(i} For w=K(a+0)+h there exists a function g such that
u+tv=goy
almost evervwhere in Q.
(iv) Regarding ¢ there are three cases:
@) If /1=0 then ¢ is decreasing.
(b) If ;=0 then ¢ is increasing.
(c) If fi and f are both nonzero then there exist numbers maSm,. such that,
apart from sets of zero measure.
70, =)=y om,, =),

70, %) = wlt—=, ).

T smmamanatm e o st Tl bl an e 8
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Then ¢ is positive and decreasing on (== .m0, g =0 on o0 . and ¢ is poasitive

and increasing on (n,, <}

Proof. Since f, and f, arc non-negalive, so also are all elements of F, and #-.
Lemma 2.1 shows that %, and % are convex and weakly compact. while the positivity
and compactness of K ensure that @ is convex and weakly sequentially continuous.
Theorem 3.1 now applies. Consider any maximiser € #, for @ and let ¢ = #; satisfy
d(a+0)=dy(a). Then

(adb(nw).f)=j(1<(n+m+h)fdu. Y FE LA,
Q

So taking y'=K(a+0)+#4 it follows from Theorem 3.1 that /= maximises j‘med,u over
fE #, and f=r minimises fgwfdu over f€ % This latter statement can be expressed as
saying that f=¢ maximises jg("y'-')fdu over f€ #,. Moreover Sy'=i+0+Fh=n and
(—F W —y)=n+v+Fh=t almost everywhere in Q. It follows from Lemma 2.2 that
@€ F,, that & € % and that there exist increasing functions ¢ and ¢ such that =g, 0y’
and i=g¢-o(~y) almost everywhere in Q. If f;=0 or f,=0 we are finished. Suppose
therefore that f; and /> are nonzero. We can suppose ¢, and ¢ are non-negative and
have domain (— ., =); this may necessitate += being admitted to their ranges.

We next seek m,<m, such that @ (0. =)=y "(m, =) and 670, %)=y~ (= =.m;)
apart from sets of zero measure: il then follows that & '(0. %) and 770, =) are
essentially disjoint. so @6=0 almost everywhere on €. Define m,=infg (0. =) and
my=—infg (0, %), Then 1 '(my. =)ci (0. =)cy[n, =) apart from sets of zero
measure. But w(a” (0. <)ny~ (m))1=0. since Fy =0 almost everywhere on ylomy). by
Lemma 7.7 of {7] for example. and Fy=a+i+Fh=i>0 on i '(0,=). Therefore
0. = y=y " tm,, ) and similarly ¢7'0. %)=y "'(= = m,), apart from sets of zero
measure. Consider the possibility that s.>m,. Then

wGp ™ (my, my)) = o —uty (=% m Dpty” my, <)
=uly™ tm =) +uly e m)—w
=ulia M0, =) +al(07 0. <)~ w
=n(f 710, =D+ plfy 0, =) -0 <0.
thus wty '(m,, my))=0. If we chose m;<m<m, then we have a M0, =)=y '(m, =)

and 07 '(0. =)=y '(==.m) apart from sets of zero measure. We can now redefine

my=ma.=m if m->m,. So we can assume #n=m,. Define
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@ (5}, s>,
@ls)=140, mysssm,
#al=8).  s<m,.

Then U+v=¢ oy almost everywhere in Q. Final

ly.¢is decreasing on (~ =, M), Zero on
{m3.m,] and increasing on (my, 22}, '

=/
[

THEOREM 3.3. Let the hypotheses (H) be satisfied. Let f, €
let F be the ser of rearrangements of fo
infimum and Supremum of ® on F.

Then for each a€|q, A] there exists w€ 5 satisfy

L) be non-negative.
on Q. and let a and A he respectively the

ing
Diw) =q,

and such that, defining yw=Kw+h, there exists a function ¢ for which
W=goy
almost evervwhere in Q.

Moreover, w and % can be chosen to ensure
(a) If a=a then @ is decreasing.
(b) If a=A then ¢ Is increasing.

the following :

(©) If a<a<A then there exist numbers MyMa, with

essinfy <, < m, < ess sup iy,
such that ¢ is positive and decreasing on (—

*.mx). g =0o0n [m., m,|. and g is positive
and increasing on {m. =).

Proof. Let fdenote Some rearrangement on [Q. w] of f,

(for example. we could take
S to be the increasing rearrangement ¥ of £,). For Osji<q, define

_fGs), 0ss<i,
fI';‘(“_{O. A< S W,
S =f5~f, (s), Oss<w
For i=

L2 let # ; be the set of rearrangements of f,

»on Qand let % ; be the weak
closure of F; .. For u€ %, ;

define

540l i il et ntl e s ..
3 ST L e e .
J—— T T N T T T Y ST . . I
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& et = mf Glu+e)
TE e
and let

aliy = sup lu).
wE s

Then Theorem 3.2 shows there exist @; € #,; and 0; € F, ; such that
Dl +0,) = P,(i,) = ol4).

such that
fi,+ 0, = g o (KU, +¢; )+ h)

almost everywhere in Q for some function ¢ . and such that 4,8, =0 almost everywhere.
s0 1, +0; € F. Since o(0)=a and clw)=A. 10 show that ¢i0, e]=}u, Al it will suffice 10
show that o is a continuous function.

To prove continuity of ¢ let £, S€ 0. ] and define

z ¥
Wi 5= %J __f""% .

IR AIE IS

so by (1) we have

Now i, € 7, , satisfies @,(;)=0(4): let us choose W€ F, - with lli, —uz, <4 3. Now
choose 1. € #, , with @u +v )= ). and by Lemma 2.3 choose v, € #. , such that

HL‘;—U:_HFS:,J[/—.. ch Write w, =i, +v; and W=l Then
(&)= @ lu) = Plw))

=(D(w,-)+%J’ (u'__-—w,_lK(w_-é—u';)du-kj (w,—w; Y du
= JL

9]

Al flw—w ],

= (D,'_(l.‘;')—% wf_wi.Hp HK;I ”w_:a-wé

= o)~ 2yt §1 (K| | Sl [+ 1AL

The same inequality holds with 2.2 interchanged. so

oy —o(5) = 20, SHUKY IRAI IR

Since y(4. £)—0 as &—/ we deduce the continuity of 0.
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Finally we consider the function ¢. if /=0 then 51.;=0. 50 ¢ is decreasing, and
ot)=a. If A=w then f,;=0. so ¢ is increasing. and a(i)=A. If a<o(i}<A then
Ji.; and £, ; must both be nonzero. then Theorem 3.2 shows w=u,+0;, and ¢ can be
chosen so there exist numbers my<m, such that. writing y=Kw+h. we have
0; 0, =)=y (=2, my). 470, %)=y '(m,. %) apart from sets of zero measure, q is
positive and decreasing on (—%,m.), ¢ is zero on [m,.m,] and ¢ is positive and in-
creasing on (m,. =), It follows that my>essinfy and m <esssup y. O

THEOREM 3.4. Let the hypotheses (H) be satisfied. Let Q,.Q. be measurable
subsets of Q. For i=1,2 let LELP(w) be a non-negative function that vanishes on
QNQ,, and let F; be the set of rearrangements of f, on Q@ that vanish on QN.Q,.

Then ®(u+v) attains its supremum subject to (u, VIE F X Fs If (4,0} is a maxi-

miser and w=K(d+0)+h, then there exist increasing functions ¢ . ¢ such that
a=q 0y almost everviwchere in Q,. and

U=g oy almosr evervwhere in Q.

Proof. Let# and #, be the weak closures in L”(x) of #, and F,respectively.
Thus all elements of :?, and :?2 dre non-negative. Then by compactness d(u+v) attains
its supremum subject to («, v)€ F X #,. Let (4. 6) € F,x 7, be a maximiser. and write
y=Kta+0)+h. Consider any w€ #, and 0<r<1. Then (I=na+n € #, since #, is con-

vex by Lemma 2.1. so
DU = a+ i+ —Dli+on <0,

Letting r—0 we obtain
f wli—a)due < 0.
0

Moreover Fy=di+i+%h=i. It now follows from Lemma 2.2 that #€F, and that
G=g oy almost everywhere in Q, for some increasing function ¢ ,. A similar argument
shows that £ € % and t=g¢.0y almost everywhere in €. for some increasing function

—

2. -l_j

4. Application to fluid mechanics

We consider an ideal fluid (inviscid and incompressible) flowing without body forces in
a bounded planar connected open region Q. whose boundary is assumed Lo be a disjoint

o r———— T TR T e
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union of simple closed curves Ci. ..., (.. we suppose that ¢, encloses 2 If u denotes
the fluid velocity field, then u must be tungential a1 the boundary.
The vorticity field ¢ is defined by

curlu=_k

where k is a fixed unit vector perpendicular to the plane of Q. In an unsteady flow. the

functions { at any two instants are always rearrangements of one another. Other
conserved guantities are the kinetic energy

E=}j o,
- JQ

and the circulations

We assume that Q lies in the xy-plane of right-handed cartesian coordinates xvz,
that k is directed along the positive z-axis, and that. viewed from the point (0.0, 1), Cy is
described anticlockwise and €, ..., C, are described clockwise. It then follows from
Green’s theorem that

.E=il",- &
Q =0

subject to suitable regularity assumptions. We shall fix a non-negative function &, on Q.
whose class of rearrangements on Q we denote #. and fix real numbers . ... .. We
shall then consider flows for which (€ #and =y, i=1. ... n ([}, being then determined
by (3}). and will prove two results showing, provided &, is nonconstant. that among such
flows there exist uncountably many steady ones.

The notion of a stream function proves valuable in what follows. An incompress-
ible flow satisfies divu=0 in Q. Subject to suitable regularity assumptions, a stream
Junction y then exists, satisfying

[=4Y X
Y
in £2; the multiple connectedness of Q presents no difficulty since u has zero flux across
each C,. Taking the cur]l we obtain

= —Ay.
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Tangency of u on 3Q is equivalent to requiring that y' s constant on each €, and the
circulations are given by

r.= —f Vy nds, i=0,.. n,
C.

where the unit normal n is drawn outwards from Q. The kinetic energy is now given by

| 2
=— | vyl 4
ZL' v v

When the values of {and Ty, ....T, are given, then vy is determined up to an
additive constant. and therefore u is uniquely determined: we shall always normalise iy
so that ¥=0 on C,. To find a cottvenient expression for ¥ in terms of & and
I[.....T,, we introduce the following notation. Let Cy.....C, be of class €°. and et
710+ ¥,ER be prescribed. In the Appendix we prove the existence of a unique
function h€ C*(Q)n C'(Q) satisfying

—Ah=0in Q.
h=0o0n C,,
h s constant on C....C, (5)
—f Vhionds=y, i=1,.. n
C

i

For CELQ) we also prove in the Appendix the existence of a unigue function
KEEW? Q) satisfying

—AK{) =% in Q.
KQ::O on Coy
K¢ is constant on Ch....C,, {(6)

fV(KC)-nds=0. i=1,.. n
c!

Then K:L2(Q)>L9%Q) is a Ssymmetric, compact, positive linear operator, and if
CELP(Q) then KE+h is the stream function for the flow with vorticity ¢ and circulations
Yis oo ¥n- If we set W=K¢, yw=Kt+h and apply the divergence theorem to (4) we obtain
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kel J - L f v | e T+ - f '
- ) 2 L

J (diV(‘l’V‘l”*‘-l’A‘lJl‘*JA (div (AVW)—hAy ]+-—--j Vi -
i)

i

i
5

Jwvw n——f WAW + 2 h\"‘#n—j!zAll'ﬁL%f!WzE:.
= =0 « Q -~ Ja

t=(1

Taking into account (5) and (6) we now ohain

E=E(§)=—,IJ-J’ CK:+I /r;:*i—‘,[?J. Ivhl®: (7
= Jo Q <Ju

thus £ has been expressed as a function of £, and the third integral in (7) s a constant.
To verify that a flow is steady. it will suffice to show that the stream function
satisfies

~Ay =giyt inQ (8}

for some function ¢ the relationship between (8) and the Euler equations for an ideal
fluid will be discussed at the end of the section. The following theorem is an immediate
consequence of Theorem 3.3,

THEorREM 4.1, Let @ be a nonempty. bounded, connected. open set in R>. whose
boundary is a disjoint union of simple closed curves Coo o C, of ofass C*. with Cy
enclosing Q. ler 2<p<x_ und let h. K. E be defined by A510 160 (), where vy, oy, are
prescribed real numbers. Let 5,€L7(Q) be non-negative, and ler # be the set of all
rearrangements of S on S

Then for each «. inf E{.F y=a< sup ELF). there exists S€ ¥ such that E(Sy=a, and

such thar y=KI+h satisfies
—Ay =gy}

almost evervwhere in Q. for sorte function ¢ that iy, F containg an element represent-
ing the vorticity of a steady ideal fluid flow. with hinetic energy aand with circulations
Vieeevparound C . C

Moreover, the choice of & and ¢ can be made such thar if a=infECF)Y then ¢ s
decreasing. if a=supE(F) then ¢ iy increasing. and if inf ELF 1<a<sup ECF) tien
there exist numbers my. > with infW<\masm <supW. such that ¢ iy positive and

decreasing on (— =, ma), ¢ =0 on {m:.my|, and ¢ is positive and increasing on (my. < ).
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It follows from the remurks after Corollary 3.4 of (5] that the mHnimiser s unigue: if
<o Is nonconstant, then inf E(F )<sup £(F) and so uncountably many steady solutions
are obtained. The existence of steady flows having maximum or minimum energy can
also be deduced easily from previous work [3. 5. 8]. Consider now the particular case
when the: boundary of comprises just one simple closed curve Cy: then h=0. Then let
¥ be the stream function corresponding to a non-maximising solution constructed by
Theorem 4.1: thus mnfy =0 and is attained only on C,,. Then for some number m1>(). the
function ¢ occurring in (8) is positive on (0. ). from which it follows that the vorlicity
is positive at all points sufficiently close to Co.

Results on multiple solutions for rearrangement problems have previousiy becn
given in [5], where an appropriate form of the Mountain Pass lemma was proved. Fluid
flow in a dumb-bell shaped region Q was studied there. and for suitably chosen Co. four
steady configurations were given, one being the minimiser. two being local maximisers
and the fourth being constructed by the Mountain Pass lemma. All the solutions
constructed in [5] satisfy equation (8) in Q for 4 monotonic ¢ . in contrast with Theorem
4.1 of the present paper.

We next turn to the existence of continuum-many steady configurations in a dumb-
beli shaped region. The vortex cores of the solutions we construct avoid the boundary
of the region. but equation (8) is only satisfied locally.

THEOREM 4.2, Ler I<p<= et b>a>0, ler w>27h", let O0<ii<t et f,€ 170, w] he
positive almaost everywhere on (0, 7a°) and -ero almost evervwhere on [7a™ o], and
suppose V' is a4 closed triangle in R°. Then there exists 00 such that the Sollowing
holds: Assume

(i) that Q is the planar region enclosed by a simple closed curve C o of clasy -,
that Q has the V-exterior cone property. that § countaing open discs Q and Q. of
radius b, such that QN Q-=7. that every point of S, =Q \AQ, U Q) lies within distance
9 of Cy. and that Ql=w,

(i) that K and E are defined by (6) and (7) with h=0 and n=0,

(iil) that BE (4, 1) is fixed. that

filsy. 0<s<fad’.
fils) = .
0. Pra- < s< .

f: =.f;n__1(i‘

and that for i=1,2, F consists of the set of all rearrangements of f on Q that vanish
throughour QNQ,.
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Then ©(,+35) attains its supremum subject to (5, S € o ) A I L :3) iv u
maximiser, if $=8,+ 0., and if y=K, then T is a rearrangement of f, and there exist

increasing functions ¢, and ¢, such that

~Ap=goy

almost evervwhere in Q.U for i=1.2.

Proof. Let & be the lesser of {57 f, and j;;;zfo, and let D, and D, be the discs of
radius @ concentric with Q; and Q, respectively. By a weak compactness argument in
conjunction with the Maximum principle, it follows that there is an >0, depending only
on a.b,& and |ifyl,, such that for all non-negative v€&L"€2) satisfying ||v]|,=£& and
vl <[ foll,~ the solution u € H)(2) of —Au=v satisfies w=y in D, Then by the Maxi-
mum principle we have K(5,+&,)=y in D,uD, for all §, € #, and {, € ¥,. By Theorems
8.16 and 8.27 of [7} there are constants a=alp. V}>0 and c=c(p, V,w) such that
if LELA(Q), if xEQ, if x,€C, and lx—x,[<] then |Kv(x)isclx—xgl|
A €0, 1) such that || fioll,<#-

Now consider a maximiser (&,.,) for ®(5,+¢&,) relative 10 (§,.8,) € # xF,, let

vll,- We choose

#=&,+{, and let w=K¢. By Theorem 3.4 there exists such a maximiser, and there exist

increasing functions ¢, and ¢, such that L= oy almost everywhere in Q; for i=1.2.

Now
HXEQ, | yix) =}l =aa" > [{(xYEQ, L(x) >0}

so stnce £, is essentially an increasing function of y» on §2, we deduce that
{(x€Q,| () >0} = {xEQ Iyt = n)
apart from a set of measure zero. Hence we can assume gi51=0 for all s<y. By the

choice of 8. we have p(x)<pn for all x€€, and £4x)=0 for all x€Q,. So S=54x)
gdy(x) for all x€ Q,UQ,, for i=1.2.

(]

For the solutions constructed in Theorem 4.2, the vortex core avoids C,. For in
Q.1 €2,. the vorticity ¢ is an increasing function of the stream function ¥, and the area
of the vortex core is less than [€2]. so the vortex core avoids the set where y attains its
minimum, which is Co. Since QN Q.= the voriex core is disconnected. Uncountably
many solutions may be constructed on the same €, by varving g in (4. 1.

At this stage some remarks on regularity and on the Euler equations are in order.
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Since Cy. ..., C, are of class €7 and LELARQ) for some p>2. the stream function y' iy of
class W=7, 50 the velocity w is of class W'*, and is therefore continuous on Q. The
steady Euler equations for an idea) fluid are

(u-Vym=-vp, (9)
dive=0. (10}

The equality of weak cross derivatives for y ensures that (10} is satisfied almost
everywhere. To fulfill (9) we have to construct a pressure function P. Consider first the
solutions constructed in Theorem 4.1. If ¢ is as in equation (8) and F(s)={,¢ then it is
easily verified that

-Plx)= —_])~|Vy'E:+F(w)

satisfies (9) formally. It can be shown that Fo y € Wi and V(Fo yI=(goy)Vy almost
everywhere (the details for an increasing ¢ have been given during the proof of Lemma
9 of [4], and the ¢ considered here is a difference of increasing functions). The formal
derivation of (9) is then justified for weak derivatives, and (9) holds almost everywhere,
In the case of a solution constructed by Theorem 4.2. define Fi(s)= [} ¢, and

-P(x)= % Ny +Fly), x€QuU Q, i=1.2

Then F(y)=0=F,(y) in Q, and QNQ,=0 so P is well defined and continuous, and
{9) 15 satisfied almost everywhere.

Appendix

Since the boundary conditions in (5) and (6) of Section 4 are slightly unusual. we now
give a detailed proof of the existence and uniqueness of solutions. Both (5) and (6) are
special cases of the boundary value problem (11) considered below.

ProPoSITION. Let Q be a nonempty. bounded, connected open set in R*. whose
boundary is a disjoint union of simple closed curves Cy, .... C, of class C*, and suppose
Coencloses Q. Let 2<p<x_ et Yis - Ve be real numbers, and let vELPIQ). Then there
is exactly one function u satisfying
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nE€ WHIQ). 3
—Au=uvin L.
u=0onC,
uis constant on C. 1=1.....n, / ()
*J’ (Vuynds=7y. i=1...., "
g J

Proof. Let Qq. ... Q, be the regions enclosed by Cy.....C,. Let
W={w€H Q)| w=0on Cyand wis constant on C. i=1.....n}

and for w € W let w; denote the value of won C.i=1..... n. Define
| . X ,
J(u')=7f I\"w'—f vu.'-b—E;.f,w,. wEW.
- JQ Q [

Then the trace H'(€)—1(3Q) ensures that W is a closed linear subspace of H'(€2). and
W comprises the restrictions to € of elements of HYQ,) that are constant on
Q.i=1..... n. It now follows from Poincaré’s inequality for H!,(Q,]) that Ji1s coercive on
W. Moreover J is a smooth. strictlv convex functional on W. It follows that J possesses
exactly one critical point. the global minimiser.

The variational condition for an element & € W to be a critical point of J is that

et
=1

f Vl('\—u.‘f ww+ v =0, YweEW, a2
Q Q

Let Lipschitz functions g'.....g" €W be chosen to satisfy the boundary conditions

g/=0,. 1< jsn. Then (12)is equivalent to

J\'m\'w—j ww =0, Yuw€ HUQ). (13
Q 2
J’ Vu-Vg*'—j gy =00 j=l..n (14)
Q 0 '

A

Now (13} is a variational formulation of - Aw=uv. and in view of the regularity theory

([7]. Theorem 9.15). (13) is equivalent to

—Au=vin Q.] (15)

€ WO,



REARRANGEMENTS OF FUNCIIONS. SADDLL POINIS 309

Since p>2 we have the embedding W (Q)—C'(Q). When (15) hotds we can apply the
Divergence theorem 1o write (14) in the form

f(—A:1-v)g’+Zf 2Vu-n+y =0, j
Q C,

it

which reduces to

f Vu°n+yj=0. J=l.....n
o

K
It follows that (11) holds if and only if « is a critical point of J. and therefore (1 1} has
exactly one solution. Ol

The existence and uniqueness of satisfying (5) foilows by taking v=0: in this
case. the regularity of harmonic functions and the embedding W7(Q)— Q)
show that h€ C*(Q)NC'(R). The existence and uniqueness of K¢ satisfying (6) is
obtained by taking v=; and == y,=0.
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