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1. INTRODUCTION
In this paper we consider the differential equation
W+ g(u) = s(1+ h(t)) (1.1)

where g : JR — IR is of class C',h : R — IR is continuos and 2r-periodic and s is a
parameter.

We are interested in lower bounds for the number of 2#-periodic solutions of (1.1)
under two distinct sets of conditions on ¢ , namely

(t) For some nonnegative integer n

lim g(t) =+ and 0<n’< liin gty <(n+1)° (1.2)

t— —

(72) There exist positive integers k and n such that

t— = oo

(k-1 <a= lm ¢@t) <k’ <n’<B= lim ¢'(1) <(n+1), (1.3)
1— + o

where a and 3 satisfy the condition (%%) is not an integer.
2 Vi

In the rest of this paper we will refer to (P,) (respectively (P.)) as the problem of
finding a lower bound for the number of 27-periodic solutions of (1.1) under condition
(i)(respectively (i1)).

We will use the following notation, C{0,27])(C(2x)) will denote the usual Banach
space of continuous (27-periodic) functions A : [0,27](IR) — IR endowed with the sup-
norm, |{h|l;. C'{0,27] will denote the Banach space of ! functions r : 0,2r — IR
endowed with the norm

Il = sup |r()| + sup |r'(2)].

tefo.gx] te (0,17

Also we define [ as

(1.4)

lzint(%é%)

where int(~y) denotes the greatest integer less than or equal to ~.

Our main result regarding problem (P, ) is
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THEOREM 1.1. Assume (i) is satisfied. Then there is an he,0 < hy < 1, and an
S = 89(ho), 3, > 0 such that for all s > s, and for all £ € C(2r) with

[lAtlo < Ao < 1,

problem (P, ) possesses at least 2n + 2 2m-periodic solutions.
Analogously, for problem (P,) we have

THEOREM 1.2. Assume (ii) is satisfied. Then there is an ho,0 < hy < 1, and an
o = 89(ho), 80 > 0 such that for all 2 € C(2x) with

[1Rllo < ke <1

we have

(a) For all s > s, , problem (P, ) possesses at least 2(n —1)+1 2m-periodic solutions.

(b) For all s negative with |s| > s, problem (P,) possesses at least 2(l~k+1)+1 2n-
periodic solutions.

The main technique used to prove the above Theorems is the Poincaré-Birkhoff
Theorem as stated in [1].

In [7], the problem of a lower bound for the number of 2m-periodic solutions for the
equation
u" + g(u) = s(1 + eh(t)) (1.5)
under conditions (i) and (i) was considered. In (1.5), 2 € C(2r) and both s and ¢ are
parameters. Due mainly to the use of the Implicit Function Theorem the results obtajned
in [7] hold for s > sy > 0 ( |s| > s0,s negative) and le] < €o(s). Thus the important
problem of the existence of a uniform lower bound for ¢,(s), s > s, ( |s] < 80,5 negative)
arises as an open question. In particular, the related problem of the existence of a lower
bound for the number of 27-periodic solutions for the equation

w' + g(u) = s + A1) (1.6)

N

when g satisfies either (i) or (ii) and h € C(27) does not follow from the results of [7].
We note that (1.6) together with (i) or(4:) is known in the literature as a Jumping Non-
linearity problem. (1.6) corresponds to the periodic case. The corresponding Dirichlet
and Neumann cases have been dealt with in [2],(3],(5],(6] and [8].

As an application of our results, in Section 7 of this paper, we generalize those of [7]
in the sense that now s and ¢ are independent parameters. Furthermore in that Section
we provide a lower bound for the number of 2r-periodic solutions for (1.6).

In Section 2 of this paper, we examine some preliminary results for problem (P} .
In Section 3 we show that 2x-periodic solutions of (P;) are a-priori bounded and use this
fact to formulate problem (P, ) in a form suitable for the use of the Poincare-Birkhoff
Theorem. In Section 4 we prove the first of our main Theorems , i.e., Theorem 1.1.

In Section 5 we deal with some preliminary results for problem (P,) . Section 6 is
dedicated to prove Theorem 1.2.



2. PRELIMINARY RESULTS FOR (P,)

We begin this section by showing that for positive s and any h € C(27), A}y <
ho < 1,h, defined below, (P,) has two periodic solutions, one of them being strictly
negative and the other strictly positive.

LEMMA 2.1. Suposse that ||hi|; < 1in (P;). Then there exist an s, > 0 such that for
all s > s, (1.1) has a strictly negative 27-periodic solution.

PROOF. Let us rewrite (1.1) as
u' +g(u) —s(1 4+ h{(t)) =0 (2.1)

Since g(u) — +oco as |u| — oo we have that there exist an s, > 0 and constants
u, < @, < 0 such that

g(z.) —s(1 + A1) < 0< glu,) —s(1 + h(1)) (2.2)

foralls > s, and forallt € IR. Hence @, and u, are respectively upper and lower solutions
of (1.1). It is well known that this implies the existence of a 2r-periodic solution of (Py)
such that

u, Su,(t) <@ <0 (2.3)

for all ¢ € IR. This shows the lemma. W

Next, let w € C({27) and R(w) be the unique 2r-periodic solution of
v+ fu= —w (2.4)
where 8 = lim,_ .. ¢’{1). We recall that R : C%(2m) — C"(27} is a bounded linear

operator such that 8|{R}] > 1.
Let z denote the unique 27-periodic solution of

v+ Bu=1+ h{t), (2.5

ie., z = R(—(1 + h)) and let h; be a real number such that 0 < h, < mR_I'

. From (2.5}

we obtain immediately

PROPOSITION 2.2. If h in (2.5) satisfies ||k|lo < Ao, then

2(t) = 3 - R [kl > % ~|[Ri[hy > 0. (2.6)

o] —



NOTE. Since 8||R|| > 1, ho satisfies hy < 1. In particular any A € C(27) such that
{|h{lo < ho meets the conditions of Lemma 2.1.

LEMMA 2.2. Suppose that h in (1.1) satisfies ||k||, < h; and let §, = é: ~ holiR].

Then for any §, 0 < § < &, thereis an s, = s,(hy) such that for any s > s, (1.1) has
a unique strictly positive 27-periodic solution, say u,(t), such that

Hlu, — sz||, < sé. (2.7)

PROOF. It is clear that finding 2r-periodic solutions of (1.1) is equivalent to solving
the fixed point problem

u = R(f(u) — s{1+ h)) (2.8)
where )
flu) = g(u) - Bu. (2.9)

Setting v = * and using the linearity of R and the fact that R(—(1+k)) = z, we conclude
that (2.8) is equivalent to v = ®,(v) where

3, (v) = R( f(‘“’)) + 2 (2.10)

Next, let § be a fixed real number such that 0 < § < §,. Thus if v € B(z, 6) then v(t) > 0
for all ¢ € IR. Also let z, > 0 be such that for all ¢ > 2z,

1

If (O £ 7 2.11

3/ A 21

Let us define s, > s, by s, = is;- Then from (2.10) and (2.11) it is easy to see that
for all s > 5, and all v,w € B(z,6) we have that

1, (0) = &, (w)lls < 5 ilo —wll (2.12)

and hence ®, is a contractive mapping. To show that for large s, ®, maps B(z,6) into
itself, we note that from (2.10) it follows that

18, — =ilo < [|&R]|11EE).. (2.13)

- &

Now, from

f(sv(t)) = f(sz(t)) +/D fls{ro(t) + (1~ 7)z(t))s(v(t) — z(1)) dr, (2.14)

4
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(2.11), and a choice of s, > s, such that |f("(";(m)] < s forall s > s, and t € R, we
obtain that

f(sv) 2% o=zl $
= S+ TR S R (235)
From (2.13) and (2.15) we find that
1@, (v) — 2[lo < 6. (2.16)

The Banach Fixed-Point Theorem, (2.12) and (2.16) imply the existence of a unique
v, € B(z,6),s > s;, such that
v, = &, (v,). (2.17)
Next, setting
u, = sv,, (2.18)
we obtain that u, is a positive 2m-periodic solution of (1.1).
Finally, on multiplying (2.16) by s and calling on (2.17) and (2.18) we obtain (2.7)
and hence the Lemma. B

REMARK. We observe in Lemma 2.2 that the only restriction on & is ||k}, < k. Also
we note that for fixed é , with 0 < § < &, s, depends only on h-.

The existence of u,, as follows from the above lemma will allow us to modify Eq.(1.1)
in such a way that finding 27-periodic solutions of that equation will be equivalent to
finding nontrivial 27-periodic solutions of an equivalent equation.Thus let €= > 0 be such
that

n < B¢ <{n=+1) (2.19)

and let us increase s, , if necessary, so that
g’ (we) = Bllo = lIf (w.)lje < ¢ (2.20)
Let u be any 27-periodic solution of (1.1) and define
v(t) = u(t) - u (1) (2.21)
for all t € IR. Then v is a 2m-periodic solution of
2 + F(t,z) = 0 (2.22)

where
F(t,z) = glu(t) + z) — gu,(t)). (2.23)
Thus F : IR x IR — IR is of class C! and 2n-periodic in t. Furthermore, it satisfies
F(t - )
lim (t.2) =g (u.(1)) >3 —¢ >n’ (2.24)

r— 0 xr




li =8 :
m —— B (2.25)
and
lim F(t,z) = +oo, (2.26)

all three of these limits being uniform in t. We observe that ¢ = 0 is a trivial 27-periodic
solution of (2.22). Also we note that (2.25) and (2.26) imply the existence of an z, > 0
and an M > 0 such that

F(t,z) >0 (2:27)
forall t € IR and = € (—o0,—2)} U (20,4 00) and

F(t,z) > -M (2.28)

YR
\9 for all (¢,z) € IR, In Sections 3 and 4, s will be a fixed number, s > s,, so that Lemmas
2.1 and 2.2 hold true.
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3. — 2r-PERIODIC SOLUTIONS FOR (P,) ARE A-PRIORI BOUNDED

In this section we will prove
LEMMA 3.1. 2#-periodic solutions of (2.22) are a-priori bounded.

PROOF. Suppose that v is a 27-periodic solution of (2.22) which attains a2 minimum
at t = 1{,,. Then from (2.22), we have

Flt,v(tn)) < 0 (3.1)
and from (2. 27) v(t, ) € [—2,2;]. On integrating (2.22), with v in the place of z, from
tm tot € [t , 1, + 27] and calling on (2.28) we get

?

v'(t) = ——/ F(r,e(r))dr < M(t —t.,). (3.2)

tm

On integrating (3.2) again from ¢, to f € [t,.,1,. + 27| we find that

M . \
v(t) So(tn )+ S (t - tn)" < @0 + 207 M. (3.3)

Hence

—&q S ’U(t) S i) —+- 27'[':.11{. (3.4)

Since v was any 2m-periodic solution of (2.22) the lemma follows. l

We use Lemma 3.1 to modify (2.22) into a form suitable for the application of the
Poincare-Birkhoff theorem.Thus suppose that z, € IR satisfies z;, > 2. + 2%x° M, and
define G : IR x IR — IR by

[ F(t,z) for (t,z) € R x (—z,,z
G(i,z) { F(t,—z,) for(t{,z) e R x (—oc, (3.5)
\ F(t,z,) for(t,z) € R x [z, -+—oc)

Then G is a continuous function which is 27-periodic in ¢ and locally lipschitzian in x.
By repeating the argument in the proof of Lemma 3.1 with G in the place of F, it
is clear that (2.22) and
v’ + G(t,v) =0 (3.6)

liave the same 27-periodic solutions. We note now that G is a bounded continuous
function and hence in particular the unique solution to the initial value problem for (3.6)
can be extended to the whole real line. Also, if v is a nontrivial solution of (3.6) then
necessarily v (t) 4+ v () # 0 for all t € IR.



4. AT LEAST 2n + 2 SOLUTIONS FOR (P)

From previous Sections we know that searching for additional 2r-periodic solutions
of (1.1) different from @, and u, is equivalent to searching for nontrivial 27-periodic
solutions of (3.6) other than #, — u,. We note that 4, — u, < 0 for all ¢ € IR. To obtain
these nontrivial solutions we will use a generalization of the Poincaré-Birkhoff theorem
due to W.Y.Ding, see [1,Th 1].

Let us rewrite (3.6} as
’

v =2z (4.1)
' = ~G(i,v). ' (4.2)

For any (a,b) € IR?, let (v(t,a,b),2(¢,e,b)) denote the solutions of (4.1)-(4.2) such
that (v(0,a,b),2(0,a,b)) = (a,b). Define P : IR — IR®, the Poincaré map induced by
(4.1) and (4.2), by

P(a,b) = (v(2m,a,b), 2(27,a,b)). (4.3)

We recall that P is an area preserving homeomorphism which in our case satisfies
P(0,0) = (0,0). By defining v(t) = R(t)cos®(t), z() = R(t)sin©(t) we obtain the equiv-
alent polar system

R = ~G(t, Rcos®)sin® 4+ Rsin®cos®. (4.4)
Q= —-G(t’jz—cﬂcos@ — sin* 0. (4.5)

Let H = {(r,8)|r > 0,6 € IR} and let T be the mapping from K into itself defined by
T(r,6) = (R(2m,r,8),0(2r,r,6)), (4.6)
where (R(t,7,8),0(t,r,6)) denotes the unique solution to (4.4)-(4.5) such that
R(0,7,8),0(0,7,6)) = (r,8).

We have that the mapping T is an area preserving homeomorphism from H into itself
which satisfies

T(r,6 4+ 2r) = T(r,0) + (0,27). (4.7)
Next let j be any integer and define 7, : H — H by

T;(r,8) = T(r,6) + (0,275). (4.8)

Clearly each mapping T;,j € Z , is an area preserving homeomorphism from H onto its
image which , because of (4.7) , satisfies

T,(r,0 + 2m) = T;(r,8) + (0,27}, (4.9)

8
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We have now

PROPOSITION 4.1. There is a g, > 0 such that for any ©,0 < p < u, the solution
(R(t,p,8),0(t,1,6)) of (4.4)-(4.5) at ¢t = 27 satisfies

§ — 02T, u,8) > 27n (4.10)
for any 8 € IR.

PROOF. Let (4,0) € H and let (v(¢,a,b), 2(,a,b)) be the solutions of (4.1)-(4.2) such
that a = pcosf and b = psind. Recalling that (v(t,0,0),2(¢,0,0)) = (0,0) for all t € IR,
then from the continuity with respect to initial conditions we have that given &, > 0

there is a py, > 0 such that 0 < g < u, implies that mMaXe o 20 10(t, @, b)| < €. Define
&:IR— IRby

_G(tu(t,a. b)) s
a(t) = { [ pad) f{ v(ty0,b) #0 (4.11)
g'(u, (1)) if v(t,a,b) = 0.

Then & is continuous and v(¢,a,b) is a solution of the linear equation
v 4+ &(t) = 0 (4.12)
for all ¢ € [0,27]. We note that from (2.24) and having chosen ¢, sufficiently small, we

obtain that
a(t) > n’ (4.13)

for all t € {0,27]. Since (4.12) is a Sturm majorant for
' +n*t =0,

(4.10) follows from the proof of Th. 3.1 (i.e. Sturm’s First Comparison Theorem) of {4:.
Hence the proposition. B
PROPOSITION 4.2. There is a A; > pu, such that for any A > A, the solution of
(1.4)-(4.5) at t = 27, (R(27,A,8),0(27, A, 8)) satisfies

6 —0O(2m A0 <27 (4.14)
for any 6 € IR.

PROOF. Suppose this A, does not exist. Then there 1s a sequence: (A, ¢, j?:1 with
Ay — 400 as k — +oo, such that v, (1) := v{{,a,,b.) possesses at least two zeros in

[0,27]. Here a; = Ajcospr, b, = Aysing,, k € IN. Let us define the sequence of functions
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{Dx Y by 8 (2) = vi (t)/||ve||1,t € [0,27]. Then ||5c]}, = 1,k € IN. From the fact that
for t € [0,27}, v, (1), k € IN, satisfies (3.6) we obtain that

T'Uk

0, (1) = 0:(0) + 9, (0)¢ — f/ I

W
This, together with the boundedness of G and the Ascoli-Arzela theorem impﬁgs’ that
{0 }iL, possesses a uniformly convergent subsequence in C'[0,2n]. Denoting this sub-
sequence again by {0, }{2,, its limit by %, and letting k¥ — +oo in (4.15) it follows that

b(t) = 9(0) + o' (0)t. (4.16)

™) grat. (4.15)

But this implies that for sufficiently large k, v, (t) can have at most one zero in [0, 27].
This is a contradiction and hence the proposition.

We are now in a position to prove Theorem 1.1.

PROOF OF THEOREM 1.1. We only need to prove that (3.6) possesses at least 2n
nontrivial 27-periodic solutions different from 4, —u,. To do this let us consider the area
preserving homeomorphism 7} ,7 € Z defined in (4.8) and set

T;(r,8) = (R;(r,9),0; (v, 8)), (4.17)
J € Z. From (4.6) and (4.8) we obtain that R;(r,8) = R(r,8) and that
O;(r,8) = &(2mr,r,8) + 273, (4.18}
J € Z. Then from Propositions 4.1 and 4.2 we have that
O;(u,8) — 8 <2n(j — n) (4.19)
and
0;(A,8) — 6 > 2x(5 — 1), (4.20)

any j € Z,any u € (0,u,] and any A > A,.
Let us choose a u € (0,40] and a A > A;. Then for j = 1,...,n we have that

O,(p,0)—6<0 and 0;(A,8)-6 > 0. (4.21)
Let us define Hy, by Hs, = {(r,8)|u < r < A, € IR}. Then from Th. 1 of [1j it

follows that for each j = 1,...,n the mapping 7}, from H,, onto its image possesses two
different fixed points. Let us denote these ﬁxed points by r;;,8;;,t =1,2. Also let a,;, =
rijcosti;, bi; = r;;8in8;;,i = 1,2, Then for each j = 1,...,n the points (a,J yhij )i = =1 2,
are fixed points of the Poincar€ mapping P. Each one of these points is a pair of initial
conditions for a 27-periodic solution of (3.6), say v(t,a;;,b;; ), possessing exactly 25 zeros
in [0,27),j = 1,...,n,7 = 1,2. Thus (3.6) has at least 2n nontrivial 27-periodic solutions
other than %, — u, and the theorem is proved. i
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5. PRELIMINARY RESULTS FOR (P,)

Let w € C(27) and respectively denote by R, (w) and R;(w) the unique 27-periodic
solutions of the equations
uw' +ou = —w (5.1)

u’ + fu = —w. (5.2)

where « and 3 are as in (1.3).

We have that R,,R; : C(2r) — C(27) are bounded linear operators such that
allR.|l 21, B|Rs|l > 1. Let us set z, = R,(—(1 +h)),z; = R;(—(1 + h)), where
h € C(2m). The validity of the following proposition is easily ckeked.

Proposition 5.1. Let h; be a real number such that 0 < k, < min{ﬁilaéall’ollill i }
Then if h satisfies |h||¢ < hy we have that

20(t) 2 =~ [Ralllhllo >~ [Ry|[hy >0 (5.3)
25(8) > = = | Ry|llRllo > % ~ | Balho > 0 (5.4)
=3 8 =3 3 lifao . .

In a similar form as we proved Lemma 2.2 we now can prove

LEMMA 5.2. Suppose hin (1.1) satisfies ||Al|; < h and let 6 = min{l —{[R.|jhq, <~
| Rs||ho}. Then for fixed §, with 0 < § < &, there is an s, = so(h¢) > 0 such that for all

s > sy (1.1) possesses a unique 2m-periodic solution u} which is positive and satisfies
lul — szl < 86, (5.5)
Also if s < —s; then (1.1) possesses a unique 2w —periodic solution u~ which is negative

and satisfies
lu; — szallc < [s]é. (5.6

As in Section 2, it 1s clear from the definition of hy that hy < 1.
In Sections 6 and 7, s will be a fixed number, |s| > s, so that Lemma 5.2 holds
true.

11
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6. MULTIPLE 2r-PERIODIC SOLUTIONS FOR THE SECOND CASE

In this section we will prove Theorem 1.2. As we did before, we will reduce problem
(P,) to a search for nontrivial 2mr-periodic solutions of an equivalent problem.

Let us first consider the case s > sy, with s, as in Section 5. We increase 8y, if
necessary, so that

lg'(u3) = zallo < & (6.1)

where £ satisfies
n'<f - <(n+1). (6.2)

Setting u = u} + v we have that u is a solution of (1.1} if and only if v is a solution of
v" + F(t,v) =0 (6.3)

where F': IR x IR — IR is defined by
F(t,z) = g(u) (t) + z) — g(ul (¢)). (6.4)

Fis of class €’ and satisfies

ling F(i,s:) =¢(uf(t)28-¢ >n’ (6.5)
im L0250 gy EGE) (6.6)
I— 4o T I — =& T

with all these limits being uniform in {.

We note that v = 0 is a solution of (6.3). Also we observe that local existence and
uniqueness of solutions to the initial value problem associated with (6.3) are ensured. The
unique extendibility of these solutions to the whole real line follows from the sublinearity
of F.

Rewriting (6.3) as

f

v =z (6.7}
2 = —F(t,v) (6.8}

and defining v(f}) = R(t)cos ©(t), z(1) = R(t)sin O(¢) we obtain the equivalent polar
system

R =~-F(t,Rcos®)sin© + Rsin O cos © (6.9}
©
e = —F(t’RCOIS? Jcos © — sin® ©, (6.10}

We denote by (R(t,7,@),0(t,r,8)) the unique solution of (6.9)-(6.10), such that
(R(0,r,6),0(0,7,8)) = (r,6) € H. with H is as in Section 4.

The next proposition can be proved in the same form as we proved Proposition 4.1.

12




PROPOSITION 6.1. There is a g, > 0 such that for any 0 < u < p, the solution
(R(t,1,0),0(1,1,0) of (6.9)-(6.10) at t = 27 satisfies

§ - 027, p,6) > 2mn (6.11)
for any 8 € IR.

Next, we have

PROPOSITION 6.2. Thereis a Ay, with Ay > i, > 0 such that for any A > A, the
solution of (6.9)-(6.10) at { = 2x satisfies

0 —002r,A,80) <2(l+ 1)r (6.12}
for any 6 € IR.

The proof of this proposition is based on the following two propositions which we
establish without proof.

PROPOSITION 6.3. Let {u, }3_, be a sequence in C°[0,27] such that

lim |[u,, | = +cc.

mo— oC

Suppose that u,, /{jun[|o converges to @ in C°[0,27] as m — +oc. Then the sequence

{F(-,um ()

R =~
”umHQ }m:‘.

where F is as in (6.4), possesses a subsequence which is weakly convergent in Li(0,27)
g>1,to Bit —at~.

Y

PROPOSITION 6.4. Let {v.}>_, be a sequence of solutions of (6.3) such that

|lm|li — +o00 as m — +oo, then lum lic — +o0 as m — +oc.

We are now ready to prove Proposition 6.2.
PROOF OF PROPOSITION 6.2, Assume that such a A, does not exist. Then
there is a sequence of solutions {R(?, A;,8:),0(t,A:,0.)}=,,t € R, of (6.9)-(6.10)
with A, — 400 as k -» oo and such that for any k € IV

Let us set
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(vk (t)$ Zi (t)) = (R(t$ A ) b: )COS @(t’ A ) b )’
R(t,Ay,6,)sin O(t, A, 6,)), (6.14)

k€ IN. Since A; — oo we have that [|v;[li — +o00 as k — +00. From Proposition (6.4),
lvello = +o0 as k — co. Define the sequences {5, }22, and {3, }oo . by 9 (t) = i

ffvallo?

Z(t) = ﬁ%,k € IN. From (6.7),(6.8),(6.13) and (6.14) we obtain that for each k € IV,

there are ;,1; € [0,2n] such that 4,(t.}) = 0 = &, (¢; ). From this fact, the sublinearity
of F, the Ascoli-Arzela theorem and (6.3), we ﬁnd that {0;}2° | contains a subsequence

Flt v (1)
oo 0 €V,

follows from Proposition (6.3) that the sequence {w;}52, possesses a subsequence which
we denote again by {w; }5 ;, converging weakly in Lq(O 27),q > 1, to Bvt — ad-
Now, it is easy to see that for each j € IV we have

{9, }32, suchthat &, — 9 in C*[0,27],as j — +oco. Setting w, (¢) =

e s (2)3, (2) + 52 (1)
6:, — O, (2m,A,,, 8 =f b 6.15
bTOREmAR )= e R (612)
Letting ; — +00 in (6.15) and setting #* = lim,_ .. arctan —-’—EZ—j, we obtain that
L [T (80— abm )b+ o
0= J—l.linm Ok, (2m, Ay, ,8,, ) =6 — /; ( T ﬁ,)z di. (6.16)
Thus, from (6.13) it follows that
2w e =35 )
6 —(a:f (B9 Am’*)f”’v dt > 2(1+ 1) (6.17)
0 p2 + o'
-On the other hand, from (6.3) we have that
t
by, (1) = 9, (0) +/ w; (7)ds (6.18)
Q
for j € IV and t € [0,2n]. Letting j — 400 in {6.18) we obtain
= +/ (Bvt (1) —av™ (7)) dr (6.19)
and hence 9 is a solution of the equation
"’ + Bzt —az” =0. (6.20)
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Let us denote by (R, (¢,r,8), ©.(t,7,0)), t € IR, the polar representation of the solution

of (6.20) with initial data (r,8) € H. In particular the initial polar data for the solution

v is (r*,68") € H where 7" = v/%2(0) + #2(0). Then it is obvious that
Q;(2m,r",6")=© (6.21)

and hence from (6.17)
& — Oy (2m,r,6) > 2(1 + 1)r. (6.22)

Next, let us consider the equation
w’' +ewt —dw™ =0 ' (6.23)

where ¢ > 3 and d > « are given by

c= Ili(l + 1)1+ \/g] (6.24)

d= %(I+1)2[1+\/%] (6.25)

Let (R, (t,7,6),0, (t,7,8)),t € IR, be the polar representation of the solution of
(6.23) with initial data (r,6) € H. From the choice of the coefficients ¢ and d it follows
that any solution w of (6.23) is 2r-periodic and furthermore satisfies

8" — 0, (2r,r",8") = 2(1 + 1)r. (6.26)
Now it is not difficult to prove that
QL (t,7",0") > O (t,r §") (6.27)
for all ¢ € [0, 27]. Integrating (6.27) from 0 to 27 we obtain
6 — ©.(2m,r",0") < 8 — O, (27,7 ,0). (6.28)

We conclude the proof of the proposition by noting that (6.22),(6.26) and (6.28) lead to
a contradiction. Il

Using Propositions (6.1) and {6.2) in the same manner as we did with Propositions
(4.1), {4.2) in order to prove Theorem 4.3 and proceeding in an entirely similar form as
we did with Theorem 4.3, we can establish the first half of our main result for this section.

THEOREM 6.5. For s > s, equation (6.3) poseesees at least 2(n — ) nontrivial 27-
periodic solutions, v;;(¢),7 = 1,2 j=1+1,...,n. Fori = 1,2, v;(t) has exactly 27 zeros
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in [0,27), j = 1+1,...,,n. Correspondingly, (P, ) has at least 2(n—1) 2r-periodic solutions
of the form u}(t) + v;;(t), t € R,i = 1,2, = I +1,...,n. These solutions together with
u} () give us a total of at least 2(n —I) + 1 27 —periodic solutions for (Py).

We continue the search for 27-periodic solutions of (1.1) by considering the case
s| 2 s0, s negative. Again, we first reduce the problem to a problem of finding nontrivial
2m-periodic solutions of an equivalent equation. Thus by increasing sg, if necessary, we
assume that for all s negative with |s| > s, we have

lg'(u; ) —ajlo <& (6.29)

where £** is such that
(k-1 <a+e" < k. (6.30)

Setting u = u] + v we have that v is a solution of (1.1) if and only if v is a solution of
v’ 4 F(t,0) =0 (6.31)

wliere

F(t,z) = g(= +u] (1)) — g(u; (1)). (6.32)

It follows that 17".: RxIR— RisC' F(t,0) =0 for all t € IR, and from (1.13), (6.30)
and (6.32) that F satisfies

I":‘ t) 3
lir:% Fit,2) =g'(u; (1)) Sa+e" <k, (6.33}
r— I

F(t, . F(2,
lim (—f—)- = a, lim —(i) = j, {6.34)

r— —oc od I — +2C T

with all these limits being uniform in ¢.
Rewriting (6.31) as a system, we obtain

v =z (6.35)
z = —F(i,v). (6.36)

Letting v(t) = R(t)cos O(t), z(t)sin ©(t) we get the equivalent polar system

R = —F(t,Rcos©)sin® + Rsin O cos © (6.37)
o = —-F(t—’RR;OS—@) cos ©® — sin® ©. (6.38)

We denote by (H(t,r,0),0(t,r,0)) the unique solution of equations (6.37), (6.38) such
that (R(0,r,8),0(0,7,8)) = (r,0) € H.

16



Using the same techniques we used for the case s > s, and some obvious modifica-
tions, we now obtain the following straightforward analogue of Propositions 6.1, 6.2 and
Theorem 6.5.

PROPOSITION 6.6. There is a py > 0 such that for any 0 < g < y, the solution
(R(t,1,8), O, u,0) of (6.37)-(6.38) at ¢t = 27 satisfies

6 — O(2m,u,8) < 2k (6.39)
for any 8 € IR.

P_ROPOSI':[‘ION 6.7. There is a Ay > p, such that for any A > A, the solution
(R(t,A,0), ©(t,A,8)) of (6.37)-(6.38) at t = 27 satisfies

6 — 0(2r,A,6) > 2 (6.40)

for any 8 € IR.
Thus we can now establish the second half of our main result.

THEOREM 6.8. For [s| > so, s negative, equation (6.31) possesses at least 2(I ~ k+1)
nontrivial 27-periodic solutions, %;;(f), + = 1,2, 7 = k,...,I. For i = 1,2, ¥;; () has
exactly 2j zeros in [0,27), j = k,...,I. Correspondingly, (P.) has at least 2( — k +1) 27-
periodic solutions of the form [ (¢)+ ¢;;(¢),t € R,7i=1,2, j = k,...,1. These solutions
together with u () give us a total of at least 2(/ — k + 1) + 1 2x-periodic solution for
(P.).

Finally, combining Theorems 6.5 and 6.8 we obtain Theorem 1.2.
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7. SOME APPLICATIONS OF OUR MAIN RESULTS

In this Section we apply our main results to the existence of a lower bound for the
number of 27-periodic solutions for (1.5) and (1.6) when g in these equations satisfies
either (1) or (i1).

We consider first (1.6). We note that this equation can be written as

v+ glu)=s(1 + @) (7.1)

for s different of zero. Letting s, and A, to be as in Theorems 1.1 and 1.2 y increasing
$o if necessary, so that additionally we have

h
Liktls < ho (7.2)
8]
for all s > s, or for all |s| > s, s negative, and recalling the definition of I given in (1.4)
we obtain

THEOREM 7.1(a) If (i) of the Introduction holds then there is an s, > 0 such
that for any s > s;, equation (1.6) possesses at least 2n + 2 2m-periodic solutions.

* (b) If (1) holds then there is an s, > 0 such that for any s > sy, equation (1.6) possesses
at least 2(n — ) + 1 27-periodic solutions.Also for any |s| > s¢, s negative, (1.6) has at
least 2({ — k + 1) + 1 27-periodic solutions.

Thus the number of 27-periodic solutions of (1.6) for s > s, plus the number of
solutions for |s| > s, s negative is equal to 2Q + 2 where @ is the number of squares of
integers lying in the interval (a, )

Next, let us consider the problem of a lower bound for the number of 2m-periodic
solutions of (1.5). Just by taking

hy
< = — T
le| < e TR (7.3)

in Theorems 1.1 and 1.2, s, and h; like in these theorems, we obtain

THEOREM 7.2(a) If () of the Introduction is satisfied, then there is an s, > 0
such that for any s > s, and any |¢| < &, equation (1.5) possesses at least 2n + 2 27
periodic solutions.

(b} If (4i) of the Introduction is satisfied, then there is an s, > 0 such that for any
s 2 8o and any |e| < e, equation (1.5) has at least 2(n — [)+1 2r-periodic solutions. Also
for any [s| 2 50,5 negative, (1.5) has at least 2(I — k + 1) + 1 2r-periodic solutions.

Thus for |¢] < &y the number of 27-periodic solutions of (1.5) for s > s, plus the
number of solutions for |s| > s;, s negative, is equal to 20 +2 where @ 1s defined as above.

We note that in Theorem 7.2 s and ¢ are independent parameters. We thus extend
the main results of [7].
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