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INTRODUCTION

The main purpose of this paper is to study elliptic boundary value
problems of the type

{—Au=f(u}+p{x), xef
u=0, xed, ()

where £ is a bounded domain in R and f has, possibly, “upward” discon-
tinuities.

The idea is to find solutions of (+) by using Clarke’s Dual Action
Principle [5]. This approach has a remarkable smoothing effect, in the
sense that it allows one to look for solutions of (s) as critical points of a
functional which, in spite of the discontinuity of £, is C.

The Variationai Principle is discussed in Section 1 and is applied in
Section 2 to (»), leading one to proofs of existence and multiplicity results
for various kinds of nonlinearities. Among other things, we can find the
results of both [4, 5] and [11] in a quite direct way.

Notations. £2 is a bounded domain in R¥, Nz 2, with smooth bound-
ary 402;

||, denotes the norm in L7{(£2), ¢ = 1;

(-, -) denotes the scalar product in L}{£2);

* Supported by the Ministero P.I. (40%), Gruppo Naz. “Calcolo delle Variazioni.”
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364 AMBROSET TN AND BADIALE
Ad;and ¢, jeN, satisfly 0<d, <, €4, -, ¢,€ Wy(£2), and

—d¢j= ij¢j!

where 4 stands for the Laplace operator.

We will also take ¢, >0 and |¢{,=1.

If £ is a Hilbert space and J& C'(E; R), J'(u) will denote the gradient of
Jat w

€1, €3, ... stand for possibly different, positive, constants.

— denotes strong and — weak convergence.

1. THE VARIATIONAL PRINCIPLE

We suppose f: R — R is a measurable function satisfying

(f1) there is a set A< R with no finite accumulation points, such
that fe C(R—A4);

(f2) thereis an m 20 such that A(s) := ms + f(s) is strictly increasing.

We notice that for a problem such as (+) one can always suppose that
[ is bounded from below [above] as s = +0 [ ~o0]: otherwise a trunca-
tion argument and the maximum principle can be used. Therefore the main
restriction imposed in (f2) is concerned with the discontinuity points. In
fact (f2) implies

MAa—)< fla)s fla+) Vaed,

where flat)=lim,_ . f(s).
We set

T,=[fla=), fla+)] (ac4)

and

. _ [fls} Vs¢ A
f(s) - {T, Yae A

Let pe L*{2) be given and consider the Dirichlet boundary value
problem («). .
We say that v is a solution of (*) if

ve WiQ)n W3R2)
and
—dv(x)— p(x)e f(v(x)) ae inQ (1)

— e

S
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Without loss of generality, we can suppose that k in (f2) satisfies
h(s) > +o0 [—o0] ass—++o[—w] (2)

Moreover, from now on, we will take A= {a}. This will simplify the
notations. The arguments in the general case are quite similar.

By (f2) and (2) it is possible to define a single-valued function g: R - R
by setting

(t)= a, ift—maeT,
BY%%s  withhls)=t  if1—magT,.
In particular, one has

gy=¢ il 1—méef(§) (3)

It is easy to verify that ge C(R). Set G(r) =L', g(t) dr.
Let E= L%(f2). For all m >0 we can define a linear self-adjoint operator
K:E—Eby

v=Ky iff —Av+mv%!ﬁ, ve Wi(82)

and a functional J: E— R by
J(u) =Jl {G(u)— 4uKu—uKp} dx.
Q

Our main result is:

THEOREM 1. Let (f1)}-(f2) be satisfied. Then:

(i) JeC'E R)andif J'(u)=0 then v=K(u+ p) is a solution of ().
(ii) If either
(¢) —p(x)¢T, for ae xef, or

(B} u is a local minimizer of J, then the level set 2, = {xefk:
v(x)=a}, v=K(u+p), has Lebesgue measure |2,|=0 and therefore v
satisfies

— dv(x) = flv(x)) + p(x) a.e. in 2.
Proof. From (2) it follows that
gt e+ lil. {4)

Then |G(1)l<c3+c, |t} and G(u)e L'(2) Yue E. Moreover, from the
regularity theory of elliptic equations one has that Ky € Wy(2)n W(Q2)

q—{‘r“-; o
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366 AMBROSETTI AND BADIALE

Yy € E. Hence J is well defined in £. From (4) it follows [8, Thm. 3.77 that
Je CY(E,R).

Let ue E be such that J'(u) =0 and set v=K(u + p). Then ve wl)n
W 22%(2) and

g{u)=K(u + p)=v. (5)
The definition of K implies
—dv+mo=u+p. {6)

From (3) and (5) we infer that u(x) — mu(x)e f(x(x)} ae. in Q. This and
(6) show that v is a solution of (#).
Next, we set

2,={xe:v(x)=a)}.

Since ve W**((2), a theorem of Stampacchia [10] applies and —dv{x}=0
ae in 2, From (1) it foliows that

—p(x)efp(x)})=T, ae ing,

and this proves (ii) in case (x) holds.

Last, suppose (#) and let —p(x)e T, ae. in Q..

Set T,=[b,b,), T*=[b,.Hb,+5h)]), T-=T7,-T*, and Q%=
{xeQ:~p(x)eT*}.

Define ye L(§2) by

i, xef2*
x)=< —1, Xef2-
0, xeR-10,.

For £> 0 smail enough one has
~p(x}+ex(x)eT, ae in 2, (7}
and
d
7 Jutex)=(glu+ex) 1)~ e(x, Kg) — (1, K(u+ p)).

But from u(x)+ p(x)= —dv(x}+me(x) it follows that u(x}+ pix)=ma
ae. in 2, and thus

(glu+ex) Jc)=£J g(u+£x)x=fa glma—p+ex)z. (8)

el -

.
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From (7), (8) and gl)=aiflt—mae T,, we infer

(glutex)x)=a fn X

Moreover

(e Kt ph=(ro)=[ w=af

“leﬂ we hﬂd
J(u + £ ) - E( , K )' 9

Since u is a minimizer of J, {9) implies {x, Kx)=0. Setting Ky =, one has
(x, Ky} = grad yI3, hence (r, Kx)=0ifl y =0, namely iff meas @, = 0. This
completes the proof. |

Remark 2. In all the above arguments the Laplace operator — 4 can be
substituted by any elliptic variational operator, as well as one can deal with
more general nonlinearities like f(x, s).

Remark 3. In Theorem | one can take E =L%2), a>1, according to
the fact that G(f) = * as [1] - 0. One would have Kyre WHR2)n Wra()
Vi e L*(2); the rest remains unaffected,

Remark 4. Theorem 1 is based on Clarke’s Dual Variational Principle
(6] Such a principle has been used to overcome the indefiniteness of the
Action integral in Hamiltonian systems (see, e.g, [7]); the new feature
here is that it allows one to deal with a smooth functional although f is
discontinuous.

A possible interest of our approach is that we can appiy to J the
standard critical point theory.

In Section 2 we will indicate how to proceed in the concrete situations.
To limit the paper to a reasonable length, we will discuss, rather than all
the possible results, some examples only.

2. EXAMPLES

For simplicity, in the sequel we will always take m = 0,
Our first application deals with a case in which J is coercive and is
related to [11].
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EXAMPLE 5. Let f satisfy (f1 H(/2) and let £, 0<k <4, be such that
(f3) )l < +k|s|.

We will show that

T A e

Ype L*(R2) () has a solution v satisfying (3).

oL e

Indeed, (/3) implies

1
G(1) ;51-6- 2—c, .

Moreover, one has (u, Ku) < (1/4,) [u|2. Hence

1 1
J6) 257 Iuli—m [ul3 ~ ¢ lul,.

Since k < 1,, then J is bounded from below and coercive on E. Since X is
compact in E, then Jue E: J(u)=ming J. Applying Theorem 1, the claim
follows.

Our next example is a problem at resonance.
EXAMPLE 6. Let f satisfy (f1)( f2) and
(f4)  fs)=2ys+b(s),

with b, = liT b(s)eR.
Then (*) has a solution provided

b [ #i<~tnou<s. | 4. (10)

In this case we shall apply a “linking” theorem. Let W= fweE:
(w, $,)=0} and £ (= L’(Q)):Rgﬁl@ W. Using (f4) and (10) it is easy to
check that

as ¢ -+ o

{J(rg&,)—» —®

inflJ> —ao,
W

(11)
Moreover, one shows:

Lemma 7. J satisfies ‘ I

(PS), if u,eE is such that J(u,)—c and J'(u,) 0 then Ju*c E:
J(u*)=c and J'(u*)=0. {

THE DUAL VARIATIONAL PRINCIPLE 36%

The preof of Lemma 7 requires some technicality and is postponed to
the Appendix. Assuming the validity of Lemma 7, we can apply Theorem
1.2 of [9]). Actually in [9] such a theorem is proved under the stronger
assumption that J satisfies (PS) (namely: if J{u,) — ¢ and J'(u,) = O then u,
has a converging subsequence). However, it is readily verified that (PS).
suffices, as already shown in [3] in the case of the Mountain-Pass theorem.
Thus J has a critical point which gives rise, through Theorem 1, to a solu-
tion of («). This proves the claim.

EXaMPLE 8. Let a#0, p=0, and f satisfy (f1)-(f2) and

/5) {f(s)=o(s) at s=0,
fls)z=lsi"ts as |s| » o0, l <a<(N+ 2Y(N=2).

Then (%) has a solution v #0,

The details of the proof are omitted, because it is based on the
arguments of [2] and thase of Lemma 7. In fact, letting E= L*(R), « the
conjugate exponent of o+ 1, one shows that: (i) J satisfies (PS),; and
(it) the Mountain-Pass theorem [2] applies. As for (i), one first proves as
in [2] that |u,], <const and then uses the same arguments of Lemma 7.

The following is an example with a continuous hut not smooth
nonlinearity. The smoothing effect of the Variational Principle will allow
one to handle this case in a rather direct way, too.

ExampLe 9. Let k> 1 and consider the Dirichlet problem
in Q, u=0 on 0. (12)
We will show that (12) has infinitely many solutions.

Here G(t)}= (1/{k+ 1)) [¢]** . Take X = L**Y(2) and J(u) =g {G(u) -
suku} dx. :

Since [ G(1)= (1/(k + 1))t it follows readily that J is coercive and
bounded below on X. To show that (PS) holds, let u,e X be such that
J(u,) = ¢ and J'(ua)=G'(u,) — Ku, — 0. By the former we deduce that
[tnls ot S )5 since K: X — Wi+ by the Sobolev embedding theorem
it follows that Ku,—z in X*, up to a subsequence. Then G'(u,) — z and
since G is strictly increasing, we infer that U, = Z, too, This proves (PS).

Next, since f is odd then J is even and the Lusternik-Schnirelman
theory applies. We assume the reader is familiar with such a theory and use
standard notations (see, for example, [1]) ' '

The critical levels

l.= inf supJ (meN)

HAYdm A
(y(4) is the “genus” of 4) carry critical points u# 0 provided l,<0 -

~du =sign(u) - |u|"*

e

W
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Now, let us notice that Ge C? implies, via a well-known result on
Nemitski operators [8, Thms. 3.7 and 3.4}, that Jis C2 on X. Moreover
G*(0)=0 yields: J*(0)[ @, ¥ 1= ~(y, Ky)vheX,

For any fixed me N, let Xn=span{g,, .., ¢,.}. For y € X, one has

1
(v, Ky)2— i3,

hence (XX, being finite-dimensional)
SO, ¥I< e, ¥, YyeX,.

Therefore, ¥e>0 small enough, letting Ame={VeX ¥l =€}, it
follows that

sﬁap J <
Since y(A,,,)=m, then I_<0. Applying the Lusternik~Schnirelman critical
point theory, we conclude that J has infinitely many critical points on X,
corresponding to solutions of (12) through Theorem | and Remark 3.

APPENDIX

Lemma 7 will be proved in several steps. For simplicity, we will take
pP= 0.

First, some remarks are in order. Letting ,=t,, +w, w, e, and
substituting in (11), it follows that |u,], < c,. Hence, up to a subsequence,
u,~u* in L¥$2).

Let v* = Ku*,

I={xeQ:v*(x}=a), g*=Q-r

and
if
¥(x)= {(l) if i:g*
From J'(u,) — 0 and the compactness Qf K it follows that
glu,) » Ku*=v*  in L) and a.c. in Q. (13)
If we prove that

S(u*) (=g(u*)~v*)=0 {Al}
J(ug) = J(u®), (A2)

Lemma 7 will follow.
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It is convenient to discuss separately what happens in 2* and in I
First of all, we claim

u,~u*  in LYQ%). (A3)
In fact v*(x)#a for xeQ*; then SeC(R—{a}) and (13) yield
u, - f(v*) a.e in 2% (14)

Since f(s)=2A,5+b(s) with & bounded, we deduce that lu,|
¢, |g(u,t + ;. Using also (13), it follows that lu,| < h for some he L3($2).
Then (14) yields: u, — f(v*) in L*Q*). Since u,—~u* in LY(Q), (A3)
follows.

Since g is asymptotically linear, from (A3} we infer

guy) = g(u®)  in L7(Q*) (15)

and
L. Glu,) — fﬂ_ Gu*). (16)

Next, to study the behaviour on I, we distinguish whether Oe T, or not.
We first show
if0¢T, then |1 =0 (mn

In fact, let T,=[b,, b,] with b, >0 (if b, <0 the proof is similar). As seen
in the proof of Theorem 1(ii), one has

ut=—Av*=0 ae in s (18)

Since #, =~ u* and using (18), we find
J o= )=t =] wr=o) (19)

On the other hand, (13) yields, in particular, that g(u,) +a ae. on I'. This,
the continuity, and the strict monotonicity of g readily imply that
liminfu,(x)2b, for ae xel. As seen before, lul <he LY$). Then
Fatou's lemma yields

lim inrJ' u, > b, |17.
r

This and (19) prove (17).
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Proof of (A1), If0¢T,, (15) and (17) imply
glu,)~ glu*)  in L}{R2)
and (Al) follows from (13).
If0&T,, then (18) implies: g(u*(x)) = gi0)=a=v*(x)forae xerl, and
again (Al) holds. J

Proof of (A2). 1f0¢T,, (17) holds and (16) becomes

L Glu,) "’L G(u®).

Since X is compact, (A2) follows.
I 0eT,, then G(s)=as for seT,; by arguments similar to those
employed before, one shows that

IG(u,)—au,) =0 ae inrl

and, as a consequence,
j 160) - au) ~0. (20)
From (16), (19), and (20), we infer
Jo 6w=] Gw)+] cwd~[ G

Since u*=0 ae. in " and G(0)=0, then fae G(u*) =[5 G(u*) and (A2)
follows in this case, too.
The proof of Lemma 7 is now complete.
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