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SOME RESULTS ON THE EXISTENCE OF GEODESICS

IN LORENTZ MANIFOLDS WITH NONSMOOTH BOUNDARY(U

V.Benci D.Fortunato F.Giannoni
Ist.Mat.Appl. Dip.Matematica Ist.Mat.Appl.
Fac.Ingegneria Univ. di Bari Fac.Ingegneria
Univ. di Pisa Bari, Italy Univ. di Pisa
Pisa, Italy Pisa, Italy

ABSTRACT. In this note we deal with the problem of the existence of
geodesics joining two given points and not touching the boundary of certain
Lorentz manifolds, of which the Schwartzchild spacetime is the simplest

example.

§1. INTRODUCTION.

In this note we state some existence and multiplicity results about
geodesics joining two given points, in Lorentz manifolds having nonsmooth
boundary. These geodesics are required to not touch the boundary.

We recall that a Lorentz manifold £ is a smooth manifold equipped with a
metric tensor g of the second order having index 1 ({i.e. every matrix
representation of it has exactly one negative eigenvalue, and no null
eigenvalue). (see e.g. [10]). We write also <,>L instead of g{,).

A 4-dimensional Lbrentz manifold is called spacetime,

We consider Lorentz manifolds with assumptions that are satisfied for
example by the Schwartzchild spacetime and the Reissner-Nordstrém spacetime
(see e.g. [8]).

The Schwartzchild metric is the unique solution (up to isometric change

of variables) of the Einstein equations in the empty space, when the
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curvature of the spacetime is produced by a single, static, spherically
symmetric massive body.

Using polar coordinates, the metric can be given in the form

-1
ds® = [1 - -2%] dr? + rz[dﬂz + sinzﬂ-d<p2]_- c2[1 - 3‘}‘] at?, (1.1)
where 2m=ZGM/c2, G is the universal gravitation constant, M is the mass of

the body and c is the speed of the light.

The Schwartzchild spacetime is a relativistic model which can be applied
to regions around any astronomical object which is approximately static and
spherically symmetric. For example in the case of the sun it gives a model
for the solar system even better than the highly accurate Newtonian model.

Since (1.1) is a solution of the Einstein equations in the empty space,
it is physically meaningful to equipped all {r > 2m} x R with the metric
(1.1), only if the radius r, of the body is less than 2m. This spacetime is
an example of universe with a black hole.

The name is justified by the fact that a light ray can not leave the
region {rM % 2m). If an astronaut "falls" in the black hcle, he spends a
finite "proper” time, but an observer far from the black hole does not see

the astronaut falling in it in a finite time.

The metric (1.1) is singular when r=2m and r=0. However, the singularity
r=2m is not a physical singularity but it is the result of a "bad choice"
of the coordinates. In fact, using changes of coordinates which are
singular when r=2m, it is pg'ssible to show that the spacetime

¥ = {r > 2m} x R with metric {1.1), (1.2)
is isometric to an open subset of a Lorentz manifold whose metric extends
(1.1) (see e.g. I8, pp. 150-152]).

Notice that using the coordinates introduced by Kruskal in 1960 (see

e.g. [8, pp. 153-155]), it is possible to construct the maximal analytical

extension of the Schwartzchild spacetime. In this coordinates we see that



the topological boundary 8¥ of ¥ is not a smooth manifold.

The previous considerations on the Schwartzchild spacetime leads to the

following

DerFiniTioN {1.3). Let M be an open subsel of a Lorentz manifold (2,<,>L). M

is said to be static Lorentz manifold if there exists a Riemann manifold

2
(Jilo,<,>R) of class C° (where (,)R

that M is isometric to Ato % R(Z), and, in the coordinate system (x,t) (with

denotes the Riemann structure on Mo) such

xeMo and teR),
2
<+, >‘L = <>, >R - B(x)dt (1.4)
where BECZ(MO,IR+\{0}).

The spacetime ¥ defined in (1.2) is a static Lorentz manifold. Notice
that we lose the static structure on 8¥ where the coordinate systems (x,t)
does not have sense. However in order to loock for geodesics on a Lorentz
manifold it can be useful to consider its static structure even if the

completeness is lost.

Indeed geodesics joining two given events zo=(xo,t0} and 21=[x1,t1] in M

are the critical peints of the functional
1 1

f(z) = J Gs),3(s)>,ds = J [ddsy,;ds»R - s{x(sn(i(snz] ds® (1.5)
0 a

on the space of the smooth curves ¥(s)=(x(s),t(s)) on M such that 7(0)=zo,
'3'(1)=zl. The coordinate function t is called universal time and its
existence means that there is a way to synchronize all the watches in Mo.

The parameter s is proportional to the proper time which is the time

(Z}i.e. there is a diffeomorphism between M and .4{0 x R preserving the

Lorentz metric.

(3) here 7(s), x(s) and t(s) denote the derivatives of %(s), x(s) and t(s)

respectively.



measured by an observer moving along a geodesic.

The functional (1.5) is indefinite, i.e. sup f=+o and inf f=-w. This
fact creates technical difficulties for the research of critical points of
f. But in the static case we can reduce our problem to the study of a
functional bounded from below (at least if the function 8 is bounded from
above).

In fact, as proved in [S] by a simple calculation, ¥{s)=(x(s),t(s)) is a
critical points for (1.5) with ';(0)=zo and 7(1)=zl if and only if x(s) is a

critical point for the functional
1

1 -1
J(x) =[ G'c(s).i(sdes - (tl-to)ZU TSTJHIS_}T ds ] (1.6)
4] 4]

with x(0)=x0 and x(1)=xl, and t{s) solves the Cauchy problem

1 -1
. _ _ 1 1
t(s) = (tx tn)U Blx(t)) de ] Blx(sY)
0 . (1.7)
t(0) = tD
Moreover for the critical peints ¥ and x we have
fly) = Jx). (1.8)

Finally. we recall that if ¥ is a geodesic in M there exists E'J R

such that, for every s,

<rls)als), = E. (1.9)
¥ is said time-like, light-like or space-like geodesic if Ey<0, E_a’=0, or
E7>0 respectively. A time-like geodesic is physically interpreted as the
world line of a material particle under the action of a gravitational
field, while a light-like geodesic is a world line of a light ray.
Space-like geodesics have less physical relevance, however they can be

useful in the study of the global properties of a Lorentz manifold.

§2. STATIC UNIVERSES.
Motivated by the considerations in section 1 we give the following

DerFmTIoN (2.1). Let U be an open connected subsel of a Lorentz manifold
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(£,g) and let 8U be its topological boundary. U is said to be static
universe (with a black hole) if
(i) U= MO x R s a static Lorentz manifold (see (1.3));

(it} sup B < +w, where B is the function in (1.4);
U

(iii) there exists ¢ECZ(U,IR+\{O}) such that

lim ¢{x,t) = 0 and ¢(x,t) = ¢(x,0) = p(x) Vix,t)elU;
(x,t}»zedlU

(lv] UvaU is complete (i.e. every geodesic y:la,bl—U has a continuous
extension y:la,bl—Uudl);

{v) let 7(s)=(x(s),t(s)) be a time-like geodesic in U with lim _7(s) e aU,

S35
4]

then lim t(s) = zw,

S5
0

Remark (2.2). Condition iv) means that the lack of completeness is due only
to the the boundary 38U. i

Condition v) says that if a material particle reaches the topological
boundary of U, an observer far from the boundary does not see this event in
a finite time, since its proper time is a reparametrization of the
universal time. This condition justifies the name of the structure defined

in (2.1).

A straightforward calculation shows that the spacetime ¥ defined in
(1.2) is a static universe.

The same computations show that, when m® > ez. {m represents the
gravitational mass and e is the electric charge of the body), also the

. o . . ) - . /-2 2
Reissner-Nordstrim spacetime is a static universe for r > m + Ym™-e”, (see

[6h.

Assume that U is a static universe (with a black hole). We have the

following results about existence of time-like geodesics joining two given

events.



TreoreM (2.3). Let zo=(xo,tu) and zl=(x1,tl) be events in U. There exists a
time-like geodesic y in U such that 7(0)-—-20 and 7(1)=zl if and only if
Ixe c‘({o,u,ﬂo): x(0)=x , x(l)=x_and

1 1
I:J' 373:_1(75? ds] -[J' &(s).i(s])Rds] < (tx—to)z' {2.4)

0 o

ReMark (2.5). Notice that condition (2.4) is certainly satisfied if ]tl-tol

is large enough.

Let N(xo,xl.ltl—tol) be the number of time-like geodesics in U joining

(4)

z°=(xo,t°) and zl=(x1.tl). If U has a non trivial topology we get the

following multiplicity results of time-like geodesics joining z, and Z .

THEOREM (2.6). Assume Mo to be not contractible in itself and of class c>.
Then

lim N(xo'xfltl_to” = 4o,
Itl—to |4

ReMark (2.7). Condition (ii) of Definition (2.1) is essential to obtain our
geodesics existence resulls., For example Anti-de Sitter space (see
e.g.[8,12]) furnishes counterexamples.

However if B(x) goes to +w with a mild rate as x goes to w, Theorems
(2.3) and (2.6} still hold.

Also the cohdition (iv) can be weakened. In fact since we shall look for
critical points of the functional (1.6) it s sufficient to require that
the sets {xeﬂo:qb(x)aé} are complete with respect to the Riemann structure

of '“o' for every 3>0.

(4) It depends only by XX, and ltl—tol because the metric tensor g is

independent of t.



Theorems (2.3) and (2.6) are related to some results of [1,14,16]. In
these papers is always assumed that the Lorentz manifolds are globally
hyperbolic (but not necessarily static). However the assumption of global

hyperbolicity is not always easy to verify.

§3. LORENTZIAN MANIFOLDS WITH CONVEX BOUNDARY.

Now we consider the problem of the geodesical connectivity for Lorentz
manifolds.

A Lorentz manifold is said to be geodetically connected if for every
2,2, in M there exist a gecdesic ¥ in M such that '.7(0)=z0 and 1(1)=21.

Clearly for studying the geodesical connectivity, it is necessary to
consider also space like geodesics which are more difficult to deal with.
The geodesical connectivity has not been treated in the previous works on
this topic which deal only with time-like and light-like geodesics.

This problem has been faced for the first time in [3,4] for stationary
Lorentz manifolds without boundary. Here we consider the case of static

Lorentz manifolds with nonsmooth boundary.

For the study of the geodesical connectivity the condition of static
universe is not appropriated (see example (3.9)). For this reason we
introduce the following geometrical condition:

DerFINITION (3.1). Let M be an open connected subset of a Lorentz manifold
(£,8) and 8M its topological boundary. M is said to be static Lorentz
manifold with convex boundary if

(i)-(iv) of Definition {(2.1) hold,
while v) of (2.1} is replaced by
v’) there exists a neighbourhood ¥ of 8M and there exist v,N,M eIR+\{0} such

that in {¥nM)NOM the function ¢ of (2.1)iii} satisfies:



N = <{grad ¢(z),grad ¢(z]>L = V(S). (3.2)

Hi(z)[v,v] = M- I<v,v>L|-¢(z) VveTz(.ﬂ)(G). (3.3)

REMARK (3.4). Schwartzchild spacetime (1.2) satisfies v’) with the function

¢(I‘,G,¢J.t) =y 1l - '2_? s

(see [6]), so (1.2) is a static Lorentz manifold with convex boundary.
Also the Reissner—-Nordstrém spacetime (for r > m + /mz-ezl is a static
2.9 2

Lorentz manifold with convex boundary provided that m~ > 5'€ ., as we can

verify (see [6]) using the function

¢(r,o,p,t) = 1 - — + -‘:';2 .

THeOREM (3.5). A static Lorentz manifold with convex boundary is

geodesically connected.

ReMaRk (3.6). Now we give a geometric interpretation of assumption (3.3).
A geometric notion of convexity of a smooth boundary 8M of a Loreniz
manifold M can be the following one:
AM is said to be convex if for every geodesic y:la,bl — HMusM
¥(a)edM, -}(a)eTﬂa)(aM), s y(la,b]) n M = 2. (g.1)
It is easy to check that condition (g.1) implies that
Ht(z)[v,v] = O for all zedM, for all veTz(BM). (g.2)
In our case, since the boundary is not smooth, the assumptions (g.l} and
(g.2) do not make any sense. However condition (g.2) can be generalized in

the following way:

0 grad ¢(z) denotes the gradient of the function ¢ with respect to the

Lorentz structure, i.e it is the unique vector G ¢ Tz(M) (the tangent plane
of M at z) such that <G,v>, = d¢(z)v VveTZ(M).
0

L

Hf(z)[v,v] denotes the Hessian of the function ¢ at z in the direction

2
v, i.e. %2[46(7(5)] |s=0 where 7 is a geodesic such that y(Q)=2 and ¥(0)=v.
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Lim sup Hi(z)[v,v] = 0
z-)zoeaJn

for all v such that 1<v,v>LI = 1 and <grad ¢(z).v>L = 0. (g.3)

It can be proved that (g.3) is sufficient to guarantee the geodesical
connectivity of MudM but not of M.

In order to get the geodesical connectivity of M it seems we need a

control of the rate for which the limit in (g.3) is achieved.

The assumptions (3.3) provides this control.

When the topology of M is not trivial we have the following multiplicity
results about space-like geodesics.
THEOREM (3.7). Let M be a static Lorentz manifold with convex boundary.
Assume Mo to be not contractible in itself and of class c?.

Then for every zo,zle.fﬂ there exists a sequence {"rn}nelN of geodesics in M
Joining z, and z, such that

lim E = 40,
n>+4+w n

Before to conclude this section we wish to point out that the notion of
static universe and the notion of static Lorentz manifold with convex

boundary are independent as the following examples show. Consider

{xeR : x > 1} x R with metric ds® = dx° - B(x)dt?,

where B is bounded and B(X) = x-1 if x = 2; (3.8)

{(x,y) € R x° + ¥° > 1} x R with metric ds° = dx° + dy° - B(x,y)dt%,

2
where B is bounded and B(x,y) = [\/x2+y2—1] if \/xzﬂy2 = 2, (3.9}

Simple calculations show that (3.8) is a static Lorentz manifold with
convex boundary (take ¢(x) = x-1) and it is not a static universe. On the

other hand (3.9} is a static universe and it is not a static Lorentz



manifoic wita convex oouncary (the evenis oI w©le 1iype l‘xx’xz'to’l anc.

(-xl,—xz,tol can not be joining by geodesics lying in the spacetime (3.9)).

ReEMarx (3.10). Theorems (2.3) and (2.5} hold even for a static Lorentz
manifold with convex boundary, while theorems (3.5) and (3.7) in general do

not hold for a static universe, as we can see using the spacetime (3.9).

§4. SKETCH OF THE PROOFS.
The complete proofs of the above results are in [6]; here we give a

sketch of such proofs.

Denote by AC(0,1;M 0) and AC(O.I;THD) the set of the absolutely
continuous curves from [0,1] to the Riemann manifold Mo and to the tangent
bundlé TMO respectively.

We put

. .
o= nltxo,xl) = {xeAC(O,l;Mol: Joo'c(s).;t(sdes < 4o,
and x(0)=x0, x(1)=x1}. {4.1)

@' is a Riemann manifold with tangent plane at xeq! given by

1
Tx(Q )={§eAC(O,1;Tﬂ0]: E(s)eTx (MO) vse{0,1],

(s)

1
Lmsg(s),os'g(s»Rds < +m, and g(01=$(1)=0},

where DS denotes the covariant derivative with respect to the Riemann

structure of .Mo.

Consider the function ¢ defined in (iil) of (2.1). Using a partition of
the unity we can modify ¢ in order to have the existence of 3>0 and N>
such that

o(x)=3 = <{grad ¢(x),grad go(x))R = N. (4.2)

By a standard computation {cf. e.g. [2]), we get the following

Lo (4.3). Let p:M —R'\(0} satisfying (4.2) and tx } . a sequence of

10
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curves in {1 such that J (xn(s).xn(sDRds is bounded and lim ¢(x (sn))=0
0 n->+ow

for some snelo,ll. Then
1

lim /[TL— ds = +w,
n+e) o (xn(s))

SKETCH OF THE PROOF OF THEOREM (2.3).

By virtue of (1.6) and {1.8) we see immediately that the condition (2.4)
is necessary to guarantee the existence of a time-like geodesics Joining z,
and z.

The prove of the sufficiency is divided in various steps.
ist_ step. Since Mo is non-complete, Q1 is non-complete.

To overcome this lack of compactness we introduce, for every £ > 0, the
penalized functional Jg:Ql—ﬁR such that

1

Je(x] = J(x) + sJ 1 ds (4.4)

ofpz(x(s))
where J is the functional (1.6) and ¢ is as in Lemma (4.3).

By virtue of lemma (4.3), for every a € R the sublevels Jz={xeﬂ§le(x)5a}
are complete in Ql. Then, since Je is bounded from below, it is not
difficult to see that Jz: possesses a point of minimurn xeeﬂl.

Moreover, by assumption (2.4), there exists A0 such that, for ¢ small
enough, we have

Je(xc] = ~A. (4.5)
Second step. The above points of minimum X, satisfy

inf ¢(7e{5)) > 0. (4.6)
£,s

To prove (4.6) we argue by contradiction and assume that

inf ¢y _(s)) = O. (4.7)
£,8 €

Let te be the solution of (1.7) with x replaced by X, Clearly (if
t <t} we have
a 1
tO"_=t€(s)-_=t1 Jor all s € [0,1L.

Using the approximated solution a’;(xc,te] and by (4.7) it is possible to

il



construct, following a diagonal procedure, a time-like geodesic
y(s)=(x(s),t(s)) (selo,soll in U, such that

Vse[O,sol. tOSt(s)St1 and lim y(s) e 8U.
SIS

This clearly contradicts the assumption that U is a static universe with
a black hole.
Third step. Clearly we have

J;(xe) = 0, (4.8)

where J;-_ denoctes the Frechet derivative of the functional Je'

By (4.6) we deduce the existence of an infinitesimal sequence e such
that

xc—) X € o' weakly in Ql,
while (4.5) and (4.8) we get
J(x)} = -A, J'(x) = 0.
Therefore the conclusion follows by using the variational principle

stated in section 1 (see (1.6)-(1.8)).

SKETCH OF THE PROOF OF THEOREM (3.5).

The proof of (3.5) can be carried ocut by the same penalization argument
used in Theorem (2.3). In order to prove that the approximating solution T
does not approach 84 we use condition v’). By Gromwall Lemma we see that if

inf 95(78(5))?)0. then ¢{78(51)T>0 uniformly in se€[0,1] and this
s

contradicts the boundary conditions.

SKETCH OF THE PROOF OF THEOREMs (2.6) anp (3.7).

To carry out the proofs of (2.6) and (3.7) we use the
Liusternik-Schnirelmann category. It 1is the smallest number of closed
contractible subsets of a topological space X covering a subset A of X, and
it is dencted by catx(A) (see e.g. [131).

Using a well known theorem of Serre (see [15]), in [7] it has been

12




proved that, if MD is not contractible in itself, then there exists a
1
sequence Km of compact subsets of Q@ such that

lim catnl(Km) = +m. {4.9)
m->+m

Using the Nash immersion theorem (see [9]) and for instance the methods
developed in 4] we get that Js satisfies the Palais-Smale compactness
conditions, so the classical Deformation Lemma holds (see [11]). Hence if
r, = {Ace: catnl(A)Ek} we have that

ci = inf sup I_(x) (4.10)

AeI‘k X€A
are critical level of Je' Moreover (see e.g.[13]) if two of these critical
level are equal for different values of k, there exist infinitely many
critical points having such a critical level.
Moreover for every aeR, catgl{.lz) is bounded independently of e, and
this fact permit us to get The proof of Theorem (3.7).
In order to get Theorem (2.6) we cannot take the limit for £—0, since
in this case two different critical levels may collaps and we lose
multiplicity informations. This difficulty can be overcome using a suitable

penalization for which

Je(x)=J(x) when € is small and xe@.
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