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Infinite Cup Length in Free Loop Spaces with an
Application to a Problem of the N-body Type.

E. Fadell* * and 5. Husseini ~

I INTRODUCTION

For 1-connected manifolds M with non-trivial, finitely generated cohomology, the frec
loop space AM has infinite (Ljusternik-Schnirelmann) category [FH and the proof does not
depend on the cup length in the cohomology of AM. Nevertheless, it is still useful to know
that over some fields. depending on Af, the cup length is infinite. We will show in this note.
that for spheres §™, AS™ has infinite cup length over Z; and for complex projective space
CP", ACP" has infinite cap length over ZZ,, where r divides n — 1. Incidentally. ACP™ has
only finite cup length over the rational field 'VS'. The first result will allow us to compute
the relative category 'l of the pair (AM,AN). where M is a wedge of spheres and NV &
~subwedge”. For our application, we will need to compute the category of a certain subspacs
of AS™ described as follows: Let ZZz = {1,¢} act on AS™ by the action (sq)(t) — —¢ft — 11,
0 <t < 1, where ¢ is considered 1—periodic. Let A;S™ denote the fixed point set under thi
action. A.S™ fibers over £™ but for m even. this fibration does not admit a section. which
is a requirement for the main tool in [FH . Nevertheless, we show the cup length of A; 5™
over Z, is infinite and hence the category of AnS™ is infinite. As an application of the:ze
results, it follows that the subspace A(N) of the Sobolev space W (REY)
to the free loops AFN{ka) on the N-th configuration space of R*. has infinite category.
Furthermore, if we let Aq(.N) denote the subspace of A(N) which is the fixed point set ol the
7Z-—action defined above, then Aq(N) also has infinite category. This result Is the kev 1o
proving a critical point theorem for the functional associated with a problem of the N-Lody
type, which improves a result of Coti-Zelati 'C, who minimizes the appropriate functiona.

correspending

to obtain a critica! point. In addition to yielding an unbounded sequence of critical values,
the theorem (see Section 3) allows a non-autonomous potential V' (g.t) which is C'* and T -
periodic in t.

* *Supported also by the Universitir Heidelberg, Mathematisches Institut und Institur fiir Angewundre
Mathemutik (SFB)
* Roth authors were supported in part by NSF under Grant No. DMS-R722205



2. Cup Length in Some Free Loop Spaces

We employ the following notation. I is the unit interval {0,1% M7 is the space of
maps from I to a space M; AM is the free loop space on M given by AM = {a & M’ :
a(0) = a(1)}; and Q(M) = Q(M, %), the space of based ioops, i.e. loops a = AM such that
a(0) = a(1) = » € M. If we consider the (Hurewicz) fibration.

(1) QM) — M L MxM
where g(a) = ({0}, (1)), then the diagonal map A: M — M x M induces the fibration.

(2) QM — AM 2 M

where p(a) = a(0) = a(1). We will also make use of the induced fibrations.
(3)

pM o, M opim B ML —
1 I i 2 ! !

"l _ o ' o
M O Ot MxM M —io MxM

where 1;{x) = (z.%},72(z) = (*.1) and PYM, P*M are contractible.

The Leray-Serre spectral sequences of (1}, {2}, p1 and pz will be denoted by {ET9.d),
(E”‘Q,E), ('EPa d'), ("EP9,d"}.

We consider first the case A = S™~ 1, m =+ 1 even. m > 1 and prove several femmas
under this assumption. If u is a generator of 'ETTY = Heyo (M), we define 2 € Hm (Q2M))
by d,, ., x=1u.

2.1 Lemma d, ., T=—u
Proof. This is a simpie calculation using the reverse map.
(4)
Py 2 P'M
ra hN S
M

where (va){t) = a(1 —t).- Then, vo = v|Q2M, has the property that v§(z) = —r and hence
&z = dvy(-z) = dy(-7) =

Comparing, the spectral sequences (SS) of ps and p, with that of ¢ we have:

. - =~1,0
2.2 Lemma. dp.q(z) =ux1-1Xuin Hm+i(smTl) = EnC
- 2m-2.0
We consider next the differential operator dm+1 : E:nn,.r]l'm — mr?_iz

i}

2.3 Lemma (a) dm+1((u x 1)z)) = —u x u
(b) dm=1 ({1 x u)z)) = uxu

La*]
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and the kernel of dp,_1 : Exill T Em’i*l"q is generated by {u x Uz~ (1« uirl
Proof: To prove (a) consider
dmos((ux)z) = (1) Huxi){u>i-1"u}= TR Y

(b) follows from a similar argument. Thus

cu Tt U XU

dm1 ({u x 1)z + (1 % u)z) =0

and an easy argument shows that the kernel of d7 1™ has (u x 1)z + (1 x u)z as generalor.

We now consider the digram:

(5)

M 2 M xA

The ZZ-cohomoloy of 15™+! has the form H™(S™)& H" (8% where

the first factor has generator r in dimension m and the second factor iz a divided polynonual

algebra with generators y1,y2.... ¥k, .- 1n dimensions 2km. Let y = y1. Recall that d is
-—={,2m

the differential in the $S for p, and z € Em_1 ye E .
2.4 Lemma d,,, - (x) =0, dp1(y) = 2uz

Proof. First observe that from Lemma 2.2
A1 (2) = dm1 A7 (1) = Adpa{z) = AT x1 - 1ru]=u—v=0

Since, M7 ~ M. in the SS for ¢, we may assume

m,m—1

dm-1(y) = {ux Nz + (1% u)r € E07

and hence
Ay () = dmei A7 (y) = A7dpan(y) = 2uz

95 Lemma Let 7 : QM —— AM, denote the inclusion map, where M =

Sm=1 as above. Then,

" HU(AM; Zy) —— HI(QM: 7)), ¢ > 0

is surjective.
4§

Proof. Consider the terms. E,‘nn“_l = H* (A} in the speciral sequence for
pover ZZ. Let yi denote one of the generators of the divided polynomial algcbra 117 (re=m=iy

Then, using induction,



dmet1(Vivk—1) = kdpos (yx) = (2ux)yi 1 + ¥ (2urye o) = k 2uzy;
therefore, dm1({yx) = 2uzys—1. Hence, over Zy, dpe1(yx) = 0. This is sufficient to verify

the lemma.

2 6 Theorem. If M = §™%1 m + 1 even, then as algebras,

HY(AS™ Y, Zy) = H (ST Zy) @z, H (AS™ 1 Zy)

Proof. This is immediate from the Leray-Hirsch theoremn and the fact that
i” is an isomorphism in dimensions which are multiplies of m.

The case case when M = S™%! with m + 1 odd is considerably easier.
H*(1S™*1) is the divided polynomial algebra on generators yi,..., Yk, and in the §§ for

p, dms1 Yk = 0, so that 7 is surjective over 77 as well as over ZZo.

2.7 Theorem. If M = S™%1 m + 1 odd, then as algebras over Z.

H(AS™) =~ H (S™" 1) @ H (2S™71)

2.8 Corollary If M = §™F!, m > 1, the cup length of H(AS™ 1 7L.)
ig infinite.

Proof. H™(AS™7 1, Z,) contains the divided polynomial algebra over Z,
on generators y;,yz,...,yk and calculating binomial coefficients med2 we find that the cup
product

y?'y4'y8-..y2k:yr, r :Qk-—l —2
is non-zero for all k£ > 1.

2.9 Remark. Corollary 2.8 implies that the category of AS™T Y m > 1l ds
infinite. However, the direct argument in [FH' is simpler. Nevertheless, we will need Coroliary
2 8 later on to compute a relative cup product. Our next example cannot be handled using

FH.
Let f denote any map [ : M — M and consider its graph 1 x f : A0 —

M x M. Let AsM denote the total space of the induced by the fibration ¢ as in the followiry
diagram:

M OM



An important case for us in the application to be given in Fection 3, is
AM = S§™ 1 m+ 1 even, and f the antipodal map. {If m — 1 is odd, f is homotopic to the
identity and AsM ~ AMf). Notice that in this case py does not admit a section which is why
FH! does not apply.

Let d denote the differential in the SS over Z for the fiber map py. The
analogue of Lemma 2.4 is:

—~

2.10 Lemma. dm+1(:ﬂ = 2u, gm+1(y) =0

Proof. sy (¢) = dmes F(2) = (12 f)° mﬂ():( fu 1= 1w =
2u. Furthermore,dmu() dmir [T (W) = (1x ) dmar(y) )(uxl ~(Ixu)z) =
vr —ur = 0.

ﬁ

2.11 Lemma. Let ¢ : QM — A;M, where M = S™m*1l 1 even. and
f the antpodal map. Then,

T Hq(AIAI,RQ) — HQ(QJ\{;ZZ/Q),Q 2 0
is surjective. Furthermore, over ZZ, the image of
T HT{AM) — H™(QA)

contains the divided polynomial algebra in H™ (1A}

Proof, It follows by induction that dy-1yx = 0 over ZZ where, as ahove,
the yx are generators of the polynomial algebra H*(1§*™~1). This observation suffices to
prove the lemma.

2.12 Corollary. A¢Af, where M = $m71 m > 1 has infinite cup leng'!
over ZZ and Z, and hence A¢M has infinite category.

2.13 Corollary H (AsM;7,) = H™(S™71 ;) € z. H{QS7 LT as
algebras.

Our next example is the computation on the cup length of ACP™. We Wil
make use of the fact that QCP™ has the same homotopy tvpe as S x (154771, Working over
7 and employing the diagrams (3), (4) and (5}, let z denote a generator of HYOCP" ) v a
generator of H*{CP"), and y;,¥z2... Yk, .- - the generators of the divided polynomial algebrs
in H™(QQCP") corresponding to H™(18*"71). Also let y; = y. to conform to some previou-
notation. We may assume that dj(z) = v in the SS for p;. Then, Lemmas 2.1 - 2.2 obta'n
with only notational adjustments and dy(z) = —u, da{z} = u x1 -1 xu, and d.{zr) = 0.
dg(u r) =0,k =1,...,n and the differential operators d are all trivial for 2 < 7 € 2n — 1.
At the level E,, , we have

ot T —n
Lo, =< >L)n4<ur>F =<y >,
{ = 0,....n, where <> indicates “generated by”

b



We will need the foliowing in the S5 for ¢ in (3).
2.14 Lemma. Let uy = u x 1 and ug = 1 x u in H"{CP" » CP"). Then,

in the $S for ¢ the element

n n—1 n—1 . n — prarnl
w=(ul+ul ug 4 ... Fuuy +ui)r € E;

is a dg cocycle, ie., da{w) = 0. w is a generator of kernel d; chosen so that dg, (y) = u

Therefore, in the SS for p in (5) we have don(y) = dop(y1) = (n+ Du"r.
1
Uas —

-

Proof. dow = (u? +uf Yug +... +ujul~t +uf)de(z) = (uf +ul”

cougul T 4 u)(ug —ug) = uf*l - 3t = 0.

On the other hand, if

(a1u] +agul Tuz + ...+ anuyul Tt + anag (uh){ur —uz) =0

we have, by equating coefficients, a; = @2 = ... = @nu; and w generates ker dy. Thus,
dry = = w since HQ"*I(M”) — 0 and w cannot survive. There is no loss of generality if we

stipulate that do(y)} = w. Finally, in the §§ for p. we have

a2ﬂ(y) = azngx(y) = A'azny = (n=1)u"r.

2.15 Lemma. On the S§ for p we have

don(yx) = (n+ 1u" Yk

Proof, We use induction on k.

d2n(yl 'ykfl) :-(n + 1}unka—1 + y1don¥k—1

(n+ Vulzysy + va(n = Dulzyes = (n 4 Duzyeoy ~ (k= ys-r

= k(n + l)u,”z:yk_l =k dgn(yk)

Hence, don(ye)} = (n + Duzye_

2.16 Corollary. If r is 2 prime which divides n — 1, then in the §S for
Hence, the inclusion map

p over ZZ, we have dy,(z) = 0 and dan(yx) = O for all & > 1.
i: QQCP™ — ACP™ induces surjections

" HY(ACP™, Z,) — HI(NCP™ Z,)

\

and hence, as algebras,

H (ACP™:Z,) =~ H' (CP™,Z,) € H (NCP™ Z,)

“n
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We need to extend some of these results to configuration spaces. First let
M = Fx(RF), the N-th configuration space of Euclidean k-space RE. Recall, that

Fn(R*) ={z1,...,2n) € (RM)Y 2, £ 7, for 123}

Also, the projection pp : FN(H{}‘) —— Fx_1(R*) given by pa(z1,...,7x) = (21, - TN-1)

is locally trivial with fiber RF — Ay, where Ay a set of (N — 1) points. In particular.
po s Fg(IRk) — R*, with fiber R* — 0.

Hence F3(R¥) ~ R* — 0 and we have for k¥ > 3

H(AFy(R¥); Zy) =~ H*(S* ™Y ZZy) 2 HT (5% 1. 7,)

so that A FyR* has infinite cup length over Z,. It is easy to see that pa admits a section
for N > 3. In fact we will produce an equivariant section which will be needed by the next
example.

2.17 Lemma. For N > 3, px : Fa(R*) — Fxn_1{R¥) admits a section ¢
with the property that o(—z) = —a(r).

Proof. Let
a=ol(r),.. ., Tx_1) =mina, -1,
T;‘j
Define
O 63
N = I_\-(:rl,...,.ryﬁl) = (1-———— )y | 70— | T2
. 2ro— 1), 2191y,

and set

U(Tlt'--’I,’\'—lj - (Il-- ..,T_J\'A.].IA\‘)

2.18 Theorem. AF,\-(ka) tas infinite cup length over Zo for k =~ 3, .- .
Proof. By the previous lemma Apx ! AF_\'(R“F) — AFN (TR"") admits 2

section for N > 3 and hence by induction the result follows.

We now consider the configuration space analogue of Corollary 2,12, V'¢
define A 4 Fn (R*) as a pull-back by the diagram

AAFN(:R‘C) —— 'F\(Rk)I
pAf . q
Fx(RY) 14 Fy(R¥) - Fx(RF)

where A(ry.....2xx8) = (=1, —zx). Thus. AAEFN{RT) is the space
of paths ¢ = {(q1,....q~) in Fx (f}?k) such that ¢;(1}) = —¢;{0). Then. the fibration

-

i



pN : FN (Rk) — FN_l(ka),J\' > 3 induces
Fa i AaFn(R") — AsFn_1(RF71).

P admits a section using the section o of Lemma 2.17. Tt is easy to identify A4 Fg(’LRk). un
to homotopy type, with A_,rSk"l of Corollary 2.12. Combining the remarks we obtain:

2.19 Theorem. For N > 2.k > 3, the cup length of A4 Fn (]Rk) is infinite.

- Qur final computation concerns the relative category of a certain pair
which can be estimated by considering H*(X; A) as a module over H*(X). In [BR;. Bahri
and Rabinowitz exploited a purely topological result that the free loop spaces AFg(IRk) and
AF, (IRk) were not of the same homotopy type to prove a theorem of the 3-body type concern-
ing the existence of an unbounded sequence of critical values without a symmetry condition
on the potential (see Section 3). This topological result is derived from a result of Vigué-
Poirier and Sullivan [VS! to the eflect that the rational Betti numbers of AFg(IR,k), k > 3,
were unbounded, while those of AF> (R*) were bounded. The following result (theorem) pro-
vides an alternative tool for the Bahri-Rabinowitz theorem and will, hopefully. play a role in
the case N > 3.

First we recall one of the definitions of relative category introduced in
F1, F2.

2.20 Definition Let (X, 4) be a topological pair. A categorical cover for
(X, A) of length n is an (n + 1)-tuple of open sets (Va.Vi,..., V) such that UV, > X. 1,
deforms in X to A relative to A, and V5.7 > 1. deforms in X to a point. cat{X, A) is the

minimum length of such categorical covers if such categorical covers exist. Otherwise. sel
cat(X, 4) = oc.

The next result is the analogue for cup length in this setting, using the
fact that over any commutative ring of coefficients, H* (X, A; R) is a module over H"(X:R).
Although, the result depends on coefficients we will not display it in the notation.

2.21 Proposition. {F1]. If there exist n elements uj,...,Ux in H"(X) of
positive dimension such that the product WUz ...U, is not in the annihilator of H-(X,A).
then cat(X, A) > n.

Now, let M = §; v ...V S, denote a wedge of spheres of dimension = 2
and M' a “subwedge” which we take to be Sy V...V Sk, k < m. We employ Proposition 2.21
and Corollary 2.8 to prove the following.

2.22 Theorem. cat(AM,AM') = cc.
Proof. We work with 72, coeflicients.

Consider the diagram



o —— HIAMAM'ZL HI(AM) T HIAMY) o

y

VY

~

H{AS,,)

where ¢* surjects because AAM' is a retract of AM and r~ injects, where r : AM — AS,, is

a retraction which takes AM’ to a point. Since H*(AS,,) has infinite cup length the result
follows.

2.23 Remark. In the Ljusternick-Schnirelmann method it is useful to know
that when the categroy of a space X is inifinite, there are compact subsets of arbitrarily high
category in X. When the cup length of X using singular cohomology is infinite over some
coefficient field, this is automatic [FH|. We are indebted to Luis Montejano for suggesling
the use of “infinite dimensional topology” to verify that when X is an ANR (metric) and has

infinite category, then X has compact subsets of arbitrarily high category. For examnple, if ¥
" is a Hilbert manifold modelled on a Hilbert space H, then by a result of D. Henderson 1 .
X = P » H, where P is a locally finite polyhedron. If X’ has infinite category. then so does
P. Since P is o-compact, it is now an exercise to show that P has subpolyvhedra of arbitrariiv
high category in P.

In the next section il will be necessary to apply some of the computatior
of this section to the corresponding Sobolev spaces. Let W%‘E(Rk";) denote the Sobolev
space of T periodic functions ¢ : R — R*" which are absolutely continuous and have
square summable first derivatives. ¢ can be represented by ¢ = (g1....,gx) where cach
g: ' R — R*. The inner product for 11'%'2(1{"“\-) is given by

T

T
<ﬂw:ﬁ)<ﬂmmﬂ>m+f < H(t)0lt) > dt.

8]

Let C;(Rk‘w] denote the Banach space of continuous T-periodic functions with the uniforin
norm. We may readily identify C%(IR‘:‘N) with AR*N . Tt is a well-known fact 'K that the
inclusion 1 : I‘V}’z(ka‘N) o C:(}(T_Rk‘w) is a continuous injection, whose image is dense in
CY(R*Y). Define an open set A(N) C WL (R as follows:

AN) = {{gr.. . ax) € WEERFN ) qilt) 7 gs(t) for 1 < £ S T)

Then,

CA(N) T A(N) — AFN(RF) © ARFY

1=1,

where AF;\-(Rk) is an open subset of AR*Y . Then. by a theorem of Palais . 7 is a homotopy
equivalence. Thus A(N) has both infinite cup length over Z; and infinite category. Now,

9



mtroduce an action of Zy = {1,¢} on W 1"(:RM) by {s¢}itj = —q(t = L), 0 = ¢ L
Let E- denote the fixed point set of this action, namely those ¢ such that ¢¢ = ¢. Then
Eq is a closed Hilbert subspace of W }(R*N). Let Co denote the corresponding subspace
of Cgl(]RkN). Then, again Ey continuous]y injects into Cy, with image dense in C;. Let
Ag(N) = A(N) n Ep and AQFN(IRJCN) = g /\FN(:Rk}. Then, by the same argument
as above, Ag(N) and AoFn(R¥) have the same homotopy type. But AoFn (R*) may be
identified with Ao Fn (IRk) of the theorem 2.19. Thus, Ao(N) has infinite cup length over Z;
and infinite category. Summarizing:

2.25 Theorem: Let

AN) = {a1,...,an) € WP (RFY) 1 qi(t) # ¢;(8),0 St < T}

Ao(N) = {q1....,qn) € A(N) 1 q@(t) :,\qi(t +
Then, both A(N) and Ag(N) have infinite cup length over 7Z; and hence infinite category
(with compact subsets of arbitrarily high category).

%),05 t<T,1<i{< N}

3. A Hamiltonian System of the N-body Type

Consider a potential function V' : Fy(R*) x R —- R of the following
form:

"’(Qh-n,%'):% Z Vii({gi — qj). 1)

1<1# <N

and the following properties for 1 <1 # 7 < N,g € RF -0,0<t<T.

. (V) Vi € CYRE - {0} x RyR), Viyla.1) < 0.
(Va) Vi(g,t) = Viilg,t) and Vi(g,t) = Vis(g,t + —Z—)
(Va) Vij(g,t) — —oo as ¢ — O uniformly in t.
(V4) There exists U;; € C'(W — 0;R) on a neighborhood W of 0 in R 8
such that:

G)U;‘J‘(Q) — +ocas g — 0
b) - Vt’j(‘]at) > R‘?}'(Q)Psq eW -0,t¢ {O’TE'

(Va), introduced by Gordon (G, is called the Strong Force Condition.
\

Consider the following Hamiltonlan system

(HS) mé'lr‘Yq(QSt):Osq:(QJa'--sqN)

10



where m = {(m...... m ) is the mass vector with m,; > 0. The functional corresponding to
(HS) has the form

—N’ b T N o T N B
(+) Ilg)= ’A|mmW—[ V(@ {t)- - san (D))

The arguments employed do not depend on the values m; so we assume the masses m, = 1
and write

T T
() 1a = [ late - [ Vieoa

If we let E denote the Sobolev space H’%‘?(Rk‘”) of T-periodic, absolutely continuous func-
tions with L? derivatives, then if (V}) holds, I{g) is C! and bounded from below by O on the
open subset

AN) = {ge WA R 1q{) # (1)1 <i# S N0t < T}

which corresponds to TT’%’Q(FN (Rkn We also define a closed subspace Eq of E as follows:
Let 72, = {1,¢} denote the group of order 2 with non-trivial element ¢. Define the action of
ZZ, on E by (c¢}(t) = —q{t ~ 4. Then,

L ={¢ZLcg=¢
We also set Ag{N) = Eo M A[N).
3.1 Theorem. I the potential 1" satisfies (V3) — (V4), then (] possesses

an unbounded sequence of citical values.

3.2 Remark. The Coti-Zelati result .C', proves that when 1" Is autonomons
and T-periodic, that the minimum of (*) is a critical value. The Bahri-Rabinowitz result [BR
for N = 3, assumes no symmetry such as Vi; = V5, but imposes conditions on behaviour of
Vv oand V' at infinity.

Before proceeding with the proof of Theorem 3.1 we observe that
(1) V(cqt) = Vig.t) g2 A(N)te 0.7
and ‘
(2) I{¢q) = I{q).q = A(N).
3.3 Proposition. Let I, denote I'Ao{N). Then critical points of I arc

critical points of I.

Proof. This is a general phenomenon. Namely if a functional [ is invariant
under the action of a finite group G, then critical points of the restriction I to the fixed
point set of the action are always critical points of I. In our case. if v € E, then v—cu< I
and

11



I'(g)(u + ¢u) = 2I'(g)(u) g€ As(NV)
and hence if g is a critical point for Ip, I’(g) vanishes on E.
Theorem 3.1 now follows from the following theorem

3.4 Theorem. If V satisfies (V1) — (V4), then Iy = I{Ao(N) possesses an
unbounded sequence of critical values.

The proof will be broken down into a series of lemmas.

3.5 Lemma. (Gordon’s Lemma [G) If V satisfies (V1) — (V4) and if a
sequence g, in Ao(N) converges weakly to ¢ € Eg, then if ¢ € AAo(N), then Io(gn) — +ox,
where dAo(N), is the boundary of Ag(N) in Eo.

3.6 Lemma. If V satisfies (V) —(V4), Jo satisfies the Palais-Smale condition
(PS) on Ag(N).

Proof. Let gn denote a sequence in Ao(N) such that J;(gn) — s 20 and
I (gn} — 0. Then, we may assume Is{gn) < s+ 1 and hence

T
JAEACIRZEREE
Q

then. since g, € Ag{N)

i+ 1 1
[ in(e)ds = anlr = ) = 0al0) = ~200(0)
it follows easily that the sequence g, is bounded in the PV}’z norm. Again, by standard
arguments [R1}, there is a subsequence, also denoted by gy, such that g, converges weakly
to ¢ € Es, and Gordon’s lemma implies that go € Ao{N). Furthermore, I’ has the form
I'(q) = ¢— P,, where Pg, has a (strongly) convergent subsequence in Eg. Since I'{gn) — 0,
it follows that a subsequnce of g, converges strongly to g and Io is (PS) on As{N).

The next lemma merely isolates the deformation theorem we employ (see

[R2]).

3.7 Lemma. Let {} denote an open set in a Hilbert space Eand I : ] — R
a C) functional which is bounded from below. Suppose I satisfies (PS) on {1 and we have
the condition that when g, — ¢ € 89, ¢» € 11, then I{gn) — oo, ie. I is unbounded at
the boundary 80. Then,for c € R,¢>0and U a neighborhood of K. = {g € Q: I{g) = ¢
and I’(q) = 0}, there is an € > 0,¢ <  and a deformation ¢ ! x I ~— {1 such that

(1) ¢o = identity O fl— s a homeor\norphism, tel.
(2) ¢lgt) =qif I{g)—c' 2Etel

12



(3) o(q,1)= I"“if g€ I°7* — U, where
I*={q=0:1(g) <a}.

(4) If K. =0 we may take U = 0.

3.8 Remark. The proof of Lemma 3.7 requires only a minor modification
of the proof of theorem A .4 in [R2]. Following the notation in [R2], let

A={ueQ|Iu)<c—cu{ue E I{u)>c+t}
and

B={uec|c—e<I(u)<c+e}

Then, A is closed in Q1 but AU (E — 1) = A; is closed in E. B is closed in 1 but also closed
in E because I is unbounded at 801. Furthermore, A4, " B = 0 because ¢ < ©. Afier requiring
the cutoff function to be 0 on A; and I on B, the proof proceeds verbatim and the {1 is forced
to be invariant under the flow.

Next, the corresponding abstract critical point theorem.

3.7 Lemma Let 1 denote an open set in a Hilbert space E and f: ? —- R
a C'! functional which is bounded from below. Suppose [ satisfies (PS) on {1 and [ is
unbounded at the boundary 891. If cat?l = —oc then f possesses an unbounded sequence of
critical values.

Proof. The proof is guite standard after making a few remarks. First,
since {1 is a Hilbert manifold, {1 possesses compact subsets of arbitrarily high category {scr
Section 2.) Thus, if weset 3_. = {X C N :catX > 7} and

¢. = infsup fiz), 7 >1
J \_‘xf()j

L g
we see that the ¢; are finite and ¢; < ¢4 with ¢; = i%ff. The usual arguments app:a o
show that the ¢; are all critical values, and lime; = oo (see [R2).

Proof of theorem 3.3 The proof is an immediate application of Lemma 3.2

to
Lemma 3.7.
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A Note on the Category of the Free Loop Space
E. Fadel! and S. Hussein!

Abstract

A usefu! result in critical point theory is that the Ljusternik—Schnirelmann category of
the space of based loops on a compact simply connected manifold M is infinite (because th:
cup length of M is infinite). However, the space of free loops on M may have trivial
products. This note shows that, nevertheless, the space of the free loops also has infinite

calegory.

1. Introduction.
It is a standard result that if M is a simply connected compact manifold compact and

QM) = Q(Mx) 1s the space of based loops on M (based at xo), then the

(0
Ljusternik—Schnirelmann category cat Q(M) = +<. This follows from the now classical resul:
[Serre, 1] that the real (or rational) cohomology of (M) has non—trivial cup products of
arbitrary high length (see also [2}). An inspection of the proof will convince the reader that
compactness 1s not required for the proof of this result. All that is required is that the real (or

. :
rational} cohomology H (M) be finitely generated and for some 1> 0 H'M) 2 0. However,

for the free loop space A(M), where

AM) = (aeM; a(0) = a(1))

*Supported in pant by the NSF under Grant DMS—8722295.
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it isn't necessarily the case that the cohomology of A(M) has non—trivial cup products. This
is a relatively recent result of M. Vigué—Poix'Ticr and D. Sullivan (3], where, for example, the
reduced real cohomology of the free loops on the 2—sphere 82 has trivial cup products. In
view of this fact, it is natural to inquire about that category of the free loop space A(Mi. We
will show that when M satisfies the preceding conditions:

1. cat A(M) = +=
2. A(M) contains compact subsets C such that cat A(M)C 1s arbitrarily large.
This will allow a direct application of the Ljusternik—Schnirelmann method to, for

example, functonals defined on the Sobolev space

w}'z = {f: [0.T] — R"—0, £(0) = £(T)) .
See Section 4 and [4], [5].
The basic result is the following property of Hurewicz fibrations [6], which we prove in

the next section.

Theorem. Let F-E_P R denote a Hurewicz fibration which admits a sectior

o:B—E, and F,B and E are O—onnected. If QcF is any subset of F, then

catFQ < catEQ .
When applied to the fibraton QM) — AM) — M we obtain:

Corollary: Let M denote a simply connected manifold (not necessarily compact) such
that the real or rational cohomology HiM) is finitely generated for each q and Hi(M) z 0
for some i > (0. Then cat AM) = e,

i
Section 3 considers the category of the free loop space on configuration spaces.
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2. Resulss.

We recall first a basic lemma for Hurewicz fibrations [7]. If F 4 E-E B isa
|

Hurewicz fibration, then there is a lifting function ?.:Qp -—E°, where
Qp = {{x, ¢ ExBI: pix) = (). where L{x)0) = x; plAlx.)t) =), 0ctcl 7

induces : EI —E! by setting A(@) = A[a(0),pa].

2.1 Lemma [7]. % ~id preserving projections, i.e. there is a homotopy T E w1 —1

such that Ty =id, T} = % and pIc.s)(t) = pa(t) for aeEl stel.

2.2 Proposition. Let F - E -~ B denote a Hurewicz fibration with base pOINI

1

X € F, bO ¢tB, F=p (bo'\. We assume that Qp: Q(E,xo) — Q(B,bo) admis a sectior: ©.

If Y isany space and f: Y — F is 2 map homoiopic in E to the constant X, - then f s

homotopic in F 10 Xq

Proof. let A:Y — E] denote a homotopy such that A(v)(0) = Xq » Aly)1) =fiv).

Consider the homotopy A Yx —F given by
Av.s) = T(AM)S)(1), 0€s<1, yeF.
Note that A(y,0) = f(y), &A(ys)¢ F for 0<s<1. Let Ay,1) = gy) sothat f~g Y — F
Now, define C:'Y — EI by C(y) = opA(y) and observe that pC(y) = pA(y). Now.
define a homotopy é: YxI —F by

6Wﬁ=f@@MMLOSssLyep

Note that é(y',O) = Xg é(}’,]) = g(v), and é(y,s) eF, 0<s<1. Thus, f~ X' Y —F and

the proposition follows.



2.3 Remark. The reader will note thel similarity between Proposition 2.2 and the
classical result that i,: n,(F) — n,(E) is injective when p admits a section {8). Proposition
2.2 may also be thought as a situation when the fiber is totally non—homotopic to zero.

Now we recall that a set Q in Y is categorical in Y if the inclusion i: Q — Y s

homotopic in Y to the constant map Yo € Y.
2.3 Corollary. Let F L. E-E B denote a Hurewicz fibration as in 2.2 with E

O—connected. If U is categorical in E, then UnF is categorical in F. Consequently, for

any subset QcF

caIFQ < catEQ .

Proo?. The first part follows from Proposition 2.2, while the second part is immediate

from the defimition of category, namely, catYX is the minimum number of categorical open

setsin Y which cover X.

2.5 Definition. A manifold M will be called admissible if M is simply connected.

. .
the real (or rational) cohomology H (M) is finitely generated and for some i > 0, H (M) = 0.

2.5 Corollary. Let M denote a simply connected manifold with base point Xq

Then, we have the fibradon with section
QM.xy) —— AM) ‘L’?-_ M

where p(w) = w(0) and o(x) = X the constant loopat xe M. If Qc Q(M,xo) is any

subset



ca[Q(M,xONQ < ¢al A(M)Q .
In particular, if M is admissibie, then cat A(M; = « .

o)
2.6 Remark. Thus for example A(S”) has infinite category but trivial cup products

over R([3)).

2.7 Remark. Suppose F is a closed subset of E and Q ¢ F. Then, the reverse
inequality catEQ < catFQ holds whenever E is an ANR (normal). This is the case in
Corollary 2.4 and hence there the inequality is actually an equality.

Now, we consider the question of compact subsets of A(M); of arbitrarily high

categon.

2.8 Lemmaz. Suppose X is a space such that for some field F the cup length of X
over [ using singular cohomology is 2k, then X has a compact subset of category > k.
Proo!. We mention first that throughout we employ singular homology and

cohomology with coefficients in T and will make use of the universal coefficient theorem

isomorphism
v HAX) — HomiF(Hq(XJ;?} :

let w= 000y € HY(X) denote a non—trivial cup product of length k. Then, y{w) = (
and hence there is a singular cyclc C such that y(w)([{]) = 0. Let A denote the (compact)
support of {. Then, it is easy to check that if i: A — X is the inclusion map,

i"(w) =1 (@) -1 (o) in non-zero in HY(A). Thus the cup—length of A in X is 2k

and cale >k
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2.9 Corollary. Let M denote an admissible manifold with base point x . Then, the
space of based loops Q(M,xo) (and hence the space of free loops A(M)) contains compact

subsets of arbitrarily high category.

3. Configuration Spaces.

If M is any space the k—th configuration space of X, k 2 1, is defined by (see [9))
Fk(M) = {(xl,...,xk), X; € M, X # xj, for i#j}.

We will make of the following propositions. Cohomology will be over a field F of

coefficients

3.1 If M is a manifold (without boundary), and k 2 2 then we have locally rivial

fibrations
(i) F_ (M-Q) —F M) B M
where Qe M and p(xl,...,xk) = Xy and
(ii) M—Q, ) —FOMIF_ o0
where Q, ; CM isasubsetof k—1 elements and qXysiX) ) = (X geeesXp 1)
32, If M is a simply cor;hcctcd manifold, dimM=m23 and Hi(M) if finitely
generated over a field F for each i, thenfor k2 1 F, (M) is simply connected and

H'(F,(M)) and HY(QF, (M) are finitely generated over F for each 1

We prove the next proposition.
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3.3 Proposition. If M is a simply connected manifold, dim M =m > 3, then for
k 2 2, the configuration space Fk(M) is admissible.

Proof: Because of 3.2 and the fact that F, (M) is finite dimensional we need only
show tha! for some j > 0, the real cohomology Hj(Fk(M)) # 0.

Case 1. Hi(M) # (0 forsome 12 1. Choose i maximal so that Hi(M) 20 and
O=ve Hi(M). We proceed by induction on k and employ the cohomology spectral sequence
of the fibration (i) of 3.1. Choose u € Fk_l(M-—Q) of maximal dimension so that v # (.
Then, in the Ez-tcrm of the spectral sequence u ® v # 0 and has dimension > 0. It 1s easy to
see that u & v "survives" to E_ and contributes a non—zero element to Hj(Fk(M)),j 21

Case 2. Hi(M) =0 forall i>0. For k=2 we employ the spectral sequence of the
fibration (i) of 3.1 to see that R = Hm_l(M—Q) - g (FZ(MD‘ For k23, we employ
induction on k and the spectral sequence of the fibration (ii) of 3.1, together with the

argument in Case 1 to obtain the desired result.

3.4 Proposition. If M is a simply connected manifold, dim M 2 3, then for k 2 C,

cat :‘J—‘k(M) =« and AFk(M) contains compact subsets of arbirrarily high category.

4. An Application.
In {4], Rabinowitz used the main result of section 2 (Corollary 2.9) in the special case

where M =R

— {0) to prove the existence of infinitely many periodic solutnons of a certain
Hamiltonian system. In this section we give an alternative argument for a key proposition in
his treatment based upon a general abstract critical point theorem which is the analogue of a
previous "linking” result in [10] which was done in the context of & relative cohomological
equivariant index theory which will be replaced here by relative (Ljusternik—Schnirelmann)
category theory intoduced in {11] and [12].

We review first one version of relative category. If (E,A) is a topological pair with

A =06 andclosed in E, then for A c X c E we define the relanve category calE(X,A) as



&
follows. A categorical cover of (X,A) consists an open {(in E)set W23 A and open sets
{Vj} such that

1. Wy (uVj) o X
2. There is a homotopy of pairs H:(W,A) x I — (E,A} such that Ho(x) =x and
Hl(x) €A xeA

3. Each Vj is contractible to a point in E.

4.1 Definition. CatE(X,A) =n if (X,A) admits a categorical cover {W,Vj] with n
sets Vj and n is minimal with this property. If no such finite categorical cover exists we set

catE(X,A) = e,

4.2 Remark. If A =20, catE(X,O) = catEX has its usual meaning.

The following properties are immediate

4.3 Proposition
a) Ac X1 c X, implies cate(X,A) < catp(X,,A)
b) Ac Xl’ X2 C E implies

catE(Xluxz,A) < catE(Xl,A) + catEX2
Relative category may be used 1o define a "linking" concept as follows.
4.4 Definition. Let A and B denote disjoint closed sets in a space E. If
catE(E—B,A) < catE(E,A)

3

we say that A and B link (in the category sense). If, in addition, cazE(E,A) = 4, We say
that A and B stgongly link.



Y
We review next a local form of the Palais—Smale condition (PS). Let A denote an
open set in a Banach space a f{A — K a ¢! —functional. f is said to sasty (PS)_ if any
sequence qj e A sausfying f(qj) — s and f(qj) — () 1s precompact. (PS)S 1s used
crucially in the following deformation theorem ([4],[13]). We will use that notation K_=

{ge Af(c)=0 and f(g)=c}. Also = {ge A f(g) <a).

4.5 Proposition. Let A denote an open set in a Banach space E and f:A —F a
Cl—funcn'onal. Suppose { satsfies (P‘S)s for all s > a. Then, for any critical point ¢ > .
U a neighborhood of KC, and £>0, thereisan € >0 and a deformation @:A X1 — A
such that

(H @ = identity, (p[:A — A 1s a homeomorphism, te [0,1]

2) elgu=q if [flgd-c 2¢

©  ocDe i ge T .

If KC =@, we may take U =0,

We may now state our abswact critical point theorem.

4.6 Theorem lLet A denote an open set in a Hilbert (or Banach) space E such thar A
contains compact subsets of arbimarily large category and lei f:A — R denote a
C]-—functional. Suppose further that there are disjoint closed sets A and B in A such tha:

1. catE(Aa—B,A) < catE(A,A) =« 1e A and B strongly link,

2. catEA < x

3. supf<inff
A B

4. f 1s (PS)S forall s >supf
A

then, f possesses an unbounded sequence of critcal values.
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Proof. For each integer j 20 let
%: {(XTAcX cA, catA(X,A)zj] )

Observe that for each j, there is a compact set Y such that catEY 2j+ catEA and hence
catp(AUY,A) 2 j. Thus, fj is non—empty and f is bounded on A U Y. Hence, we may
define '

c.=1nf supf(x), j=20
I XeY, X

where

COScl Sczs... CjSCj+1 <.,
let m= catA(E-B,A). If catA(X,A) 2m+ 1, then X nB#¢ for, otherwise
(X,A) ¢ (A-B,B) and catA(X.A) < m. Therefore,

supf=c,<c
A 0 " "m+l
i.e. a "jump” occurs at index m + 1. We now show that each cj,j >m, is a critical value.
o . - 1
Let ¢ = ¢p)>m and consider K .. Choose € < 5(Cm+17S) and an open set U > K. such
—1 - ) ) .
that Ucf (Cm +l—e,-=) and ca; AU = cat AKc' Now let € >0 and ¢ the deformation

given by Proposition 4.5. Observe that ¢ remains fixed on A throughout the deformation.
Take X ¢ ):J so that catA(X,A)Zj and supf<c+g Now
X

4

catA(X,A) < catA(X-—U,A) + catA(U) .



1i
If KC = ¢, then catA(X,A) = caLA(X-—U.A) 2 j. On the other hand, f((pl(X-U),A) < ¢c—€.
since, catA((pl(X—U),A) = catA(X—U,A) 2 j, this would force Cj <C—E= Cj — ¢ whichis a
contadicuon. Thus KC #0.
To show that the c; are unbounded we proceed as follows. Let ¢ = sup ¢ c is
again a critical value. Let K denote the set of al] critical points ¢ such that
Copyy SHQ S c. The (PS); condition forall s >cy forces K 1o be compact and

Kn A =¢. Suppose catAK =k > 0. Again choose € < ,17(c —) and an open set Uok

m+1

such that U cf—l(c l—E,w) and catAU = k. Furthermore, £ and ¢ will be asin

m+
Proposition 4.5, with ¢ = c. Choose an index j such that cj >c—¢€ and Xe¢ %-i—k such

tha:

s;pf<cj+k+€<c+£.

ca:A(h,A) < caIA(X—L',A) + catA(L’)

so that CaIA(X—U,AJ 2 j. But, then catA(Lpl(X—U),A) 2] and cpl(X—L',A) c fE_E. This
force ¢; < ¢ — & which is a contradiction.

As an application of Theorem 4.6, we give an alternative proof of a result of P.
Rabinowitz which he used to prove a slightly more general result [4]. The setung is the
following Hamiltonian system.

(HS) q+V (g =0

q

where the potential function V(1,q) satisfies the following conditons:



(V1 V() is 2 C]—function from RxQ —R, Q= L {0!, n>3 whichis

T—periodic in 1.
(V2) Vi) <0 and V(1,9 — 0, \"q(t,q) — 0 as ¢ — 0. uniform!v in te [0.T]
(V3 V(t,q) — —= as q — 0, umformly in t e {0,T].
(V4) There is a neighborhood N of 0 in R” anda Cj—function UN-{0] —F

such that U(g) — = as g — 0 and —V(t,q) 2 qu(q)]2 for ge N—{0)
and all te [0,T].
The period T>0 will be fixed throughout the remainder of this section and
ET = W.}.’Z(ER,IR“) will denote the Sobolev space of T—periodic functions with square

summable first derivatives, under the norm

T

llg! = ( ( iQEde[qJ
0

2)1/2

where q = cai% and

T
[q] = -}- é q(t)de .

Set
A-——AT= {qe Equ(l)atO forall te [0,T}}.
A is an open subset of Er and A has the same homotopy type as the space AR"-0) of

free loops on R"-0. R"—0 is identified with the constant loops in R"—0.

Corresponding to (HS) is the functional I:A — R given by



T
I(q) =J (‘-15 q 2 _ ViLghdt, qe A.
0

Critical points of 1 give classical T—periodic solutions of (HS) (see [4]). We set
3
I"={ge At I(g) <€} .

4.7 Proposition Assuming (V1) —(V3), thereisan €>0 and an R >0 such that if
B{(O.R) is the open bali of radius R, A = R" — BOR),B=A- IE, then

1. supl<e
A

2. 1f is deformable into A

AT

3. cat, (E-B,A)=0, cat

AT

(AA) = 4o,

Proof. First we choose a decreasing sequence € > 0 such that €. — 0 and a

corresponding increasing sequence Rm > 0 such that Rm — += with the properny tha:
Vg < € implies [q' > R_.
Choose an index k such that
12 12
(1) Rk - [Zek] T > [2ek] “T
and

T .
@) —[[ V(Lg)dt < &, T, for |q| 2R,



and set £=Te, ,R=R,,A=R"-BOR),B=A-1% If qe I,

T
.2 ) :
3) Ilan2=l 142 < 20 < 2Te,

and hence

@ iy <o,

Now, write g = {q] + Q, where Q1) = q(t) = [q] and

T

5y ld] =-}- [ qlu)dt .
0

Recal} that
6 [Qi; =max |QU;
o t
and the general inequality {4],

Yo
MRl £ T”‘Hq!il_z :

Hence,

® Q. <erel?.

Now, consider a constant loop g, with |g| 2 R.
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T
9 kg =-{ Vg < ,f, <E
0

anc hence A =k — B({U,R) c I¥ and

(10 suplece.
A

Consider now the homotopy, H: I x [0,1] — A, where
(11) Hi{gs)=[gl+(1-s)Q, 0<s<1
which is fixed on constan: loops q. For qe¢ Ie, it is easy 10 venfy that
(12; 1)’ 2R = 2Te)/? 5 e}
and using (&)
13)  1Qm' < Te)l” forall te [0,1].
This forces
(14) (gl +(1-s)Q=0, 0<s,1<1 .-
Thus the homotopy has range in A and deforms I into the subspace R" — B(0,p),

p= (25'1")1/ 2. If one follows H by a radial homotopy, we obtain a deformation of 1f w0

K" —B(O,R), with B” = B(O,R) fixed throughout the composite homotopy. This also shows
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that carA(/\—B,A) = 0. Finally since calAA =2 and cat A = +e, itis clear tha:

cat \(A.A) = 4o,
d

4.8 Theorem (Rabinowitz [4]) If we assume that V satisfies (V1)—(V4), the function

I possesses an unbounded sequence of critical values.

Proof: Rabinowitz [4] verifies that 1 satisfies (PS)S forall s >0 and we will not

repeat the argument. In view of Proposition 4.7, the proof is now a direct application of

Theorem 4.6.
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