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I. INTRODUCTION

In this paper we prove the existence of a weak solution to the boundary
value problem for a steady vortex ring in an ideal fluid flowing along
+n infinite pipe of circular cross section. This result is proved by means
of a variational principle proposed by Benjamin [37], involving the
maximization of a convex functional over the set of rearrangements of a
ixed function. 1 o denotes the scalar ficld of vorticity strength, and
Jenotes the distance from the axis of the pipe, this approach yields a
wlution for which w/r is a rcarrangement ol a prescribed non-negative
lunction £, in L (p > 5} having bounded support.

The vortex core of our solution, that is, the region where o > 0, is cylin-
drically symmetric, bounded and bounded away from both the axis and the
boundary of the pipe. At infinity the Ruid velocity approaches a uniform
stream of speed A relative to the vortex core, and for a given f, a solution
exists for all sufficiently small 4, whercas for large 4 the method fails. We
have not been able to prove that the voriex core is connected, nor that the
solution 1s unique.

In view of the cylindrical symmetry we work in a planc infinite strip
representing the intersection of the inside of the pipe with a half-plane
hounded by its axis. Thus we define

Q={(r,2)eR7|0<r< Ry,

where R > 0 is hixed, and endow € with the measure v having density 2nr
with respect to plane Lebesgue measure. A differential operator 2 is
defined in £2 by

—
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THroreM. Lot p> 5 oand et f,e LYY o) he non-negative and have
/‘l’”-"hrnlt'u" SUPPOIT. Thew there is a4y > O such that for 0< i < i, there exists o
postrive function w on £2 satisfring

() e WPE2Y and satisfving
Pu=plu--ir2) (1

albmost ceervichere in Q. for some increasing function .
() we CHQ) for all 0<x < | = 5ip,

Qi) f= s a rearrangement of fo with respeet 1o v, and the support
af L0y bewnded away from infinity, frone v =0 and from r = R,

() acand [ are svmmetric decreasing in -

(VY ta) wlr )= O wniformiy as - - + 7+,
by wir cy =0 when r=0 und when r= R.
()l )= () Hi’.'iffiriﬁ-"}‘.
Wy o o e 0 as =0,
ter r '"Walr. )0 as o — + 7

ity wir. 21 =0 when r=R.

.

We believe the restriction 7 </, is not just a technical one, and given f,,.
lor afl sufficiently large 2 there is no lunction « satislying /1 = gp{u - ir*/2)
lor ¢ increasing and for which #'w is a rearrangement of f,,. Solutions for
arbitrary 4, and for which ¥'n is u rearrangement of #f,, where x =0 is
priori unknown, can of course be obtained by rescaling.

Fhe function wfr. 2) - 2r772 represents the stream lunction for the Mow
and pives rise 1o a velocity field

velor w00 e, 5

’

m cvlindrical coordinates r, 1 = From {vd) the velocity is paraflel to the -
axis when » =6 and from (ve) the velocity at infinity approaches a uniform
flow ol magnitude /£ in the negative - direction. From (vf) the velocity is
parailet to the boundary when r = R The vorticity o is given by

curl v = (0, . (1)

and consequently < = 7. Henee oy is a0 rearrangement of 7,

It should be noted that we do nolt establish any smoothness properties of
the function o in (1), so we cannot assert that v satisfies the Euler
cquations of hydrodynamics.
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2. DESCRIPTION OF THE METHOD

We now describe Benjamin's variational principle for vortex rings, as it
applics to the present problem. For £ >0 let

Q)= 2)e Qs <&

Suppose p =5 and &, >0, and let f, € L7(£2) be a nontrivial non-negative
function vanishing outside £(&,). Let .# denote the sct of all
rearrangements of f, with tespect to v, that is. the set of all real v-
measurable functions fon 2 that satisfy

v(f B =TT )

for every real B, For &2 8, let #(&) compnise those functions in .# that
vanish outside (7). We will define an inverse K for ¢ satisfying suitable
houndary conditions, and when 4 =0, 2 variational functional will be
defined by

@tey= 1| rRedv o U | rrdy
V52 <
lor e 1.7(€2),

The first step of the prool is to show for &> &, that @, attains a
maximum value relative to # (&), and that il /7 18 o maximizer and
w = Kf then we satisfies (1) in (53, for some increasing function ¢, This
s a routine application of the following result, which is Theorem A of
Burton 4}

TrEOREM A, Let (O,.8. 1) be a finite, separable, nen-diennic, positive
measure space, let 1< p <o, det g be the confugate exponent of p. let
2,6 L@ ). and ler % be the set of all rearrangenments of g, refative 1o g Let
@ bhe a strictly convex real functional on L'(@) that is weakly (weak™® if
Py ) sequentially continwous, Then @ attaing o maxinmum value refative to
W and i v ois a maximizer and he 0P{g) (< LUE) then g = W o h almaost
ererpwhere in @, for some increasing function .

The sceond step is 1o show that the Steiner symmetrization of £~ with
respect Lo the line - =0 is also a maximizer, so /7 can be assumed to be
symmetrically decreasing in =, that is,

fr, - cy=f r. o)
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The third step is to show that for some Ae>0 and some [z
Us sz and $ -2, then £7 vanishes outside () 1t s then deduced that
i satishes (1) throughout €2

L Section 5 we show this approach Lails for large A,

3OINVERSION OF 27 STEINER SYMMETRIZATION, aAND ESTIMATES

3L Definition of Operators K and %

In choosing the spaces appropriate to the study of ¥ we have been
ginded by Amick and Fraenkel | 2. Seet. 2.2). Let {7 be the evlinder in &°
vomprising all points whose distances from the = axis are tess than R, We
shall regard €2 as the intersection of 7 with a half-plane bounded by the -
ands, and we shall use # to denote distanees from the = axis. Cylindrical
symmetry in B s understood 1o be relative to the - axis. Then functions
duﬁng@uirnnst cverywhere on £ can be identificd with cylindrically sym-
metre functions defined almost everywhere on ¢, With this convention we
formully hase

L) = A

fur functions on Q. where 14 is the 5-dimensional Laplacian.
Define £ 10 be the completion of the (Schwartz) test functions on £ with
the scalar product

Ll 0y = ’ r 2V Ve d,
L

Simee £ 1 a strip it follows that # is embedded in W02y et us
cinphasise that v is the measure used 10 define 12162}, but l.chesgue
masure 15 used to define Sobolev spaces. For each ¢ e £.2(€2) there is a uni-
que clement Av of /1 that is a weak solution of the equation ¥ = p, in the
sense that

Yy =

= | gy
7 g2

for every test function o on 2. Agmon [1, Theorem 6.1 ] shows that

e B 82 5o Yu = almost everywhere in €. We can characterize Kv as
the timque mmimizer of the convex functional defined by

)= 5, “ ur dv

o il
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for we fl. Then K:L°(82) -+ H is a bounded lincar operator and
K1 L7(2) - L7(€2) is sell-adjoint and strictly positive.

Diehine £ 1o be the completion of the test functions on U/ with the scalar
pruduc[

{0y, = J V- Ve dy,
{

where the measure ¢ has density 1/ with respect (o S-dimensional
Lebesgue measure. Since s a eylinder it follows that £ is a renorming of
L) For each we L) there is a unigue element f'w of E that is a
weak solution of the equation — Acu = w. We can characterize . w as the
untgue minimizer ol the convex functional defined by

Wiy = jluli; J i dye
i

for we £, Then 4 LUy -+ E is a bounded lincar operator. and
LY+ LUy s sell-adjoint and strictly positive,

Limma 1. Lerve LAY Then Xe=r Ko

Proof. The argument has been given on bounded domains in proving
(4, Lemima 9], but we repeat it here for completeness. A direct caleulation
shows that

QW= e Twh, (2)

i w and woare test functions on £ 1t now lollows that il & and w helong to
then » Cuand ¢ Cw belong o E, and (2) holds.

Suppose ¢ s a test function on {7 that vanishes near the - axis. We can
write ¢ = (. £) with ve & and re S, where S is the set of unit vectors in
%% perpendicular to the = axis. If we £ then (2) yields

el 1) = '[ Vir “u)-Vep(x, 6) ridviy)
.2

for cach 15 8, where Vois the S-dimensional gradient operator. Integrating
over ¢, with respect o the suitably normalized Lebesgue measure o on 8,
yiekds

J_(u,r“'(p(-,!]),,.dﬁ(.f]=(r U0, (3)

g

e R

g i
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Swce Aris g critical point of ¥, we have
CRe w>, = ' ey (4)
Ve
for everv e M From (3) and (4} we now have

Cr TR gy, = l ‘ erg(x, 1) dv(v) dotr)
AL
s (5)
A

for every test function ¢ on 7 that vanishes near the = axis. We claim that
lhg test functions on {7 that vanish near the = axis are dense in £ Suppose
I8 test function on . Choose an increasing ¢ function  on # that
satishies @iy -0 for s < | and Yis)=1 for 22 Then 'd(mrypl, | isa
sequence ol test functions vinishing near the = axis and converging to ¢ in
L7 Our claim follows from this. Hence (5) holds for all e £ Thus r A7 1
aeritical pomnt of W5 osor TKe= 1

Al

320 Stelner Svoumetrization

I L0y is non-negative, we define the Steiner symmetrization o* ol
with respect to the hine - =0 to be the essentially umgue non-negati.
function i /(824 such that for cach » = 0 and almost every re (0L R) the

s~
ledte o) 2

soan interval with centre 0. whose length equals the lincar measure of the
st

RN VA =

. ¥ o . DA . . i .. !
[hen o F s a rearrangement of ¢ with respect to v, For any rearrangement
ot 1owe hive

EANT [URE | vty e

RN R

fo adl real s for 0% we additionally have
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for all real 5 and 1. We require some results on Steiner symmetrization from
Appendix 1 of Fracnkel and Berger [6], where v* was defined as above for
nen-negative continuous functions r with compact supports, and then
defined for a general non-negative L2-function v by approximation in the 2-
norm. 1t is easily verified that the two definitions are equivalent. Fraenkel
«nd Berger studicd functions defined on a hall-plane, but their results are
cqually applicable to functions on the strip 2. We thercfore have the
imequalities

J. e dv éj wre* dv (8)
[#] 52
le* —o* g, < llu - "”u,z (9

for all non-negative re L7(€2); further, if e H is non-ncgative then u* e H
ind

Nee* s el gy (t0)

lor re L7(0/) the Steiner symmetrization v* of v with respect lo the hyper-
plang = = 0 is similarly defined by rearranging the restriction of ¢ to cach
line paraliel to the z axis as a symmetrically decreasing function. The
imegualities analogous to (8), (9), and (10), with U, FLand ;e in place of Q.
H,and v, are also valid.

LEMMA 2. Let re L7(9) be non-negative, Then Kvz 0 and

j r*Kp* dv zJ. nKr dv.
£

11

Further if 0* = v then (Kv)* = Kv. The same conclusions are true with ¥, U,
and p in place of K, 82, and v.

Proof. The argument is similar to the proof of |5, Lemma 4], but we
mclude it for completeness. For all we 1.2{£2) we have

J wkw dv = || Kwl7,

1

and consequently )

. [ v (1)
7

H

- 1,[ wKkwdv=1inl |y
“Ja i

| E N T TIPS STV S AOUNTOTIS SN SFFCERPRY i ¥ /LS
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Let - Av. Then w20 by the maximum principle applied to
Ir ub=e. Wetake y=w and w=1rp in {11) to obtain

Slalg+ |

M

vKedv = j ut dv.
2 2
Then we tuke v=w* and w=1r* in (11) (0 obtain

RO FERY

v*Ar* dv = I wre* v,
12 Ly

I'hen

| e ) .
\ ' r*Re* v - _‘, ' A oy

T e

2] ety | acdv Vil e, 20
B [} )

by (%) and (10
Suppose additionally that o= r*. Then from (8) and {10y we have

. .
shu*ls, - J w¥vdv <) u|3, —-J ur dv,
[#] {2

Since w is the unique minimizer for ¥, we now have u* =y,

F'he a‘nulugnus results for ¥ follow by the same darguments, using the
appropriate analogues of (8) and (10).

330 L7 Estimates

| For & = 0 we write U{&) for the set of points in U that satisfy |z| < & I[ G
s measuruble subset of 2 or U and | €p <o, we take L2(G) to consist
of those functions in L"(€Q) or L?(U/) that vanish outside G, and we denote
the norm on LYG) by | |, 5 recall that the measure used in defining
I "!Qj 15 v If G is a domain in R" and m = 1, the Soboley space W'(G) s
defined in the usual way using Lebesgue measure and its norm is denoted
' wanpe AL for example, u is a function in L7(Q) then H“”m&),: and

sru!;jm,,,,‘,, are to be interpreted as norms of the restriction of «
to &)

.I‘II,I'.“MA 3o ta) Suppose p22, 0<E<&, ve LAY, and Foll prgyp < x-
en o
EX v, w2 p Sconst(] H e vt o] e
(b} Suppose p 22 and ve LYUYA L?(U). Then

d el " pranennd b Conon \
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Proof.  We are going 10 use the L* estimates up to the boundary given
in Agmon [ 1, Sect. ¥]. We have first to show that v is a solution of
—Asu=r in the slightly stronger sense required by [[]. Observe that if
w,we lland Aquwe L2{U) then

J‘ Vu-Vwa'.u:—f (Asu)w du.
v v

Hence if e L3(UY and ¢ € £ with A5 € L) then

J. v dp = J (A A v) o du
g r

:‘. (Vxv) Vo ci,uzj (F o) ~Asp)du.
“ I8

In particular if re L7(U), and p e C°(I) vanishes on 0U and has bounded
support then

J' (.}Y‘r)[—A,-,(p)du:J v d.
- 1N

Thus .# ¢ is a solution in the required sensi.

To prove (a) let re L7(U) with || Ul ey, < 0. A trivial modification of
the prool of Agmon [ I, Theorem 8.17] shows that [|.#v |l 2, <o and
moreover

[ -# vl S constf i # vl tizp b ol t-‘(-i')-f’)'

r

Now consider v € L)~ LP(U) as in (b). By covering U with transiates
of Vi), we conclude from (a) that, provided #ve L”(l/), we have
Hre WH(U)Y and

WA, Sconst(| A vl + ol )

If 2<p<'? then £ — L7/} is bounded; since 4" : L>(U/) — E is bounded
we have #ve L7(U) and

A0l o, sconst{llvlio o+ el (12)
Il p> 2 then ve L¥? (U) and we have
I #70l e, <const | ¥vlly 2 s
sconst (el 2+ fellese)

<const (ol 2+ iled v.p)

B ol

i

BRI N
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Lissia b Suppose  p S Then it is possible 1o choose Mz) =
constmin g b o) ') sich thar

% ¥ B Na 2P BN e e+ ”’“r,]
for-all non-negative functions e LAUYA L7(U) that satisfr v* =,
Proof. Consider =1 and let
A=1(0,..0, zy+ tel)
B=(0....0.2)+ U}

Since ¢ >0 and rf = we have Hrz0and (Fr)* =% by Lemma 2,
Henee

. - Ip N
bty ek, <0 Ve

|
" .

: e - Ip ; . -

e S S tless My L
By Lemma 3ta) we now have

sl sconsts PRl R, ),

where the constant is independent of = and r. By Lemmu 3b and the
embedding of W77(L(1)) in the space Col L)) of bounded continuous
functions on £(1) we now have

Ay Ly o)< const || "’(I;r"\, ey

for i20 | and

P s eonst (el L b L, .

hence the result,

Pissta S0 Ferp o5 a =000 =0 et Fhe a bounded open suhyet of 15, Jer
G beat compact subser of U, and suppase that

Iy 'fIrr LU A L) e 20, el , < e [ v '_»Z’u}

'f
Nonar-cmpin. fhen
d=iir ¥ o(xved. ve D)o

Proot. Deline

h J-"f:’."H"'J.w'---(lin U F r=0in b el wo | o=l
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Then D' O W ve D and v denotes the restriction of v to F, then o' e Y
and # v < f v hy the maximum principle; hence

inf £’ ¥ e(xlre ), xe Gl=d

Now £ L7(F)— W) is bounded by Lemma 3b. Since D' is weakly
compact in LA(FY it follows that D" is weakly compact in W2P()), so
A D715 norm compact in C(G). We can therefore choose v, €D’ with

inf rif v, (G)=d.

Sinee v # 0 and ¢) 20 we have ¥ v, >0 in ¢/ by the maximum principle,
hence « > 0),

LeMMma 6. Let p> 3 2> 0, >0 and suppose thar
D=lve Q)N LD vz t* =, [v],,+ | o, <o Kol = )
s nonempiy. Then for some y >0 we have
mf el g, lreD} =0
Proof. Write
S={xeR'|x| <R
Cansider r+ D, and et 5 > 0. Write
AT L
eylx, z)=e{x, [z —n])
o, ) =r(x, 2+l

for ve S and real =, so
rEbybrg 4.

Since (Fr)* = % r we may choose xe .S such that
Kl 0) =1 e,

Then Lemma 4 is applicable to »,. ¢1,. and v,, and in conjunction with the
maximum principle (his yields

BR < olx, 0Y S MO ool oo+ { 0 1 v b bt e+ e B

Ao 4 e i)
< IO Hogl ea+eally p) + 2060 vl art i ”QA;.)
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where

=max{R, R'"}.
T'herefore

Lol s leall 2 (BR - 2thabin)) b,

Now vy =0 with

dahin)< IR
We hine

T L
AT ‘{‘:,:'“H! e

where
v | 1
i 1l i 2p ity 20
Henge
i oy, = ﬁR
P g = litoll N

21+ ‘,')hﬁ]—}'

4. Proor OF THE THEORIM

Let us adopt the notation of Sections 2 and 3, et {2 . and let A=,
The vperator K:17(£2)— H is bounded, the embedding 71 - W2 (2) is
bounded. and the embedding W' 2(L(E)) — L(Q(£)) is compact. Hence
the functional

b (r)=1} _[ vKodv — L/J e dv
12 [£]
is weakly sequentially continuous on L7(€2(£)), and the strict posilivity of
A ensures that &, is strictly convex. Theorem A in Section 2 now shows
that &, attains o maximum value relative to # (), and that if /~ is any
maximizer then
12 = @ KPS~ arf2)

almost everywhere in @(&), for some increasing function ¢*. Thus u* = Kf~
satisfies

Fu = put - Ar'f2)

VORTEX RINGS AND REARRANGEMENTS

By Lemma 2 and (7) we have

[ r*Kp* dv?j vKv dv

v L2 £2

J rlp* flv:j redv
£

52
for all non-negative e L7(£2(£)); hence
@, (%)= P, (0).

Henceforth we shall assume

By Lemma 2 we then have
we =t
Let A= 0 be chosen so small that
g=¢ {f1>0

Hengeforth we shall assume 4 < 4. Then
%j SR dvzg
17

and with (6) this yiclds

WK g 2 28701 N = 287 fullaa-

It now lollows from Lemma 6 that there exists m >0 and n >0, indepen-

dent of & and 4, such that

” j\- “ Tigunp -; .

H we choose M > 0 such that

then

345
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and consequently

( s wm!
Tl 2 ——,
“Cimy f A0 0

Define
A=vilxve Q[0 >0
and choose a compact set ¢ ¢ £ ¢ 17 such that
v{r) > A
By Lemma 8 there s a number o > 0, independent of & and 4, with
0 zd  Yyel

Fet o be the Teast value of r on ¢ and let ¢ = dp’ 2
Suppose heneeforth that /< o and Gee (). Defining

S e cye Qlwr Y- a2 g
wo now hase (oo J17) Let

S = e 2] 1 D) =00
Then

HSIEN = A < (G S v(J(EYm Q).

Since £ s essentially an increasing function of u — A2 on Q(E) it follows
that. apart from a set of measure zero,

S8y = L)
By Lemma 4 we have
A e Hr D eQirbizyze)
crod<ra Rz =)

lor some positive 8 and {, independent of & Since »* is continuous and
vanishes on v - R {ollows Turther that J(Z} is bounded away from r = K.

Fet @ be extended 1o an increasing function ¢ defined on an interval
containing ) and satisfying @(s) =0 for s <& Since v’ — Ar'f2 <
oulside £200) we now have
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almost  everywhere in 2. By Agmon [1, Theorem 6.1] we have
ute Wy

Tou

It remains only to verify the boundary and asymptotic conditions of (v).
Henceforth we write f=f*° and w=u'. Since ¥ fe W 7(U)= C'*T) for
O<a<] - 5p it follows that we C'""(2). Lemma4 yiclds (a). Since
H fe WitUYyn CHH(U) it follows that ¢ vanishes on 34U so u vanishes
when r = R, and

wir, )L f lps
hence (b} and (¢). Since V.¥ 1 1s bounded we have (d). For &£ >0 write
MiSy={(x,0)eU|E—-1wz<&+ 1),
Since . fe WL} we have
A S, —0
as & - 4o henee
FA S Moy — 0

from which {¢) follows. Since we C*(3) and v=0 when r= R we have

(/).

5, Fanure oF THEY METHODR FOR LLARGE 4

Fix R>0,p=5 and a non-negative f,e L7(£2) having bounded support;
say f, vanishes outside Q2(&,) Define

k=12 sup ” r :Kf H sup

fi #

which s finitc by Lemma4b and the embedding W7(U) - C4(U). Fix

£ -

Ak Consider &8, and let £° be a maximizer for @, relative to Z (5),
Let

o = LA/(4nd),
where A is the v-measure of the set where £, >0, and let
S=1rn)0<r<R 2] <& K —2Ar72> - al

Since K/ * > 0 the rectangle [z] < &, r? < 22/4 is contained in S, so
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Stngc £ s an mereasing function of K~ - 4r%/2 in (5}, it follows that 7
vanishes outsde S But by choice of &, all points (r, 2) of & satisfy

ik —A)2> —a,
SO

rrelri = 2a0 - k)= A4, (2704

K)ED
Thus 1 vamshes for v > and since r. =0 as & « it follows that no

unmiform bound exists on the support of £*. Indeed f* = 0 weakly in £L.7(£2)
as oo s, '
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|, INTRODUCTION

Consider the problem

() {—/quu”,
u=~0

w>0in 2
on 912,

(rn

in which £2 is a bounded, star-shaped domain in R"™ with smooth boundary
c0. 1 is well known that if N> 2 the character of this problem changes
when the exponent p passes through the critical Sobolev exponent

N+2
N-2

P:

If p<(N+2)/(N~2) then Problem I always has a solution, whatever the
domain @ [11, 14, whilst if p= (N +2)/(N —2) it has no solution for any
{star-shaped) domain [137].

Recently. considerable interest has grown around problems like (I) in
which the right hand side #” is replaced by a perturbation f(u) of the pure
power, such as

fu) = Au? +u”,

where el and 0 < g < p. The dichotomy above at p={N+2)(N-2)
may then be resolved by means of the additional parameters A and g

[ T 171 Lar a review of recent resulis we refer to [S]
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