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Existence of Steady Vortex Rings
in an Ideal Fluid

A, AMBROSETTI & M. STRUWE

Comnnaticated by H. BRezis

§ 0. Introduction

Consider an ideal Auid occupying all of R? with axisymmetric velocity feld q.
A vortex ring # is a toroidal region in R? such that curlq =0 in R>\ 2
while curl ¢ == 0 in 2.

In cvlindrical coordinates, in terms of the Stokes stream function ¥ the problem
can be reduced to a free boundary problem on the half plane IT = {(r,2) 1 r > 0}
of the form (ef. § 1):

—L¥ =0 onlfT\ A4, {0.1)

LV =ir’fi?) on A, (0.2)

H0,:) =~k =0, 0.3)

Wee =10, ) (0.4)

Wir— —W, Wi —+0 asri+z2>c0. (0.5

Above, L stands for a second order elliptic differential operator. 4 is the
(a priori unknown) cross section of the vortex ring. fis called the “vorticity func-
tion™ with coupling strength parameter 1> Q. & is the flux constant measuring
the flow rate between the z-axis and 24. The constant W > 0 is the “propaga-
tion speed™, namely the limit of the velocity field g at infinity. Subscripts denote
partial derivatives.

When & =0 and fis a positive constant, an explicit solution of (0.1-0.5)
was found by Hiir [12). It corresponds to a spherical vortex, Hill's vortex.

Papers {6, 14] deal with the existence of vortex rings bifurcating from Hill's
vortex and [4, 5] study uniqueness questions.

Global existence of vortex rings was first established i [10] to which we also
refer for a description of the physical significance of the problem. However, in
(107 a nonlinear eigenvalue problem is solved and the coupling constant 4 arises
as a Lagrange parameter which is left undetermined. For physical applications,
however, existence results for fived 2, say 1 = 1, are desirable.
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Motivated by [10], problem (0.1-0.5) for fixed 41 =1 has been studied in
[13], and, independently, in {1] assuming that the vorticity fis superfinear. In both
(1] and [13] it is assumed that f{(0) = 0, even if from the physical point of view
a strictly positive vorticity £ is more appropriate. Lastly, the case of a superlinear f
with f(0) > 0 small is investigated in [8]. Let us point out that when the free
boundary problem (0.1-0.5) is translated, as usual, into a semilinear elliptic prob-
lem on R* by extending f{s) = 0 for s< 0, then if f{0) is strictly positive the
corresponding nonlinearity will be discontinuous at 0.

Besides [6] and [i4), where f= constant, we do not know any existence
results for vortex rings for given strength parameter 2 and bounded, positive vor-
ticity function f.

The purpose of this paper is to study such a case. More precisely, in our Theo-
rem 4.1 we establish the existence of a solution ¥ of (0.1-0.5}, corresponding
to a bounded, symmetric vortex core A, under the assumptions that k, 1, W are
prescribed and the vorticity Function f is bounded and positive, and so gives
rise to a discontinuous nonlinearity, as in [10}.

Our approach would apply to superlinear J as well; also for this case in the
present generality the existence of vortex rings would be new, extending the results
of [1], [8), [13]. However, to limit the paper to a reasonable length, we discuss
in detail only the case of bounded vorticity, which seems to be the most inter-
esting one,

Problem (0.1-0.5) is first approximated by a semilinear Dirichlet boundary
value problem on a ball B, centered in 0, passing then to the limit as R — co.
The approximate problem is accessible by variational methods and possesses,
for R large, two nontrivial, cylindrically symmetric solutions: v,, the absolute
minimum of the associated energy; and ug, corresponding to a *“Mountain
Pass” critical point [2].

It is worth noting that, strikingly, in the limit the energetically unstable solu-
tions ug survive, while the stable ones, vg, diverge. To perform the limit procedure
we use the variational characterization of the *“Mountain Pass” solution g
and derive, by arguments somewhat related to those of (16], a uniform bound for
{Vig| in L? for a sequence R, — oo. When JSis superiinear, this bound could be
obtained by a more direct argument from the equation itseif (cf. [1]) but the latter
approach does not seem to work in the case of a bounded J- In contrast, the ap-
proach we use here could be employed to solve more general semilinear eliptic
variational problems in R" under suitable symmetries.

The rest of the paper is divided into 4 sections. In § 1 the problem is described
in more detail; in § 2 the existence of solutions of the approximating problems
is derived; § 3 contains the g priori estimates which enable us to pass to the limit;
in §4 we state the main results.

A preliminary announcement of this paper has appeared in Applied Mathe-
matics Letters.

§ 1. Setting of the problem

As stated in §0, by axisymmetry the vortex problem can be formulated in
the half space /T = {(r, z): r > 0}. As is shown for example in [10), if q is the
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velocity field, there is a stream function ¥ such that

{1 —2¥ 1 8¥
- (T bz 7_3—;) )
Let L denote the operator

Lo, 2 (Lay, &
—'5(75)%7-

then the vorticity of the flow, curl ¢, has cylindrical components (0, & = —r! LY,
0). Finally, the laws of hydrodynamics demand that w/r is constant on stream-
surfaces ¥ = constant. Thus the problem of finding a voriex ring with cross
section 4 CII, flux constant k= 0 and propagation speed W > 0, amounts
to determining a function ¥e CYIT)N CHIT\ 84) satisfying (0.1-0.5), for
some function f and constants A, k¥ and W,

Without loss of generality we may take 1 =1, W = 2. We also set wir,z) =
¥(r,2) + r* + k, the reduced flow potential, and introduce the functions
hg:R—>R

s)=0 ifs=0, As)=1 ifs>0;
g(s) = his) f(s).
In this notation (0.1-0.5) become:
—L¥P =rlply —r*—k) inlH,
9(0,2) =0, (L1

|Vylir—0 as r?+ 22 5 oc0.

A solution of (1.1} is a we& C3(IT\ 34 N CY(IT) which solves the first equation
in (1.1) almost everywhere. By the maximum principle any solution y of (1.1) is
positive; the set A ={¥> 0} ={(r,2): p(r,2) > r* + k} corresponds to the
vortex core.

Following Ni[13], we introduce as new unknown the function u, related to
by

v(r, 2) = riu(r, 2).

Then, formally, we have Ly = r? Ay, where 4 denotes the Laplacian in cylindrical
coordinates (r, z) in R?, with

r=|/x§+...-|—x§, 7= x.
Hence if u(r, z) solves
P ~Au =g(r*u —r* — k) in RS,

then w{r, z) = rur, z) is the desired solution of (1.0,
Observe that if the vortex core {(r,2}:u(r, 2) > | + k/r?} is bounded, then
the decay condition “u—0 as |x]— oo™ implies (0.5).

u~>0 as lx|—>oco,

PPt R

g S

g A

i e



100 A. AMBROSETTI & M. STRUWE

Let B(R) = [x€ R%:|x| < R} denote the ball in R® centered at x =10
with radius R. It is natural to approximate of (P) by the following boundary value
problem:

{P)g —Au=glr*fu—r*—k) in B(R), u==0 on #B(R),

This problem has a physical interest in itself. It will be studicd in the {ollowing
section.

§ 2. The approximate prablem

Problem (P) will be solved by variational methods. We will use standard
notations for Lebesgue spaces L?(£2) and Sobolev spaces H™#(£2), for any domain
0 ¢ R®, The norm in L}(B(R)) will be denoted by |uly z. H(R) will denote the
space of cylindrically symmetric u in H{*(B(R)) and will be equipped with scalar
product and norm, respectively

((u, 0))g = f Vi,

BiR)
li2ele = ((u, 4})g -
In the sequel we will suppose
(f) f is bounded, continuous, positive and nondecreasing on 10, oo,

Let

G(r' u) == Jf gfrzv —r? — k) dv
1 @

and define J,, Eg: H(R)-> R by setting

JR(H) = G(r! H) s
B

Ex(u) = ¥ [ul} — J(w)-
Note that Eg is well defined on H(R) and is the difference of a quadratic and a
Lipschitz continuous and convex term. Therefore, although‘ Egp is not Fréchet
differentiable in H(R), it possesses a set-valued super-gradient dE,}(u) =u -
dJo(¥) C H(R) at any point u€ H(R), where dJy is the sub-pradient of JRz'
represented by g, the maximal monotone extension of the map u—g{riu—r
— k) obtained by filling up the jump of g at 0. One has

v€ dEg(u) ¢ Eglir + w) — Ep(t) — (0, W))e = offwllg), Y we H(R).

Moreover, the map u— dEp(u) is weakly upper semi-continuous, see [9, Prop. 6,

p. 105], and compact.
A critical point of Eg is a w& H(R) such that 0€ dEg(u).

Lemma 2.1. u& H(R) is a critical point of Ep if and only if u is a positive

ealistinn af (DY almact evervwhere.
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Proof. If Q€ dEg(u) then the results of Section 2.2 of {4] imply readily
—Adue grlu —r* — k), uc H(R)N H**(B(R)).
Let I'= {(r, z): r*u = r? 4 k}. By atheorem of StTaMpPACCHIA —Au = —A(k/r?)
=0 ae. on I. Since we defined g(0) =0, —dAu=g(riu—r2—~k) ae. in
B(R), and u is a solution a.e. of (P)g. By the maximum principle #>> 0. The
converse is obvious. [J :

Remark 2.2. Actually, for the critical points obtained below one has
meas (I) = 0, and therefore the value g(0) could be defined in an arbitrary
way. []

Note that (P), always has the trivial solution w= 0. In order to prove the
existence of solutions u == 0 we next derive some lemmas which will enable us

to employ variational principles. Some of the arguments are rather standard
and will be sketched only.

Lemma 2.3. Suppose (f) holds. Then

(i) for any R>> 0, Eg is bounded from below, weakly lower semicontinuous and
coercive on H(R),

(i) for any R> 0 the function u=0 is a (strict) relative minimizer of Ex and

forany a9 > 0 there exists 0 << ¢ < go, > 0, such that Eg(t) =, Yu: [uflg = g;

(i) 3 Ry > 0 and u, € H(R,) such that Eg (u,) << 0. Moreover, setting u, = 0
vutside B(R,), then u, € H(R) and Eg{u,)<<0, ¥ R= R,.
Proof. (i} is trivial because g is bounded.

(ii} From the fact that g(r, 4} is monotone in v and vanishes for r2u<<r? 4+ k,
by the Sobelev inequality we have

10 ¢

JGrwsE [griu—r—Ku=scC u=C [ |ufY Scllull}.
B(R) B(R)

By
Hence (ii) follows.
(i) Let ¢ € H(1) satisfy J,($)> 0. Scaling ¢$x(x) = #(x/R)€ H(R), we have

=iz = R*[$]7. 20
Moreover, by the monotonicity of g

$rix)
Ju{dg) = B(L {6[ g(ris — 1) — k) ds} dx

gk’mfn[‘n(j%)g((%)z (s—1) —k)ds]d(—xﬁ) @n

== R’ Jl(¢)u
for all R = 1. Hence

{x:u(xy21}

Ex(dg) > —o0  (R—oo0), 22
and {iiiy follows. []
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The next lemma is concerned with the Palais-Smale condition which for non-
smooth functionals like E; can be replaced by the following:

Lemma 2.4. Lez f satisfy (f) and suppose that u,€ H(R) is a sequence such
that

|Exu)| < ¢, inf {Iollg: v€ dEg(un)} = O @3
Then, up lo a sub-sequence, u,,— u in H(R) and 0€ dEg(u).

Proof. Use the fact that Ey is coercive on H(R) and dEy is weakly upper semi-
continucus and compact. (7]

In the sequel a sequence u,, in H(R) satisfying (2.3) will be referred to as a
PS-sequence. For u€ H(R), u=0, we denotc by u* the Steiner symmetriza-
tion of u with respect the z = xy axis, namely u*€ H(R), u*(r, 2) = u*(r, —2),
u* is non-increasing in |z and equi-measurable with u for fixed r:

meas {z:u*(r,z) > ¢} =meas {z:ulr,2)> ¢}, Yc=20, r=20,

Note that [u*lle < |ullg. Jr(u*) = Jx(w) for we H(R). Hence, in particular,
Eq(u*) = Ex{w), Y u€ H(R). 24)

We are now in position to state the main result of this section:

Theorem 2.5. Suppose (f)'holds. Then for R= R, defined in Lemma 2.3(iif)
problem (P), has at least two positive symmetric solutions up = uy and vg = v}
satisfying:

Jalvg) = min {J(uy; we He}l < 0;

Jnu) = inf, max {Jo(p():0S S 1), 25
where
A(R) = {pe C([0, 1]; H(R)): p(0) = 0, p(1) = u,}.

Moreover, for ug the free boundary I' has zero measure.

Proof. By Lemma 2.3(i) J; attains the minimum on some vg€ H(R). By
Lemma 2.3(iii) Jx(vg) << 0 for R large and hence vg + 0. By (2.4) we may
assume that vg = vj. '

Lemmas 2.4, 2.3(ii) and (iii} enable us to apply the “Mountain Pass™ theorem
[2)in the form stated in [9] (suitable for Lipschitz functionals) yielding the existence
of a critical point ug &= 0 satisfying (2.5). Similarly, (2.4} and the arguments of
[7, Theorem 3.4 p. 403-405] allow us to find a critical point ws = up satisfy-
ing (2.5} and such that dug/fz << 0 for z > 0. In particular it follows that
meas (I = 0.

. Both u, and o, give rise to positive solutions of (P); according to Lemma 2.1
(see also Remark 2.2). []

Py
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Remarks 2.6. (i) The preceding theorem is related to the results of [3], where

an approach based on a dual variational principle is employed. Actua,lly the
approach of [3] furnishes an alternative proof of Theorem 2.5. '
(ii) Let us point out that the symmetry of the solutions does not follow {at least
ina _dlrect way) from the result by Gipas, NI & NIRENBERG [11] because g is dis-
continuous. In {3] a rather simple proof of the symmetry results needed here can
be found. [

§3. A priori estimates for u,

In orc!er to obtgin a priori bounds on suitable critical points u, characterized
by the min-max principle (2.5) and suitable for passing to the limit R — o0 we
ner.:c‘!)v to take a closer look at the mechanism for constructing ug,

e set

»(R) =pE|‘111(§) ilsl;? Eq)>0

where /I(R) has been defined in the preceding section.

Recall that, for R'< R, we may regard H(R)C H(R) (simply extend
u € H(R') by setting « = 0 outside B(R")) and, still denoting the extended func-
tion by u, we conclude that Eg(u) = Ep(u). It follows that A(RY C A(R),

wht_:ncc ¥(R') Z y(R). In other words y(R) is non-increasing, hence a.e. differ-
entiable and

oo

/

Ry

d
J—Ry(R))dR = 7(Ro) —lim inf y(R) = p(Ry) < o0,
As a consequence, there is a sequence R, — oo such that

. d
Jim Ry o2 v(Ry) = 0. 3.0
Before stating the a priori estimates, we need some preliminary results.

Lemma 3.1, For Ry< R'=sR< R and uc H(R) we let
: . u(x) = u
H(R"). Then, if s<1 and sufficiently close to 1, ® (i€

Ry= 1|
YRy = Jnf i‘élf E p(u,).

Proof. Let us consider the maps
- u = u-fs),
v— b = p(s).

which yicld an isomorphism between H(R) and H(sR) i £
; and induce mappings
AR)~ A(sR) and A(sR) = A(R) as follows: for PEA(R) with p(l;)l; igh

s A .

T

gt

R
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let peA(sR) be the path

ﬁ(t)=(p(7’))- for 0t=s5 MO=ul/t) forsstsi.

Conversely, for pe A(sR) let pc A(R) be the path

ﬁ(r):(p(—}))n for0stss; pY=uw () forsse< 1.

It is easy to verify that for all 5 sufficiently close to L and all 5 <5 1= | there
results  E z(u,(-/1)), Ep(uy(2-)) << 0. Moreover, given a path pe A(sR), let

g = p€A(sR} be the path obtained composing the above maps p and p. Note
that

sup £,5(1ey = sup Eg(t) &2 y(sR) > 0.
weg wip
Hence if we let A = {p:p< A(R)} and define
y =inf sup E,p(t) = inf sup Eg(#),
ped wep PENRY 4 p

it foltows that ¥ =3{sR). [

Proposition 3.2, Suppose R — p(R) is differentichle ar R, R > Ry. Then there
_is a (positive) solution up of (P satisfyving

fuglk = C-((R) + 2R |y (R}| + 5),

with a constant C independent of R.

Proof. Step 1. We set w{x) = u(x/s) for 0<Z 5 -7 | close to ]. By the pre-
ceding lemma, for any £€J0, 1] there exists p€.l = A(R) such that

sup E,q(u) = y(sR) + &(l — 5°). (3.2}
wip
Moreover, let w€p satisly
Eq(t) & y(R) — &(1 — 5%). (3.29
From (3.2-2') it follows:
E,p(u) — Ex(t) S y(sR) — y(R) + 26(1 — 5. (3.3)

First we estimate the left-hand side of (3.3). By (2.1) J,p(u,) = 5% Ju(u) and

3
T (T = () Z Joal).

On the other hand, by (2.0) one has

AR DA
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whence
s s s 52— 5%
T— (lulz — lu,I2g) = T3 flee ig -

As a consequence, for 0<< 1 — 5 small,

Ep(14) — Eg(u)
5= 2 L) — B i

This inequ:lity and (3.3) imply that for 5 close to 1
— 5 Ut lFr + Jalu) = R [p(R)] + 3. (3.4)
From (3.4) we deduce
ErR(“s) = }" ” u;".fk - JJR(HS)

Z 1 fullr — R|7(R)| — 3e, (3.5)
whence:

s luliz = Nl iip = 5(E,p(u) + Ry (R)] +- 3e)
< S((sR) + Ry (R)| + 4e) < S(y(R) + 2R 1¥'(R)| + 5¢). (3.6)

Step 2. We claim there is a PS-sequence u, & H(R) such that
(i} Eqlun) > y(R);
and

(i) tim sup llu,fi} < ¢* =: S[p(R) + 2R |y(R)| + 5] + 1.

To see this, for d > 0 set

Us = (u€ HR): |ul}y < o* + 8, | Eg(u) — p(R)] = 8}
and supposc, by contradiction, that for some &* > ¢ and any ué¢ U,
inf {|lvlg: v€ dEgU)} > &*.

‘By {9, Lemma 3.4 and Theorem 3.1}, corresponding to ¢ = p(R), £, =
min {e*, y(R)}, N = H(R)\ U,., we can find €€ ]0, g5 and a homeomorphism
®: H(R) -~ H(R) such that

Pu) = u if |Ex(u) — p(R)| = y(R); EN)
Ep(P(u)y < Eq(u)  for all u:
E(Pu) Sp(R) —¢  if u€ U, Eg(u) < p(R) +¢.
For s <1 close to | choose pe A(R) such that
sup {£,p(1,) : u € p} S (SR} + (1 — 5%).

Then by Step | any u€p where Eg(u) = Y(R) — (I ~ 5*) satisfies Hull < c*.
In particular, if s is sufficiently close to |, by using (2.0) and (2.1) we can

(3.8)
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arrange that for all such u
Ep(u) = Ep(u) + 52 S y(sR) + (1 — 5°) + e/2 = ¥(R) ¢,

and uc U..

Applying @ to p, by (3.7) we obtain a comparison path p' = B(pye A(R)
which satisfies

sup {Ex(u) 1 € p} < (R). (3.9)

In fact, if Eg(u) = #(R) — (1 — 5%} (otherwise there is nothing to prove), by
the preceding remarks and (3.8) it follows that Eg(P(u)) = p(R) — & for any
u€ p. Clearly (3.9) contradicts the definition of y(R) and the proof of Step 2

is complete. :
The conclusion of Proposition 3.2 now follows immediatety from Lemma 2.4.[]

Combining Proposition 3.2 and (3.1) with the arguments of [7] we obtain

Corollary 3.3, There exist a constant ¢, a sequence R, ->oo, and a sequence
of symmetric solutions  u, = ug_ of (P)g, with

Nt ll,, < . (3.10)

§ 4. Existence of vortex rings

In this final section we prove the existence of 2 solution of problem (P), or,
equivalently, of problem (0.1-0.5), by a limiting procedure.
Let u, € H(R,) be the sequence found in Corollary 3.3 and set

An = {(r. )€ B(R,): r*u,(r, ) > r?+ k).
Lemma 4.1. There exists R* > 0 such that A, C B(R*) for all integer m.

Proof. The lemma would follow from Corollary 3.3 and the estimates of [10,
§ 5.2] or {13, § 5.3]. Below, taking advantage of the boundedness of f, we report a
slightly different, short proof, to make the paper as self-contained as possible.

Extend u, to all R® setting u, = 0 outside B(R,). Fix ry; then the following
estimate holds (hereafter we use the symbol ¢ to denote possibly different constants,
independent both of m and rq):

meas {z: 1, (ro, ) = 4}

é ¢ J. [um(rﬂv Z)]_} dz

-] ("]

drgcf fqum|~u§drdz

g 4
= [ lulr. ) 2

Fa

l 8
s f

" um ";m '

| -

<e
'Rﬂl r

wigwiu
S

o s 1
Cu | u? rPdrdz S e—|[talle | tali
m m ra m
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By use of (3.10)
meas {z: u,(ro, 2) = 3} = erg?. (4.1)
Moreover,
12ty p,, S supf< ¢ @)

uniformly, and by the LP-regularity theory the families {u, (. + x,)} are equi-
bounded in C*, locally in R?, for any choice of {x,}.

First, let 7, = max {r:(r, )€ 4,, for some z}; by symmetry, r,, is achieved
foF z=0. Sef X = {r,, 0); then w,(x,) =1, and by equicontinuity there
exists zp > 0 (independent on m)such that w,(r,,, z,) = 1/2. By (4.1) this implies
the uniform bound

r, = ezt
Likewise, choose x, = (r,,, z,,)€ 4,,, where z,, = max{z:{r,z)€ A, for some

r}. As before we conclude the existence of some ro > 0 such that u,(x) = 1/2
for x={r,2,) and |r —r,| = ro. But then (4.1) implies that

Z, = erg?

uniformly, and the conclusion follows., [

Next by (4.2) we also conclude that
(a) u, converges in CLI*(R*), 0 <& << 1, to some u, solving (P).

Let us note that & 3= 0; otherwise for m large, w, << 1 on B(R*), whence
rtu, < r*4 k. Sinceu,, is a solution of (P),,, and g(r, 2) =0 forall riz<rt 4,
it would follow that u, =0, a contradiction. Moreover remark that u=0
implies that the vortex core

A={{r,2)€ R*:rulr,z) > r* + k}

is not empty. Finally, by Lemma 4.1, 4 C B(R*) is bounded. In addition, (a)
and Theorem 2.5 imply that

(b) u is symmetric because the u,, were so; moreover, dufdz >0 for z> 0.
Hence 34 has zero measure,

Finally, also in view of point (a) above, one has:
(c) v = r?u is a solution of (1.1) in the sense specified in Section 1.

We can conclude by stating:

Theorem 4.2. Suppose (f) holds and let ug, vy be the solutions of (P)g, R large,
Jound in Theorem 2.5 and Proposition 3.2, respectively. Then

(i) there is a sequence R, oo and uc H'*(R®) such that up —>uin H'?;

u=ulr,z) and v = ru is a positive, symmetric solution of (1.1) corresponding
to a non-empty bounded vortex core;

(i) Ex(vg) > — oo and |vglye—> oo

P

L

Tes

-
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Proof. (i) This follows from Lemma 4.1 and conclusions (a), (b}, (<).

(it) by (2.2) it follows that Eg(pz) > — o0 (R o0,

Finally, let ¢> 0 be a constant such that G(r, ) < cu?. Such a constant
exists because g is bounded and g(r®u —r® — k) =0 for all r2u < r?®+ k.
Then

0<illvais = Ex(va) + [ G(r,e0) = Ep(vg) + ¢ |vglin.
' R

Hence
€|vglla = —Exlvg) —>co.

This completes the proof of the Theorem, [J

Remarks 4.3. (i) The arguments concerning the existence of u, and its con-
vergence to a solution « of (P) work if fis superlinear, as well. However, in such a
case, the a priori estimates on |Vug|[; x can be obtained in a more direct way, as,
for example, in [I1].

(ii) It is clear that the procedure employed above can be used to prove the existence
of nontrivial solutions of semilinear elliptic boundary value problems in R" with
bounded nonlinearity, in presence of a suvitable symmetry. We leave it to the reader
to carry out the details.

(iii) Theorem 4.1 holds if k= 0. If & = 0, the vortex is spherical. If, in addi-
tion, f is identically constant, we would find Hill's spherical vortex, according to
the uniqueness result of [4].
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