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1. INTRODUCTION

In this paper we are concerned with the existence of subharmonic
solutions of second order differential equations of the form

£+ glx)= 1),

where /' is periodic with minimal period T and mean value zero. We have
in mind as a particular case the pendulum equation, where g(x)= A sin x.

First results on the existence of subharmonic orbits in 4 neighborhood of
a given periodic motion were obtained by Birkhofl and Lewis {cf. [3] and
[14]) by perturbation-type techniques. Rabinowitz [ 15] was able to prove
the existence of subharmonic solutions for Hamillonian systems by the use
of variational methods. His approach is not of local type like the one in
[3], and enables one to obtain a sequence of solutions whose minimal
period tends toward infinity in the case when the Hamiltonian function has
subquadratic or superquadratic growth. These results have been extended
in various directions, cf. [2, 5, 6, 8, 13, 16-18]. Local results on subhar-
monics for the forced pendulum equation can be found in [19].

Hamiltonian systems with periodic nonlinearity were studied by Conley
and Zehnder [6]. They proved the existence of subharmonic solutions
under some assumptions on the nondegenerateness of the solutions, by the
use of Morse-Conley theory.

In this paper we will prove the existence of subharmonic oscillations of
a pendulum-type equation by the use of classical Morse theory together
with an iteration formula for the index due to Bott [4] und developed in
[7]) and [1]
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26 FONDA ANLD WILTEM
2. T Mamn Resunr

Let 7 be o fixed positive number and k 2 2 an integer. Assume f: 8 - R
o be a continuous peniedic function, with minimal period T, and such that

,
Sy die =0. (t)

=
We consider the equation
M+ glaln) = f(1), (2)

where ¢ R -+ R is a continuous function such that, setting

Gy = [ gl8) ds,
<0
the function ¢/ is 2m-periodic.

We want (o prove the existence of subharmonic solutions; i.e., we look
for periodic solutions of (2) having AT as minimal period. The & T-periodic
solutions of (2) correspond to the eritical points of the functional ¢,.
defined on the Hilbert space M), = {xe H'([0, ATT) x(0)=x(kT)} as
follows:

kT
dotr={  LHEOY = Gt + f(0) x(0)] d. (3)

w4

However, the critical points of ¢, do not necessarily correspond Lo periedic
solutions of {2) with minimal period &T, as can be seen lrom the case p=0.
In fact, in this case the k F-periodic solutions of (2) are of the form

i ] kI v ‘ ’ A .
x(n)=0C,—1t I—(?J') (-[n fu) du) dy + j.“ (J-” fl) du) s, {4

where (', = v(0) can be chosen arbitrarily in R. Becausc of (1),

Kl_l J‘: f (L: f) du) oy = %J‘:r ( J.‘; fu) du) s,

and then any x(r), as in (4}, has in fact period 7.

It can be shown, ¢f. [10-12], that the functional ¢, is bounded from
helow and satisfies the Palais Smale condition. So ¢, always has a mini-
mum. 1f g =0, the minimum points of ¢, are as in (4), where €, 05 an
arbitrury real number. In particular, they are not isolated.
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Let v, be a 7-periodic solution of Eg. (2). Ddfine, for 4 and 7 in #, the

mitlrix
( { — 1"
an={ )
A+ gty 0

and consider the fundamental solution X, (1) which satisfics

X 1) = A, (1) X 1)
X,(0)=1d.
it is well known (sce e.g. [97) that the cigenvalues o) - and o7 , of X (T
have the {ollowing properties:
(i) either both ¢ ; and a , are in B, or o), =d7 !
(1} ol 0% =11

(iii) there exists 4, <4, such that the maps 4+~ 0, and Al 4 are
continuous and one to one il i, < 1< 4,. Morcover,

O<al p<l<alr (A< Ay),
0:,1':61.168| (Ag<A< /)

The 7-periodic solution x, is said to be nondegencrate if Ld oy o0}

Given o e §'. we define J(x,. T, ¢) to be the number of ncgative A's lor
which a € {&’ ;. o}, . The number J(x,, T, 1) is then the Morse index of
the T-periodic solution x,.

We are now able to formulale our main result.

ThrorEM L. Assume the following conditions:

{a}) the T-periodic solutions of Eq. (2) are iseluated,
(b} every T-periodic solution of (2) having Morse index equal to zero
is nondegenerale.

Then there exists a k, = 2 such that, for cvery prime integer kK 2 ko, there is
a periodic solution of (2) with minimal period kT

Remarks. (1) We have seen above that in the case g =0 there arc no
subharmonic solutions of (2), and the T-periodic solutions are not isolated,
and therefore degenerate. So neither (a) nor (b) is verified in this case.

(2) In 6], Conicy and Zehnder proved the existence of subharmonic
solutions for a system with Hamiltonian function periodic in cach of s
variables. They showed that when all the T-periodic solutions, together
with their iterates, are nondegencrate, then there exists a periodic solution
with minimal period &7 if & is a sufficiently large prime number.
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We do not need to assume, as in [6], that also the herates ol the
T-periodic solutions of {2) are nondegencrate. Since for u T-periodic solu-
tion x, one has o, = (a7 ) and 67, = (a7}, it could then happen in

N

principle that le (al, .00 ,,icven if 1¢la) .. 0" 1.

Proof of Theorem 1. Lel us introduce the Hilbert spuce

- i ki
il = {,i'e H,},;j _i-(r]:.h':()}.

]
By (1) and the 2z-periodicity of G, we have (hat
Pu (v + 2m) =y (x)

for every wve H),. Set S'=R/A2rZ). 1t is then equivalent to consider the
lunctional ¢, defined on $' x A, by

Yo(x}=g(¥+3)

for every x = (x, ¥)e ' x A,. The functionals ¢, are bounded from below
and salisfy the Palais Smaie condition (cf. {10 127). By assumption (a),
the functional ¥, has only a finite number of critical points x,, .., x,. It is
clear that the functions x, (0 €7 < n), extended by T-periodicity on [0, k7],
are also critical poinis of ¥, for k> 2.

We now assert the following.

Claimn.  There exists an integer &, such that, for k= k, and 0<i<n,
either J(x,, AT, 1)=0 and x, is nondegenerate, or J{x,, kT, t} 2 2.

Assume for the moment that the above Claim holds true. In case & = &,
is & prime number, since /" has minimal period 7, the critical points of ¥,
have as minimal period either T or k7. Assume by contradiction that
Xy, - X, dre the oly critical points of §,. Since the Poincaré polynomial of
S'x H, is (1 + ¢}, we have

Y P x)=(1+0[1+0Q(1)] {5)

where Q(r) is a polynomial with nonnegative integer cocflicients and
Pty x; ) =2, dim C;(i, x;)¢/ is the usual Morse polynomial of x, (sec e.g.
(12]). By the Claim, if J(x,, kT, 1)=0, then P, (¢, x,)=1. Otherwise, if
J(x,, kT, 1)22, then dim C,(y,, x,)=0 for j=0,1. This implies that
Eq. (5) can never be satisfied, and we have a contradiction.

To conclude the proof of the theorem we need then to prove the above
Claim. In order to do so, let x, be a critical point of ¢, and let 4,< 1, be
as in property (iti). First of all, we claim that A, #0. Indeed, if on the con-
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trury 4, =0, we would have, for every negative 4, 0 <a’, <1 <g’ ,, which
imphics Jix,, 70 1)=0. On the other hand, by (i), a, , =1 =a{; ,. so that
X, would be a degenerate T-periodic solution with Morse index cqual 1o
zero, in contradiction with assumption (b).

Suppose 4, > 0. Then, for every A<0, we have 0<a’, ;<! <o), und
hence J(x,, T, a) =0 lor every o S'. By [4, Theorem 1] we have

Jx kT, )= ¥ Jx,, T, 0)=0.

a1
Morceover v, as a critical point of ¢, , is also nondegenerate, since
' _ae vk v g
O<oyp=ta) Y <l<ai, =05 )

Suppose now 4, <0. Then for every A€ 4. 4, + ¢[, for £ > 0 small enough,
we have 0, , =67 €8’ and

j{xr! T, a:‘l, !')'_‘J(-\‘n Ts U:l)>0

Henee, for & large ecnough, we have

S, kT )= Y Ja, Toa)z2.

ak )
This proves the Claim, and completes the proof of Theorem |,

Under a stronger assumption, in the following theorem we will obtain
the existence of rwo subharmonic oscillations.

THEOREM 2. Suppose that the kT-periodic solutions of (2) are non-
degencrate for k=1 and for every prime integer k. Then there exists k, =3
such that, for every prime integer k 2 k,, there are two geometrically distinct
perivdic solutions of (2) with minimal period kT,

Proaf.  As a consequence of the assumption, for every prime number £,
the number n, of critical points of ¢, is finite. Since the Poincaré poly-
nomial of §' x A, is (1 + 1), a, must be even. It follows from Theorem 1}
that, for k2 ky, n, 20, + k. Then n, = n, + k&, and the proof is complete.
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Abstract. We study the coercivity of functionals of the form & +} where a is semicoercive
with respect to a subspace and b js coercive on the complementary subspace. Applications
are given to the existence of solutions for a semilinear Dirichlet problem.

L. Introduction. This paper is concerned with the existence of solutions to elliptic

boundary value problems at resonance with the first eigenvalue. We consider the Dirichlet
problem

—Au-du+tg{z,u)=0in N, u=0 ond (1

where €2 is a bounded open subset of R™, and A; the first eigenvalue of {(—A) on H}($2).
The Caratheodory function g : 2 x R — R is supposed Lo satisfy the usual growth condition

lo(z, w)i < aluf*™" + bz}

where g < oo if ¥ = 2,9 < 2= 2N/(N - 2) if N > 3, and where b(z) € L9 (£2), with ¢’
the Héider conjugate exponent of g; if ¥ = 1, it suffices to assume that for any r > 0,

sup lg(z, u)| € L'(R).
Ju]<r
Under this condition, the associated functional
5w =4 [ (19u® = 2] + [ Gle sz,
n n

where G(z,u) = fo“ u(z, s)ds, is a weakly lower semicontinuous C! functional on H} whose
critical points are the weak solutions of (P}). It follows that if f Is coercive {i.e., f(1) — +20

Received March 13, 1989,
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as {|uf] — oo in HY), then f has a minimum and consequently {P) has a solution. We are
mainly interested in this paper in the conditions which guarantee the coercivity of f.
The functional f(u) can be written ag the sum of a quadratic term

awy =} [ (19l < aufuf’]
Q
coming [rom the linear part of the equation, and a term
bu) = j Gz, u(z))dz
1]

coming from the nonlinear part. Denoting by H the space spanned by the first (positive}
eigenfunction ¢; of {(—A) on H}, we see that a necessary condition for f to be coercive
on H} is that f be coercive on H; i.e., b be toercive on H. A condition of this Lype was
first considered by Ahmad, Lazer and Paul [1] in a slightly different situation. One can ash
whether this condition is also sufficient for the coercivity of f, or at least for the existence
of a solution to (P). The answer to this question is negative, as is shown by the following.

Example 1. Consider the one-dimensional linear problem
v +u=a(zju+hz) on]o,x, u(0)=0=ru(r). (@

The associated functional is
flu)= fo' Ry - 31 - s(2))u? + A(z)].

The coefficient s(z) in (Q) is defined as follows: first choose C > 0 in such a way that the
graphs of the two functions

m(z) = C(e¥ ~ ™), uy(z) = - sin{2z)

be tangent one to the other at a certain point # €]§,7(; then take

5 ilz e (0,3(
s(x) = {—(l if z € [%, 7]

It follows that the corresponding homogeneous problem
w +u=s(z)u, u(0)=0=u(x)
has a nontrivial solution given by

wy{z) ifz € [0,]
u(x) ifrelz,x).

wlz) = {

This implies that if f; hup # 0 then problem (Q) has no solution. For such 4’s the functional
f can not be coercive; actually it is easily seen directly that f is not coercive on the line
Rug. Nevertheless, f is coercive on H. Indeed

f(rsinz) = (£ f2) j‘ s(z)sin’® zdz + rjo’ h(z)sinzdr
o

g

g i

P




SEMICOERCIVE VARIATIONAL PROBLEMS }

and since .
/ s(c)sin*zdr = / 5sin’ zdz +/ —3sin’zdz > 0,
0 o t

one has f{rsinr) — +00 as [rf — 20.

In order to try to understand what can go wrong with the coercivity of f when b is coercive
on H, let us write the orthogonal decompasition H=Ho H, where H is generated by the
higher eigenfunctions of {(—A) on Hj, and for every u € Ho- let u = &+ i, with & € H
ie H. Taking Fourier's expansions, it is easily seen that the functional a is coercive on o:
more precisely, there exists § > Q such that

a(u} > élja)’

fur every u € HY. One reason why this semi-coercivity of @ on H} together with a coercivity
assumption of 4 on H do not necessarily imply the coercivity of f on H} is that b may
decrease too rapidly outside B. This phenomenon is apparent in the above example where
one has b{rug) «» ~0o with speed r? as |r| — oo (since b(rug) = ~a(rug) + r f hup).

This suggests to impose some control on the decreasing speed of b outside H. One can
also reinforce the coercivity of b on H and lock for a compromise with the decreasing speed
of b outside H. These ideas are the content of condition (iii) of our abstract theorem in
section 2. A particular case of this theorem deals with the situation where b is Lipschitz
continuous (see Remark 2}. We provide in this way an abstract explanation for the use in
[%] of a boundedness assumption on the nonlinearity g{z,u). this particular case can also
be used to recover a theorem of Mawhin [9] relative to the situation where b is convex (see
Coroltary 1).

Beginning with Hammerstein {7}, several papers have been concerned with the study of
problem (P) under conditions on the asymptotic behaviour of the quotient 2G(z,u)/1%. In
[L0], Mawhin, Ward and Willem proved an existence result by assuming

llinllinf‘ZG(z,u}fuz >0 {1)

for almost every z € €2, the inequality being strict on a set of positive measure. In [5], de
Figueiredo and Gossez considered the case in which equality holds-in (1) for almost every
r € N and proposed a so called density condition in order to obtain existence. Conditions
on the quotient G(z,u)/]ul” for 1 < p < 2 were also condidered by Anane in [2] (see also
[4))-

[n section 3, we show how these results can all be recovered and sometimes improved
or generalized by using our abstract theorem. Beside unification, the present approach
provides a new insight to the role of some assumptions in the above mentioned results; this
is particularly apparent for the linear growth restriction imposed in [5] on the nonlinearity
g{r,u). We also consider the limiting situation where p = 0 in the quotient G(z,u)/|u|",
in which case the functional may not be coercive. Qur result here is related to some recent
work of Ramos and Sanchez [11] and provides an improvement of a theorem of Berger {cf.
[4], (5}) ,

We finally observe that most of our tesults can be adapted to systems of urdip/ry diffir-
ential equations or to other types of boundary conditions, like the Neumann conditions, or,
for ODE's, the periodic conditions.

2. An abstract theorem. In this section we study the coercivity of functionals of the
fortm f = e + b, where a is semicoercive with respect to a subspace and b is coercive on a
cumplementary subspace.

1 A. FONDA AND J.-P. GOSSEZ

Theorem 1, Let H be a normed space, H = H@ H, and for any v € H, write v = d + i,

withi € H, i ¢ H. Let a,b: H — R be two functionals satisfying the following propertics:
(i) there exists & > 0 such that a(u) > §||i]|? for every u €H;
() lim el o J57 2 0
Lﬁ) there exist a functional b : H — R, 5 < b, and 3 > 1 such that
[b(u) - b(w)l < llu - wll{AClull + el + B

for every n,w ¢H, and

[ £

. b(a) .
hm e 3
ol AEP-17 = ¥ @)
aell
if1<3<2 or )
b(a)
litinf >0 {-H)
loll—so Il
e
ifd > 2.

Then the functional f = a + b is coercive on H.

Remark 1. When 1 € 8 < 2, property (ii) is a consequence of (2); moreover one has
2(8 — 1) < F and so (3) is a less restrictive requirement than (4). Oco the contrary when
B 2 2, (1) becomes less restrictive than (3). If b is differentiable, it is easily seen that (2) is
equivalent to the following growth condition on b

()l < ANult™" + B ()

Remark 2. In the case # = 1, condition {iii} becomes:

(i) there exists b:H — R such that b € b on H, b is coercive on H and Lipschitz
continuous on H.

Proof of Theorem 1: Assume by contradiction that there exists a sequence (u,) in H
and a real constant C such that JJu,|| — oo and f{un) € C for every n. Then, by (i),

foall® | b(un) . C
= +
""""'"2 "u'n"2 "un“2

which by (ii} implies that [, /l|ta|l — 0. As a consequence,
Tiainf [ /Y2l > 0, )

+

and, in particular, ||@,]] — co.
Assume that (3} holds. By (iii),

Jta) 2 Bliall? + B} — B(1a) + B(n)
> fllaalf? ~ 5l (A ||un1| + uunn)"" + B| + b(an)

> 8lal? = Blliiall - 3 T (||un||+||ﬁn||)=w-”+6(nn) (6)

’ Un) [{teni WA= - yHA-1)
{7”“11” rB||H"||] + [ |u ”2(,3 1 26(“H !l l) ]”“"” v

(iii)

&
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v

which by (5) and (3) goes to +o0 as 1 — o0, in contradiction with our assumption.
Assume now that (4) holds. By (jii),

b)) iall leall o B
_ < H%nll =
TP ™ Tl < ol A 1+ Tt

which goes to 0, by (5). Consequently, by (4),

bup)
e >

whjchdimplies b(un) — +00 and so also f{un) — +00, 2 contradiction. The theorem is thus
proved.

liminf

Remark 3. When 3 = 1, condition (i) of Theorem | can be weakened to the following:
(i)' there exists o : Ry, — R, bounded below, with a{t} — 400 as ¢ — +oc, such that
a(u) 2 a(flalla|
fur every u ¢ H.

tndeed assume by contradiction that there exists a sequence {u,) in H and a constant C
such that JJua )l — 0o and f{un) < € for every n. Then

alllénllaa|| b(un) ¢
afllalDllunll * el < alffunlliuall

Since b is Lipschitz continuous, this implies

allin|llanl
alllwallwnll ~ % )

It is not restrictive to assume o increasing and coucave (cf. [6]). As a consequence, [|4,)|

oo, Indeed, if this is not true, there exists a subsequence, still dencted (uy), such that l&n i
is bounded. Then
llin

lfuall

lim inf

2zl (8)

and so, for 1 large enough,

o) 5 ool

a(lluall} = a(l[unli)

since a(21) £ Ka(t) for a certain K > 0 and all ¢ sufficiently large. A contradiction with
(7) then follows from (8) and (9). Now, if £ is the Lipschitz constant of b, one has

liminf

(9)

flun) 2 alén| Maafl + i)(u..) - i’(ﬁn) + a(ﬁn)
2 [a(llga)l) - il + B(&n).

Since the first term in the above sum is bounded below and b(iin) = +0, we have that
f{uq) = +o0, a contradiction.

We deduce from Theorem 1 with 3 = 1 {actually from Remark 3) the following result
which contains a theorem of Mawhin [9] obtained by convex analysis methods.

G A. FONDA AND ).-P. GOSSEZ

Carollary 1. Let H be as in Theorem 1, a : H — R a functional satisfying propecty (i)
and suppose that b : H — R satisfies b > b, with b : H — R a convex and continuous
functional which is coercive on H. Then f = a + b is coercive on H.

Proof; By Remark 3, it suffices to show that there exists b:H — R with b <bon H,b
oercive on H and Lipschitz coutinuous ca H. Since & is convex continuous and coercive on
H, it is easily seen that there exist constants €y > 0 and Cq such that

b(#) > Cilfaf -

for every t € H. Moreover, adding a constant to &, we can always assume 3 = 0. For
every & € H, define a linear functional L, on the one-dimensional space Ri as [ollows:
La(t@) = Cyt||@f|. By the Hahn-Banach theorem and the continuity of &, Ly can be extended
on the whole space H into a continuous linear functional L), such that L {w) < b{w) for
every w € H. Define

Kw) = sup Li(w).
uel
Clearly E < b on H; moreover, 3(12) > Cy||gf| on H, and so b is coercive on H. It remains

to see that b is Lipschitz continuous on H. The continuity of b implies that the linear
functionals Li, & € H, remain bounded, say ||L}]| £ M. Given v,w € H and ¢ > 0, take

i€ ﬁ such that b(v) - e < Li(v). Adding and substracting Li(w) and letting ¢ — 0, one
gets b(v) — b(w) € Milv - w]|, which yields the conclusion.
Remark 4. if )

b(w) - b(u)| < C

for some constant C and alt u € H, then the coercivity requirement on b in the above results
is equivalent to an analogous requirement on b.

3. Applications to problem (P). As an immediate consequence of Remark 2, Corollary 1
and Remark 4, we have the following result (which could also be deduced from the arguments

in [8]).

Theorem 2. Assume that

lim ] Gz, ré1(2)) dz = +. (10)
n

Ir}—~eo

If moreover there exists a Caratheodory function a‘(a:,u) which is either convex in u or
Lipschitzian in u with a Lipschitz constant independent of z, and which satisfies

|G(z,u) - G(z,u)} < e{z)
for some function ¢(z) € L'(S1), then problem {P) has a solution.

Theorem 2 is an application of Theorem 1 with the choice 8 = 1. The foliowing result
deals with a case where g € [1,2[.

g

g
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Theorem 3. Let 0 < p < 2 and c(z) € L) (with s = Nf2ifN 23,s>1if ¥ =2and
s = Lif N =1) be such that
llirilinl'G(:,u)HuP’ >elz) (11}
LY > <

uniformily for almost every £ € . If
/ e(z)(z)? dz > 0, (1)
n

then problem (1) has a solution.

Proofl: Fix ¢ > 0 as {ollows: ]
€< / c(:}m(r)”d:(/ di ()" dz) "
] n
There exists &, E[L(ﬂ] such that
Gz, u) > (e(z) - €)|ul]’ — k(z).
Suppose first 1 < p < 2. Set in this case

() - ]ﬂ[(c(zwe)au(x)v—ke(xndz.

Then
B (u)ed < j le(z) = elpiu(@)P [u(z)] = < CllulP~oll,
1]

for a certain € > 0 and every v € H}, so that {|[5'()]| < Cllu|P~*. This implies (2) with
3 = p, as was observed in Remark 1. Moreover

bréy) 2 I ]ﬂ(a(z) -~ () dx — [lkellg-

By the choice of ¢, lim .o ﬂ(rqbl /|7|* > 6, and consequently (4) is verified. So Theorem
1 with @ = p implies the result in this case.
Suppose now 0 < p < 1. Define G(:: u) as follows:
. (c(z) ~ )P = e(2) - ol ~ ku(x)  if[ul 21
Glz,u} = .
{ (e(z) — €) — |e(z) — €| — ke(z) if fu] € 1.

Then G(z u) is a Caratheodory function, which is Lipschitz continuous in u, with a Lipschitz
constant equal to |e{z) — ¢|. Moreover, & < G, and defining Hu) = fa Gz, ulz))dz, one
has b is Lipschitz continuous and

birgn) > L[(c(z) — &)|ren ()P — 2elz) — €] — k(z)]dz

> |r|PL(c<x) — di(e)Pdz - 2} - elles - Rl ~

So, b{réy) — 400 as |r| — oo, and the conclusion follows from Theorem 1 with 8 = 1. /l./

A result analogous to Theorem 3 for 1 < p < 2 was obtained in {2, 3|. The limiting case
p = 0 will be considered at the end of this section.

As can be seen from Example 1 given in the Introduction, Theorem 3 is not true when
p = 2. I this case one has to reinforce condition (12). This is done in the following theorem.
(The lact that the condition on c{z) below implies {12) with p = 2 follows easily from the
variational characterization of the first eigenvalue of an elliptic operator.)

I~
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Theorem 4. Let ¢{z) he such that

llinlninrZ;G(:c,u)/u2 > e(x) (1

uniformly for almost every r € @, with ¢ € LN Q) if N > 1, ¢ € L7} for some
#>1HN =2 ce LY{Q)if N = 1. Suppose that the first eigenvalue of the operator
Lu = —Au — Aju+ o Ju, with Dirichlet boundary conditions, is positive. Then problem
{I) has a solution.

Proof: Let u; be the first eigenvalue of L. Problem (P) can then be written as
-~ Lu+ mu=m(z u),

where miz,u} = g(z,u) + {g1 — o(z))u. Denoting by M the primitive of m with respect to
u, we have

liminf 2M(z,u)/u? > i,
ju]—~aa
uniformly for almost every = € 1. So, there is a k € L!(£2) such that
M{z,u) > (g /4)u? — k(z). (14}

Let us now decompose H§ according to the eigenfunctions of L (instead of those of —A).
We set H to be the space spanned by the first eigenfunction of L and we define

av) = $i(Eu,wee - malulbal, 8w = [ Mz uz)de.

The result then follows from Corollary 1 since, by (14}, bis minorized by a convex continuous
functional which is coercive on H./|

As a consequence of Theorem 4, we have the following

Corollary 2. (Mawhin, Ward and Willem [10]). Let c € L>(2) be such that (13) holds
uniformly for almost every r € €. If e{z) > 0 for almost every £ € 12, with strict irequality
on a set of positive measure, then problem (P) has a solution.

Proof: Let L be the operator defined in Theorem 4 and let y and ¥, be the first eigenvalue
and the corresponding normalized eigenfunction of L. By the variational characterization
of the first eigenvalue of an elliptic operator and Poincaré’s inequality, we have:

” =[ (V9.1 = (0 = el=)]¥1?) >/ﬂ[|w,|2~mm|"] > 0.

lience we are in the situation of Theorem 4}

The following example, which is a variation of Example 1, shows that a function c(x}
may satisfy the assuinption of Theorem 4 without being nonnegative almost everywhere.
Thecrem 4 applies to problem (P) with g{z,u) = e(z}u + f(z), while Corollary 2 does not.

Example 2. Choose C > 0 such that the graphs of the two functions

u (r) = C'(e‘/i‘ —e™¥37), uy(z) = —sin(vB{z — 7))

s
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be tangent one to the other at a certain point £ € [0, ], We define
5 if 0,2
C(J:) = { l T€ [ I[
-3 ifzeli,n]

Then the first eigenvalue of the operator Lu = -u” — u 4 c{z)u on HY(0, 7} is | aud the
corresponding (positive) eigenflunction is

uy(x) ifz € [0,8],
wy(r) = . -
uz(z) if z € [Z,x].
We will now apply Theorem | with 3 possibly greater than 2 to a situation where ¢(z) in
(13) may be identically equal to zero. Let us first recall the following

Definition 1. Let £ be a measurable subset of R and v € [0,1]. We say that £ has a
positive v-density at +20 il
. omy(Enfer, )
mjnf ————<-2°

>0,
rtoo  my([er,7})
where my is the Lebesgue measure on R. An analogous definition can be given at —co.

The following two theorems provide some improvement to results in [5]. For 4 = 2 they
could also be derived from the arguments in [5].

Theorem 5. Assume that there exist tB 21, withgd <2*if N >3, and a Caratheodory
fupetion §: ¥ x R — R such that, if G(z,u) = I 9(x, 8)ds, one has G £ @ and

(a) hminfjy|—eo —li_ﬂl Z 0 uniformly for almost every z € {3, where 0 = min{3,2};
Jul ul
(b) theere exist a constant A and a function B(z) € LY (§2) such that
|9(z, w)| S At~ + B(z) (15)

for almost every z € §¥ and all u € R (here ¢' is the Hélder conjugate exponent of
the exponert g considered in the introduction; if N = 1, then ¢’ = 1);

(¢} there exists a full subset U C £ (i.e, N\ QU of zero mesure) and 7 > 0 such that
the set

Ey= [} (v € R:G(z,u) 2 nlul}
TERY
has a positive 0-density at both +oo and —o0.
Then problent (P) has a solution.

Theorem 6. The conclusion of Theorem 6 remains true if condition (c) is replaced by the
following:

(c'} there exist w,y, w_ open subsets of £ and corresponding full subsets Wy Cwy and
wl € w_ with the following property: for every v € [0, If there exists n > 0 such
that the set N

El = [ {ve R:G(z,u) > nuf*}
TEW,

has a positive v-density at +oo, and the set

(M (v € R:G(z,%) > gjul’}

€’
has a positive v-density at —oo

The proofs of these two theorems are based, as in {5], on the following lemma.
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Lemuna 1. (cf. [5]). Lec 52 be an vpen subset of RV with finite Lebesgue measure my{§2).
There exists a constant ¢ > 0 such that

m (B)Y

mp(uH(BY) 2 e T)T

for ary noncoastant Lipschitz continuous function u, with Lipschitz constant £(u), which
vanishes on dS) and any Borelian set B in the range of u. The same inequality holds for
functions u which do not necessarily vanish on #2 when 2 is an open parallelepiped.

Proof of Theorem 5: We will apply Theorem | with 3 as above. Condition (i) fullows
from (a). Set b{u) = Ja Gz, u(z))dz. From (15) one can easily deduce (2} (see Remark 1).

In order to prove (4), suppose by contradiction that there exists a sequence (r,) such that
|ral =+ co and

|im|r,.|-"j G(z,rnth (z)) dz < 0. (16)
a

Taking a subsequence if necessary, we have either r, — 400 or r, -+ —00. Let us consider
the first case (the secand case is treated similarly). By assumption (c), there exists a positive
nuwber 7 such that, for n sufficiently large,

m;(/E'n [0,rnmax ¢1]) > yrn max ¢;.

Setting u = ra¢y and B = E, N [0,ramax¢y], we have s~ 1(B) N Q' C {z € 0 :
G(z,rat1(z)) 2 77841(2)?} := Fy, and consequently, by Lemma 1,

T A N
ma(Fa) 2 ¢ (1-2—) =k>0
ral

for n sufficiently la-rge, where L is the Lipschitz constant of ¢,. Now, by (16),

Glaratr(2)) , (1a Gla,radi(z)) sy
m(a Bogey NVt [ @ ) <o,

and consequently, by Fatou’s Lemma together with (a) and the definition of F,,
qliminl'j #1(x)?dz < 0.
Fa

This leads to a contradiction since my(F,} > k for every n.

Proof of Theorem 6: The proof goes as that of Theorem 5, except for showing that there
exists k > 0 for which mn(F,) 2 k for every n. Assuming without loss of generality that
w4 is an open parallelepiped and setting

us=rdy, B= E:n[rni:'lf¢lxrn5up¢1]v
+ wy

we get here from Lemma 1 and Definition 1 with v = inf,, ¢i/sup,,, ¢1,

N
+ n - i [u
my{Fp) 2 ¢ (7 T(supy, $1 ~in ,¢’1)) =k>0
ral

ErE i

g
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for a certain positive constant 7% and n sufficiently large.
Remark 5. Reading carefully the above proofs, one easily sees that if G(z,u) = Gy(z,u) +
A(r)u with, say, k(z) € L?($2), and if Gy satisfies the assumptions of Theorem 5 or 6 with
4 > 1 {i.e, there exists {4y < Gy...}, then (P} is soivable,

Theorems 5 and 6 exhibit some kind of compromise between the growth condition on the
nonlinearity and the density condition. This goes in the line of the main idea behind our
abstract Theorem . The linear growth restriction on the nonlinearity imposed in [5] can
be partially relaxed in this way, as illustrated by the following
Example 3. Take 3 > 1, with 3 < 2* if N > 3, and define

Gz} = ul?(L - sinlog(1 + [u])) + A(z)u
where, say, h(z) € L?(51). Direct computatiou shows that Theorem 5 applies (with G=0)

To conclude, we show that theorem 3 still holds when p = 0. 1n this case the functional
f need not be coercive.

Theorem 7. Assume that there exists an integrable function ¢(z) such that

liminf G(z,u) > c(z) (17)
|uj=roe
uniformly for almost every = € 1, and

/ c(z}dz > 0.
n
Then problem (P) has a solution.

While this paper was being completed, we learned of a slightly more general result by
Ramos and Sanchez [11]. Their proof is based on the verification of the Palais-Smale con-
dition at the level of the infimum of f. The proof below gives some insight of the geometry
of the functional. It is based on the following simple lemma.

Lemma 2. Let H be a reflexive Banach space and f: H — R be a weakly lower semicon-
tinwcus and differentiable functional. Assume that there exists R > 0 such that for every u
with ||ul| = R, one has f{u) > f{0). Then f has a critical point.

Proof: The restriction of f to By = {u : [Ju] < R} attains its minimum at some point

2 € Ay By assumption, & must be in the interior of B, and is thus a local minimum for
f on H, hence a critical point.

Proofl of Theorem T: Suppose by contradiction that f has no critical point. Then by

Lemma 2 there exisls a sequence (u,) in H} such that |[ua[l = n and f(u,) < f(0}. By

(17), there exists d € L'(12) such that ((z,u) > d(z) for almost every z and all u. Since
£(0) 2 flua) 2 &llanll* - Yaliur,

[lina) is bounded. It follows that [}fi,}| — co and that for a subsequence, #n(z) — w(z} for

almost every r; this implies that |u,(z)} — oo almost everywhere. By Fatou's Lemma,

0 z liminf(f(u.) — FIO)) 2> liminf/ G(z,u,(z))dx
[}

> / liminf G(z,ua(2))dz > / c(z)dz > 0,
a 11}
which gives the contradiction.

Remark 8. The uniformity in {17} is used in the proof above only to guarantee the existence
of d € L'(12) such that G(x,u) > d(z) for almost every r and all u.

As an easy consequence of Theorem 7 and Remark 6, we have the following corollary
which generalizes in several ways a result of Berger {cf. {4, 8]).

. A
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Corollary 3. Assume that there exists d € L'{%) such that
Glz,u) > d(z)

for almost every r and all u, and a subset Qg of @ with positive nieasure such that for
almost every & € g,
Glz,u) = +o0 as |u| — o0,

Then problem () has a solution.

Corollary 3 can also be derived from Theorem 1 with 8 = 1 (which shows that the
corresponding functional is coercive), This is done by constructing a function Gz, u) with
the following properties: G is Caratheodory, G <G, é(z.u) is Lipschitz continuous in u
with a Lipschitz constant independent of £, é’(z,u) > d{z) and, for almost every r € Qy,
Gz, uy — + as Ju| — oc.

REFERENCES

{1] . Ahmad, A.C. Lazer, and J.L. Paul, Elementary critical poiat theory and perturbations of elliptic
buundary value problems at resonance, Indiana Univ. Math. J., 25 (1976}, 933-944
[2] A. Anape, Etude des valeurs propres et de la résonance pour I' opérateur p-Laplacien, Ph.D. thesis,
Univ. Bruxelles, 1988,
(3] A. Anane ard J.P. Gassez, Strongly nonlinear elliptic problems near resonance: a variationad approach,
to appear.
[1] M.5. Berger, “Nonlinearity and Functional Analysis”, Academic Press, New York, [977.
(5] D. de Figueiredo and J.P. Gossez, Nonresonance below the first eigenvalue for a semilinear elliptic
prablem, Math. Ann., 281 (1988}, 589-610.
[6] J.P. Gossez, Noeresonance near the first sigenvalue of a second order elliptic problem, in: Proc. ELAM,
Springer Lecture Notes, 1324, (1983), 97-104.
[7] A Hammerstein, Nichtlineare integralgleickungen nebst anwendungen, Acta Math., 54 (1930), E17-176.
{8] 1. Mawhin, Problémes de Dirichlet variationnels non linéaires, Séminaire Math. Sup. Univ. Montréal,
1047,
[9] J. Mawhin, Semi-coercive monotone vatiational prablems, Bull. Cl. Sci., Acad. Royale de Belgique 73
(L987), 118-130.
[30] 1. Mawhin, J.R. Ward and M. Willem, Variational methods and semilinear elliptic equations, Arch.
Rat. Mech. Anal., 95 (1986), 269-277.
[11] M. Ramos and L. Sanches, Varistioaad elliptic problems involving noncoercive functionals, preprint.



S1SSA (aler) ISAS

TR, BV RN S

Subharmonic Solutions for Second Order
Differential Equations

A. Fonda M. Ramos* M. Willem

. < . ] . Abstract. We provide sufficient conditions for the existence of
Subharmonic Solutions for Second Order cubbarmonic solutions with prescrbed minimal pesiod for s utonemos
Differential Equatlons second order differential equations. The proofs are based on Morsc theory.

A. Fonda M. Ramos * M Willem
1. Introduction and notations
A h.slrucl: Wc_hmvi.dc wl'l‘u{icm c.m-lditions‘ for the existence of We consider the syst of d order differential equations
sublarmonic solutions with prescribed minimal period for non autenomous

second order differential equations. The proofs are based on Morse theory. . x(t) + VG{tx(1) =0, (D

where G : R x RN — R is a continuous function, periodic with minimal
period T > 0 in its first variable and is such that its first and second
derivatives with respect to its second variable D G(t.x) and D>G(t.x) are
continuous ; we shall write VG(t,x) for D,G(t.x). When N =1 we write

equation (1) in the form

x() + g(tx(r) = 0, 2

Ref. S, 0.5.5.A. 132 M. .
(Nov. 1989) and, accorlingly, we define

G(t,x) = Jg(t.s) ds.

Our purpose is to study the problem of the existence of kT-periodic
solutions of (1) or (2) (k 2 1 is an integer) which are not T-periodic.

On leave from Faculdade de Ciéncias de Lisboa with a schotarship from
LN.I.C.
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These solutions will be found by applying Morse theory to the associated
funcional

kT . 2
o0 = [ 1EE- G )t

forx € H, = Hle (®;R™Y), the Sobolev space consisting of the kT-periodic
absolutely continuous fuctions o : R — RN whose first derivative is in
LX[0XT);R™), equipped with the usual inner product

kT

J [ (x(0),y(0) + (x@®),5(1) ] dt.

Here (...) stands for the euclidean inner product in R™ and 11 = (.,)}/2.
Identifying RN with the space of constant functions we may write
H, = RN H, (orthogonal decomposition) and, for each x € Hy ,

(=x+%X (),
kT

kT
where x = E!—r— x(t)dt, so that J X(0dt = 0. We will also consider the

Banach space C([O.T];RN) of continuous functions x : [0,T] — rN
equipped with the norm ixll = cun tx(t)l. We will denote by ILI,the

usual L2- norm.

It is weill known that under our regularity aséumptions the set of kT-
periodic solutions of (1) coincide with the set of critical points of ¢,.
Moreover, @, isa C?2 functional and thpk(x) is a Fredholm operator, for
eachx € H,.

It is clear that a kT-periodic solution of (1), even if it is not T-
periodic, needs not have minimal period kT, However, if for example k
is a prime number and the property

(H,}) if z(t) is a periodic function with minimal period qT,

0 q
q rational, and VG(Q1,z(t)) is a periodic function with minimal
period T, then q is necessarily an integer

holds, then any kT-periodic solution of (1) which is not T-periodic must
have minimal period kT (see {11]) ; these are called subharmonic sotutions
of (1). For example, if G(t,x) = a(t) G(x) or G(t,x) = G(x) + (h(1),x),
where a(t) > 0 and h(t) have minimal period T, then (HO) holds. Our
main results (theorems 1 and 2) state that under certain conditions upon
the function G(t,x) there exist kT-periodic solutions which are not T-
periodic, for every k sufficiently large ; under the additional assumption
(HO) this provides subharmonics for (1) with minimal period kT, for
every k prime and large.

The typical case we consider is the convex subquadratic case (see
theorems 3 and 4) ; this was studied in [11]. [17] by the use of a Zp—index
theory (in [17] the superquadratic case is also considered). In [17] it is
assumed that (Ho) holds, G(t,.) is convex foreveryt e R, G 20,
G(t,0) = 0 and that there exist positive constants 2,,a,,a;,2,,0,1 with
1 <o <sp<2,such that

: a, Ix*-a, <G(tx)Say x +a,
forevery (tx)e R x RN, However the examples given in section 3 show
that the main ideas contained in theorems 1 and 2 may apply to other
situations where neither convexity nor subquadratic growth hold. We
also note that the periodic case (i.e., G(t,x+1) = G(1,x) for some 1> 0)
was treated in [6] using some ideas developed in this paper.

The paper is organized as follows : in section 2 we recall some
definitions and theorems for the estimate of the Morse index of critical
points at critical levels of inf-sup type and then prove our main abstract
result. In section 3 we apply the ideas of section 2 to equations (1) and

(2) in several different situations.



2. A general result

We start by recalling the following definitions : let X be a real
Hilbert space with inner product <.,.>and ¢ : X = R be a C? function.
We let chp(x) denote the unique bounded self-adjoint operator in X such
that < D2<p(x)y,z > = @"(xXyXz) for every x,y,z € X and assume that
D2¢(x) is a Fredholm operator for every x € X. Let X, be a critical
point of ¢ ; we define the Morse index [augmented Morse lndcx] m (x
[m (xo)] of x,, as the supremum of the dimensions of the vector subspaces
of X over which chp(xo) is neganve definite (semi-negative definite).
We also define the nullity v'p(xo) mv(xo) mv(xo) : Xg iz called non-
degenerate if vw(xo) =0.

When applied to the functional Py: k 2 1, defined in section 1 we
simply write my (xq), m(x),v, (xo) ; in this case we can use the following
alternative (equivalent) approach : for every o € St= {ze C:kl=1}
and every kT-periodic solution x(t) of (1) define J(kT,0.x) [J*(kT,0.x)] as
the number of negative [non positive] real numbers A, counted with their
multipiicity, for which there exists a nontrivial solution of the problem

V') + OIG(ER®) + 1) v()) = 0
v{t+kT)=0cv().

Then mk(x) J(KT,1,x) and mk(x) J*(kT,1,x) ; notice that v, (x) S 2N,
Moreover the function J(kT,.,.) : s! x H — N is lower semi-continuous.

(see [1]).

Lemma 1. Let x(t) be a T-periodic. (hence kT -periodic) solution of (1)

such that m,(x)2 1. Then
lim my (x) = + eo.
koo

Proof . Consider the eigenvalue problem
V() + (Di G{tx(®) + 2) v(D) =0 3
v(t+kT) =vit). @)

By a resuli of Bott [2] there exists a non trivial solution of (3), (4) if and
only if there exists a nontrivial solution v(t) of (3) verifying

v(t+ T) = o v(1) )]

for some o e S!, 0k =1 (sec the proof of Proposition 2.1 (iv) in [1D).
Besides, one has J (T ©
m(x)= I J(T.0x
T ok

Assume m,(x) 2 1. Then also J(T,0,x) 2 1 for6 € S and lo - 1l <€ (for
small € > 0). Now, given M € N , choose kg 2 M such that
1e2%/k0 _ 11 s ¢ for every j € (1....M}. Then, lf k = k; we have
J(T.e2%k x) > 1, je (1,..M}. From (6) we get m (x) > M and this
proves the lemma. ]

Remark 1. Let C be a compact subset of H, consisting of critical
points of ? such that ml(x) 2 1 forevery x € C. Then also J (T,5,x) 21

forevery x € C,lo - 11Se, 6 € S, if e is small enough. The preceding
argument then shows that mk(x) — + o as k — e, uniformly in

xe C.

Lemma 2. Assume N =1 and let x(t) be a T-periodic solution of (2)
such that m,(x) =0. Then

mk(x) =0 for every k 21
and either v (x)=0 for every k21 or vi(x) =1 for every k2 1.
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Proof . Denote by lk(x) the first eigenvalue of (3), (4). It is clear that
lk(x) < ll(x) for every k 2 1 ; but from the theory of Hill's equation (see
[8]) one knows that situation {3), (5) cannot occur when A < ll(x) (in fact
all Flogquet multipliers o of (3), (5) belong to ]0,4ee[ \ {1} if
A< ll(x)). Hence we deduce that
A (x) = A (x)

for every k 2 1. Now, from the very definition of the Morse index we
have m,(x) = 0 if and only if ll(x) 2 0 and so we have m, (x) = 0 for
everykz21. If ll(x) =0 then v, (x) = 1 for every k 2 1 since 0 is the
first eigenvalue, which is simple. If otherwise 11 (x) > 0, then vk(x) =0
foreveryk 2 1. n

Next we recall two results which provide estimates for the Morse
index of some class of critical points. Given a Hilbert space X and a c?
function ¢ : X - R we shall say that ¢ verifies the Palais-Smale
condition (in short (PS) condition) over X if any sequence (xn) in X such
that (¢(x )) is bounded and Vo(x » 20 has a convergent subsequence in
X. Foreach R > 0 and x € X we denote by BR(x) the open ball centered
at x with radius R and by SR(K) its boundary. Also, we assume that
qu)(x) is a Fredholm operator for every critical point x of ¢.

Lemma 3. (Mountain Pass theorem) Let @ be as above, assume thai ¢
satisfies the (P8) condition over X and has only isolated critical points.
Suppose that there exist R > 0and x,x, € X such that Ix0 -xfI>R
and
max {@(xp).9(x;) } < inf ¢. 7

Sgr(xp)
Then there exists a critical point x of @ such that x # X and

*

mq’(x) <1< m(p(x) .

(For a proof see [91).

Remark 2. Let us recall that condition (7) holds if x is an isolated
local minimum of ¢, provided ¢ satisfies the (PS) condition and
¢u ) = - oo for some unbounded sequence (u n) in X (see [3,Theorem

5.100) .

Lemma 4 (Saddle Point Theorem). Let ¢ be as above, assume that ¢

satisfies the (PS) condition over X and has only isolated critical points.
Let X=X,® X,, X, and X, being closed subspaces of X with

dim X, =d, 1 €£d < o0 and assume that for some R > 0 one has

SR(%I ltp < gng P (8)

Then there exists a critical point x of ¢ such that
[ ]
mv(x) <ds m'P(x) .
(See [7] or [9D).

From this we can deduce the following

Lemma 5. Assume N = 1 and that for some k > 1 the functional ¢,
associated to equation (2) satisfies the (PS) condition over Hk and the
geometric assumption (8) of lemma 4 [resp : (1) of lemma 3 ). Let d
be as in lemma 4 [resp : d=1if (T) holds 1. Assume moreover that the
(non empty) set Z of critical points of @ is compact in H, and that, for

every x € Z, either
mk(x) zd+1 )]

or .
m, (x) = 0= rnk(x) . (10}

Then equation (2) has a kT-periodic solution which is not T-periodic.

Proof . Let Z, and Z, denote the subsets of Z whose points verify (10)
and (9) respectively. From our hypothesis, Z,, is finite and Z, is compact.
Assume by contradiction that (2) has only T-periodic solutions. A



compactness and continuity argument shows that we can fix positive
constants o,[} such that
x € Zg, x - 2 < a = (DX, (hh) 2 B b
for every h € H, and
x€ Z,lx- A5 0= (Dl (2)hh) < - B hiZ
foreveryhe E, where E, is some finite dimensional subspace of H_ with

dim Ex 2 d + 1. Here (.,.) stands for the inner product in Hk'

Consider the situation (7), take xo.xl,R as in lemma 3 and choose
. 1 .
0 <&<min {B/2, 3 (max {,(x )y (x))] - Sllal(lfo) o).

According to a perturbation theorem of [10], we can choose a C2
functional y such that

. \y satisfies the (PS) condition over H:

-y has only non degenerate critical points (in particular, they are
isolated) ;

- Y¥(z) = ¢(z) whenever dist (z,.Z) = o2 ;

. ziugk llo (2) - y(@) + Vg (2) - Vq.t(z)lHk +

+ Ingpk(z) - D21|;(z)ll L(Hk)] <E.

It follows from our choice of £ that

max {y(x,),y(x,)) < Slill(lf"o) v,

and then from lemma 3 we can take a critical point z of ¥ with Morse
index one. Now take x € Z such that Iz - xil = dist (zZ) < a. Then
either

(D?y(zhh) 2 (B/2) hi?
forevery h e H (fxe Zo) or

(D*y(2h.h) < - (B/2) IhP
for every h € E (if x € Z)). Since dim E 2d+122wegeta

contradiction in both cases.

Finally, if situation (8) holds, we proceed as before by choosing
. 1..
O<e<min {B/2, = (infe, - su )}
(2.3 2 Px sR(o)?\xl i

where R, X+ X, are as in lemma 4. [

Now we can state our main general results.

Theorem 1. Ler N = 1, consider the functional ¢, &k 2 1) associated
to equation (2) and assume that @ satisfies the (PS) condition over Hy
Jor everyk 2 1 and either

(a) for every k2 I, O, satisfies the geometric assumption (7) of

lemma 3 ;
or _
(b} for every k21, @, satisfies the geometric assumption (8) of

lemma 4.
Assume moreover that the (non empty) set Z of critical points of @, is
compact and has the following property :

(H) if xe Zand m,(x) =0, then vl(x)_=0.

Then there exists k() € M such that for every k 2 ko equation (2) has a
kT-periodic solution which is not T-periodic.

Proof . LetZy=(xe Z:m (x) = 0) and Z, = Z\Z,. By (W), 7, is
finite and Z; is compact. Hence, by lemma 2, we may fix kg, € N such that
(9) holds for everyx € Z and k 2 k; (see Remark 1} and (10) holds for
every x € Z,. Then lemma 5 can be applied. ]

s
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Remark 3. In case situation (b) holds with d 2 2 and Z, Zl are both
compact (hence Z; is also compact), we can drop assumption (H) in
theorem | since it follows from lemma 2 that m;(x) < dforany x e ZO,

k 2 1 and then the above arguments apply.

Using the same arguments together with lemma 1, one can prove the
following result for system (1), with N 2 1.

Theorem 2. Assume that the functional ¢, (k 2 1), associated to system
(1), satisfies the (PS) condition over H, for every k 2 1 and that either

situation (a) or (b) of theorem | hold. Assume moreover that Z, the
(nonempty) set of critical points of P, . is compact and

{H) m,(x)21 for every x e Z.

Then there exists ko € N such that for every k2 ko equation (1) has a

kT-periodic solution which is not T-periodic.

Proof . Simply note that now Z = 21' use remark 1 and proceed as in

lemma 3. =

Remark 4. It is easily seen that Z is compact in H, if and only if Z is
bounded in C((0,T} : RN).

Next we give a sufficient condition for (H') in theorem 2 to hold.
Lemma 6. Assume that

(H") G(t,.) is convex, for every te [0,T], and there are no T-
periodic solutions x(t) of (1) such that DKG(t,x(t)) =0.

Then ml(x) 2 | for any T-periodic solution x(O) of (1).

Proof . Let x € Z and denote by A, (x) the first eigenvalue of (3), (4) with
k=1, Itis well known that
T
A (x) = min IJ [I)'r(t)l2 - (DiG(t.x(t))y(t).y(t))]dt ty e Hj iyl =t}

Taking constant functions y(t) =y € RN we get l](x) < 0; and in fact
?Ll(x) < 0 since otherwise DiG(t,x(t)) = 0, which contradicts (H™). But
ll(x) < 0 means precisely that m,(x) 2 1 and we are done. [ |

Remark 5. It is clear Lhat (H™") holds if DiG(t,.) is positive definite
for every t € [0,T). Also, if an a priori bound Ixll_ < R forx € Z is
known, we only require the strict convexity for G(t,.) on the ball B (0)
of RN,

3. Applications

In this section we apply the above theorems to a few special cases of
equations (1) and (2).

Theorem 3. Consider equation (1) with N 2 1, assume that G(1,x)
satisfies (H") and

(i) there exists a positive constant K such that
VGa.x) sK
for every (t,x) e R X RN

T
(i) lim J G(tx) dt = + oo.
Ixl— oo

Then the conclusion of Theorem 2 holds true.
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Proof . For every k 2 1 write H = RN @ ﬁk {see section 1). From (1)
{resp. (ii)) it follows that 9 (resp : - (pk) is coercive in Hk (resp. :
ERN) ; thus we are in situation (b) of theorem 2. In order to verify the
(PS) condition, let (x ) < H, be such that

O NG
|Oj[ f— - Gltx (M) 1 drIS M (11)
kT

IJ [x (¥ - (VG(Lx ())y(t)] delse Ylﬂk (12)
foreveryn2>1,ye H ,where M, e >0ande — 0. Taking y =X _in

(12) and using (i) we get that (ix nIz) is bounded. Then (Ili'nlu) and, from
kT
(1), (IJ G(t.x n(l))dl [) are also bounded. From the convexity assumption

we derive

X
G (t,-2) S T OEx, (1) + 56t~ K, 0) 13)

kT x
50 that (J G, 7“) dt) is bounded and then from (ii), (lfnl) is bounded.

Hence (ix nIlHk) is bounded and from classical arguments we can find a

convergent subsequence (see e.g. [13]).
To end the proof it remains to show that any sequence (x,) of T-periodic
functions such that

X, + VG(tx () =0 (14)
is bounded in H,. Multiplying (14) by 'in(t) and using (i) we get (Ib'(nﬂz)

bounded. Being G convex, one has the inequality
G(ty) < G@LO) + (VO(Ly)y) for (Ly) e R xRN,

and from (13) and (14) we get

T X T
JICIC %" )dt < %Qj [ 1% ©F + GtO) + GE- X () Jdt.  (I5)

The result then follows as before, m

Theorem 4. Consider equation (2), assume that G(t,x) satisfies (H"),
(ii) and
G(t,x

(tii) lim
Ixlee  x

=0 uniformly in ;
(iv) Ix}wi'r’n“ sup gﬂx'—"ls M< (%_I’,t—)2 uniformly in t.
Then the conclusion of theorem I holds true.

Proof . Writing Hk =R & ﬁk' conditions (ii) and (iii) show that we are
again in situation (b} of theorem 1. We only sketch the proof of the
Palais-Smale condition which combines the arguments in [5] and [14].
Consider (11) and (12} above {where VG(t,x) = g(t,x)). From (12),
taking y = 1, we get

kT

JIECKOEEAY - (16)
We claim that

oJin_ Ix (sc (17

for some constant ¢ > 0. If not then, passing to a subsequence if
necessary, we would have min Ix n(t)l — + oo, Since (H") implies that the

function sign(x)g(t,x) is bounded from below, we get from (16} that
kT
(0[ lg(t,x n(t)l di) is bounded (see[5]). Then from (12), taking y = Sin(t),

kT
we get that (Iliullz) is bounded and, from (11), (J G(t.xn(t))dt) is also

e

i

PO

v%r«"? S

— =



bounded. Being (Ili'nllu) bounded, using (13) and (ii) we reach a
contradiction.

Hence (17} holds. Let us prove now that(ix nl) is bounded. If not, for
a subsequence , ISE“I — + oo and we get from (11) and (iii) that
i'n(t)li'n—->0 in H
(see {14]). But then Ix () =Ix |l + X (t) /X | = + oo uniformly in t and

this contradicts (17). Hence (x D is bounded and from (11) and (iii)
(lli n'Z) is also bounded.

Finally, let (x ) be a sequence of T-periodic solutions of (2). A

similar argument show that (17) holds (use (15)). Now suppose that
lix W= lIx Il2 + Iix nI2 + Ih'ill2 —3 + oo (for some subsequence) and let

z ()=

Illx R ‘We proceed as in [16] and use (iv) to write

g(t.x) = g,(tx).x + g4(t,x) (18)
wherc 8 are functions such that Igo(t xS ¢y and - ¢y < gl(t x) < Cq
< (—) for every (t,x) € ®2 and some positive constants c,i=12, 3
(notice that, by (H"), g(t.x) / x is bounded below for Il large). Dividing
both members of (14) by lix ¥, taking limits and using (18) we see that
z (t) — z{t) in c! ([OZT] ;R), z # 0 and for some function o(t) such that -

ca) s Cy < ( ) we have
() + o) () = 0
2(0) - z(T) = 0 = z(0) - Z(T)
From Sturm-Liouville theory it follows that z(t) = 0 for every t € {0,T].

Then zn(t) has constant sign for n large enough and since
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x,(t) = IIIxnIII z (1) we have a contradiction with (17). This shows that
(Illxnlll} is bounded and ends the proof of the theorem. |

Example 1. Theorem 3 applies to g(t,x) = arctg x - h(t) where h(t) is

T
a continuous T-periodic function such that - Tit'< %‘J h{t)dt < 125 .

Example 2. Theorem 4 applies to g(t,x) = (l—ﬂ’%)—m- + h{t) for any

continuous T-periodic function.

Remark 6 : Let g{tx) = xz)m = + h(t), where h(t) is any

continnous T-periodic functi(oln‘.:x Here alll :ssumpnons of theorem 4 are
satisfied except for the convexity hypothesis (H"). Nevertheless we still
have a priori bounds for the T-periodic solutions of (2) and, for every k
21,9, satisfies the (PS) condition over Hk ; therefore theorem 1 can be
applied whenever h(t) is such that condition (H) holds. Note that, for any
h(t), equation (2) has a T-periodic solution (this follows readily from the
Saddle Point theorem) and thus condition (H) is of generic type with
respect to h(t) (see [10]).

Rematk 7. It is proved in [18, example 2] by means of phase-plane
methods that equation (2) has (at least) a T-periodic solution if g(t,x) =

xl + h(t) , where h(t) is a continuous T—peﬁodic function. This follows
+x

also from the Saddle Point theorem and again we may apply Theorem 1
whenever condition (H) holds (notice also that (H) holds for this case).

This remark applies also to g(t.,x) = ITXT + h(t) provided
X

T
0] hit) dt =



We now study an Ambrosetti-Prodi type situation.

Theorem 5. Consider the following equation

O+ gta) =5, (P),
where s€ R is a parameter,ge C (Rz;l?) is T-periodic in its first
variable and verifies the regularity assumptions of section 1. Suppose that

(1) lim g(t.x) = + e uniformly in t;
x|+
(i) g, (1,.) is swricily increasing for each te R ;
-ae - L 2E 2 -
(in) th gx(t,x) SA< (?) for every te R ;
(iv) IGLXI <K, e*+ K, for some positive constants K, K, and

every te R, x<0.
Then there exists a constant $o € R such that for every s 2 Sy we can

find k(s) € N such that (P)s has a kT-periodic solution which is not T-
periodic, for any k 2 k(s).

Proof . Without loss of generality we may assume that g{t.x) is positive,
For the sake of clarity we divide the proof into several steps.

step 1. It is known that under the sole assumption (i) there exists 52
{2‘% £(t,0) such that {P), has zero, one or two T-periodic solutions
according to whether 5 < $1»8$=5 Ors>s; , respectively (see {4]).
Moreover, assumptions (ii) and (iii) imply that there are precisely one or
two solutions fors = §) Of 8 > 5, respectively and, in the latter case, they
are both non degenerate ; th%s was proved in [12] for the dissipative
Duffing equation with A < (T-E) » but it is immediately seen from the proof

given there that this still holds true for our problem. In order to calculate
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Morse indexes we shall obtain those solutiens (for s sutficiently large) by
using variational methods applied to the functional ’
kT . 2
o0 = [ (PG - Gleaw) + s | . :
XeE Hk’ as in [15].
Step 2 (minimization). For a given s > Kl (see (iv)) consider the closed
convex subsetof H, : .,?;
C=(xe H ki < 2T, <0). X
It is easily seen that @, is coercive in C and, since it is a weakly lower
semi continuous functional, we can find u € C such that :
¢, @) < 9,(x) 19
for every x € C. From (iv) we can estimate 4
¢,(w) s min {¢@),a e ]-=0]}
< TK, + T min {K, e?+sazae ]-00]}
= -log =) . 20
TK, +Ts (1 -log Kl) (20) :
On the other hand, it follows from (iii) that t
X 13
G(t,x) < A] 7+ A |
2 L
for every (1,x) € l!z, where A2 »>0,0< A] < (?n)z. and this implies that )
@, is bounded below (in fact coercive) on H by a constant which does not \
depend on s. From (20) we can thus find s, large enough so that for ’
§ 2 s;; the function u = u is such that
uz0. @n ,
From now on we fix s such that (21) holds. Choose x = u t &, £ small, in 'h
(19) and take limils to obtain 3

T
J glt,u(t))dt = sT.



Now choose x = (I-e) i + u in (19}, £ > 0 small, and take limits to get
T T
Ju P dt g J 8@ o de < T, <57 g,

so that lall, < sT¥2 « 25T, Hence we conclude that u belongs to the
interior of C and thus is an isolated local minimum for P

Step 3 (Mountain Pass Theorem). Let u be an isolated local minimum of
@,. It is easily seen that ¢, satisfies the (PS) condition over Hl :

moreover,

tpl(an) -3 - co whenever (an) € R, a —+oo
(this facts remain true for P> k 2 1). Then, according to lemma 3 (see
remark 2) we can find our second T-periodic solution v of (l’)s and we

have
ml(u) =0 = vl(u),

m(v)=1, Vl(v) =Q.
According to lemmas 1 and 2 we can fix k(s) so large that

mk(u) =0= vk(u), (22)

mk(v) >2 (23)
for any k = k(s).
Step 4. Take any k 2 k(s) and assume by contradiction that u,v are the
only kT-periodic solutions of (P), (in particular they are isolated in H).
For each n 2 | consider the critical groups Cn((pk,u) (see {9]). Since
vk(u) = 0 we have

dim Cn((pk’u) = 5n.rnk(u) ’

where & stands for the Kronecker symbol ([9; corollary 8.31). From (22)
we get Co(cpk,u) # 0 and by [9, theorem 8.6] u is a local minimum for (9
But then we can apply lemma 3 10 ¢, (see step 3) in order to get a second
solution - which is precisely v - such that m, (v) € 1. This contradicts
{23) and ends the proof of the theorem. n

1o

Example 3. Let a(t), h(t) be continuous functions with minimal
2
period T, a(t) > 0, and A be a positive constant with A < (%%5) . Then if

T
,}.—Oj h(t) dt is sufficiently large, equation

x"(t) + a(t) e @ + Ax(t) = h(t)

admits infinitely many subharmonics with minimal period kT, k prime.
Our last theorem extends partially corollary 8 in [18].

Theorem 6. Consider equation (2) where g(1,x) is T-periodic in its Jfirst

variable and satisfies the regularity assumptions of section 1. Suppose that
g(t,x) is bounded below, g;(t,x) >0 and there exists a positive constant r

such that
T

sign(x) J g(tx) dt > 0 (24)

for every t€ R,Ixl 2r\. Then the conclusion of theorem 1 holds true .

Proof . Again, we divide the proof in several steps and use an argument
similar to the one in theorem 5.

Step 1 (a priori bounds). For a given k 2 1 let x(t) be 2 T = kT-periodic
T
solution of (2) and m > 0 be such that - m < min g. Since d[ g(tx() dt
R
=0, we have Ix(t)} <r, for some t; € {0,7]. Multiplying (2) by X(t) we
get
L, st 2m=c, (25)

Hence we have the a priori bound

Ixll < r,+ ‘rzm =r
[- -]

for every T-periodic solution of (2). Next we make the following remark:
if f(t,x) is a function such that f(r,x) = glLr)) for every (1,x) in



R x [r1,+°-°[ and f 2 - m in R , then we still have the bound (25) and
min x{1) < T for every t-periodic solution x(t) of

x"(t) + fit,x()) =0 . {26)
Since the set Z of T-periodic solutions of (2) is a priori bounded and
ml(x) > 1 for every x € Z, we can choose lc0 € N such that

my (x) 2 2

for every x € Z and k 2 k, (see remark 1 and remark 4). In the sequel
we fix k 2 k, and assume by contradiction that all kT-periodic solutions
of (2) are T-periodic. We shall denote T = kT.

Step 2 (truncation). Let A > 0 be a small positive number to be chosen
below and consider the function

g, (t.r)(x-r) + g(t,r) x2r
gitx) -r€xsr
Bl(t.x) -2r€x<r

Gl(t,-Zr) - A(x+2r) XS -2r

f(t,x) =

where E)JL is such that f € C(li!z;l!) is T-periodic in its first variable, its

first derivative with respect to its second variable is continuous and
-mg Bl(t,x) < g(t,-1).

Now we claim that if

T
0<Ai<(ctyl(- J gt-ny dvy 27N

u(t) is a 1-periedic solution of (26) and u(tl) = max u(t) , then either
(a) u(tl) <-2r,

or
®) u(t)>-r,.

[ndeed, suppose by contradiction that - 2r < u(t)) < -r
made in step 1, we know that h‘illl2 < ¢ ; then we have

1+ By the remark
-t uw s, (28)
for every t € [0,T). But our choice of A implies that

J (8, (%) - A(x+2r)) dt < 0

T

for any - 2r - et < x St- 2r, so that we have oj f{,x) dt < 0 in

[-2r-¢ / 2. - rl]. Since J fit,u(t))dt = 0, we get a contradiction with

(28). This proves the claim.

Now (a) means that u(t) is the unique t-periodic (in fact, T-periodic)
solution of
u-Au() =0, (t,-2r) + A 2r, (29)

On the other hand if (b) holds, and according to the remark in step 1, we
have Jul _ < r and u(t) is a T-periodic solution of (2). Hence we conclude

that if u(t) is a T-periodic solution of (26) verifying a) then any other t-
periadic solution of (26) must be a solution of (2).

Step 3 (the modified problem). Setting F(t,x) = d[ f(t,x) ds, consider the
functional
Y.
Y= | [0 Fex ) a,

defined on Hy. Since the function f(1,x) is coercive we may proceed as in
step 2 in the proof of theorem 3 and choose

u=u)e C={x)e Hk:IiHZSZC,KSOI

S IS
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such that
Y(u) < ¥(x) foreveryx e C.

Now, denoting c(r) = 4r max {ig(t,x)},te R, -r< x < 0j, and
g= %OJT g(l,-r) dt < 0, we have
-Fix)€c(n) - x é(t.—r) + A Q}j%ﬁ
foreveryte R, x < - 2r, so that

Y(u) < min (¥(a):a e ]-s,0]}

< 1 lr) + T min {%(a+2r)2-_g'a:ae J-e=,0}}

-2
=tc)+1 (2r§-§x),

and this last expression tends to - e as A — 0. Since I, < 2¢ we may
choose A so small that {((27) holds and)

i=u, <-2r-2¢12 (30

In particular we have u < 0 and we can proceed as in step 2 of the proof
of theorem 5 in order to prove that u is a local minimum of ¥ and hence
a t-periodic solution of (26). Moreover from (30) we see that situation

(a) above holds and from (29) we get that u is non degenerate (in
particular, u is isolated in Hk).

Since we have found an isolated local minimum u for ¥ and, as it is
easily seen, 't satisfies the (PS) condition over H,, we have the geometric

setting of lemma 3. According to our previous remarks we have m.l,(u)
= ml:,(u) =0 and m.*,(v) 2 2 for every critical point v # uof ¥, It
follows from lemma 5 applied to ¥ that equation (26) admits a kT-

periodic solution v which is not T-periodic. Necessarily v #uand v is a
kT-periodic solution of (2), contrary to our assumption. |

Corollary. Consider equation
x(t) + g(x(t) = h(t) , (31)

where g e Cl(R;R) is bounded below, g'(x)> 0 and h(t) is a continuous
Sfunction with minimal period T. If
h e range (g) , (32)

equation (31) admits subharmonic solutions with minimal period kT, for
every k large and prime.

Remark 8. Let us notice that condition (32} is also necessary for the
existence of a subharmonic solution of (31). Moreover, setting m = min g

and being r, > 0 such that sign x (g(x)} - h) >0 forix!2 1, we have B\e a
priori bound
T
i, <r, +VT (2 J[h(t)l dt- Tm) =R

for every T-periodic solution of (31). According to remark 5 (see also
the proof given above) it is sufficient to assume a strict monotonicity on
the interval [-R,R] G R.

Example 4, In [18; example 3] it is shown that equation
x (1) + e = h(t) has infinitely many subharmonics provided that h(t) >

0. The above corollary asserts that it is sufficient to have h>0.
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