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The forced pendulum: A paradigm for nonlinear analysis
and dynamical systems

Jean Mawhin

Abstract. This paper is a revised version of a falk given at the celebration of the sixtieth
birthday anniversary of P'rofessor Wollgang Walier at Karlsruhe in May 1987, We show
that, besidvs its fundamental importance in the development o classical mechanics. ellipue
function theory and the modern theory of dynamical sysiems, the pendulumn cquation, and
in particular the forced pendulum problem has played and sull play a very basic role in
the development and testing of modern mathematical technigues in nonhnear funciional
analysis and critical point theory.

Introduction

The study of the mathematical free pendulum constitutes since centurics a classical
chapter of every extbook of analytical mechunics. Mgr |.emaitre, the famous cos-
mologist, went [urther in his lectures on mechanics at the University of Louvain.
His lecture notes are catitled: “Legons de mécaniyue. 1.e pendule”, and we can
read, in their introduction: “ An intermediate attitude that we shall follow consists
in retaining from the history of science the precminence piven 10 a particular prob-
lem, the motion of the pendulum, and hence to present the fundamental concepts
in the setting of this particular problem ... this problemn of the pendulum is one
of those where the science of mechanics has provided one of its greatest contribu-
tions to the edification of modern mathematics, because it cun be widely identified
with the study of the elliptic functions around which was constructed the theory
of functions of & complex variable.”

Much more tecently, in an extended and highly interesting article of the French
“Encyclopediae Universalis™ entitled ~Systenies dynamiques dilferentiables™, A,
Chenciner uses again the pendulum as a ceutral theme to initiate the reader to
the modern theory of dynamical systems: “The first chapters describe in a detailed
way examples connected to the pendulum and introduce more and more complex
asymptolic behaviors whose analysis will require the wore abstiuct concepts of
the last part.” Among the heads of the ninc chapters of this article, we find: the
pendulum without friction: a Hamiltonian system, the pendulum with lincar fric-
tion: a structurally stable system, periodic perturbations of a frictionless pendulum
and area-preserving diffeomorphisms of the plane.
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272 The forced pendulum: nonlinear analysis and dynamical systems

The aim ol this paper is (o add to those eloquent examples of the role of the
pendulum as a paradigm in classical mechanics and modern theory of dynamical
systems (which ure briefly recabled in Part One and in the last section of Part
Two), some further arguments on the importance of the forced pendulum cquation
to the development of the fundamental methods of nonlincar funclional analysis
and of global analysis.

We hope to convinee the reader that classical problems always remain a source
of inspiration and motivation in the genesis and testing of modern sophisticated
mathematical methods. The number and interest of the problems which are left
open will confirm Poincart's famous quotation that there are no solved problems,
but unly problems which are more or less solved,

L. The free pendulum
1. Galileo’s isochronism law (linearization)

Although he undoubily had precursors, like Ibn Yunus, Oresme, Leonardo, Car-
dano, Galileo is the first scientist usually associated to the experimental and theoret-
ical study of the pendulum. Everybody knows the story - true or false — of
his discovery in 1583 or 1584 of the isechronism of the pendulum oscillations,
by observing a suspended lamp in the cathedral of Pisa. Galilco's relations with
church happened to be less happy later in his life!

The first written document of Galileo on the isochronism of the pendulum is 4
fetter of 1602 to Guidobaldo del Monte: * You will pardon my msistence in wishing
to convinee you of the truth of the proposition that the motions in the same
quadrant ol a circle are made in equal times.” In his famous “Dialogo’” of 1632,
he writes: “The samc pendulum makes its oscillutions with 1he same frequency,
or very little different, almost imperceptibly, whether these are made th rough large
ones or very small oncs along a given circumference.” This is of course o wrong
stalement or, in a positive way, we can consider it as a very carly manifestation
of what is mayhe the very first basic tool in nonlinear scicnce, the linearization.
We know indeed that the isochronism is not a property of the solutions of the
diffcrential equation of the pendulum with length !

u’' 1 tg/ysinu- 0, {1
but of its lincarized form
u 4 {g/He=0. (2)

The precise expression T=2n(lig)"'? for the period of the solutions of (2) will
be first given by Newton in his *Principia ', in 1687.

Notice that some applications of the pendulum were already present in Calileo's
work, in particular to medicine with his “pulsilogium™ for checking the pulse of
a patient, to navigation with the determination of the longitude, and to horology
with the regulation of mechanical clocks.
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2. Relation between period end amplitude
(scries and elliptic functions)

IT Guidobaldo del Monte already expressed in 1602 a good deal of scepticism
to Gialileo’s isochronism claim, it is a Belgian astronomer, Wendelin, who first
showed experimentally that the period of oscillations increases with the amplitude
of the oscillation and gave fairly precise correspondance tubles in his * Luminarcani
Eclipses Lunares ™ of 1644, This fact was then mathematically deduced by Fluygens
i his flamous “Horologium Oscillatorum ™ of 1673, and the same Huygens also
obscrved the noalinear phenomenon of synchronization between (wo pendulums
attuched on the same thin string. Two hundred and fifty years later, van der Pol
and Appleton will discover an analogous phenomenon in eleetrical circuits and
the theory will be initiated by van der Pol.

The mathematical relation between the period 7 and the amplitude A is cupressed
by Euler in 1736 in his " Mechanica by the serics

T- ZR(I/g]”Z[I + i

k=1

(l-3...(2k---])

2
- i 2k K "t '3
2.4, (2k) ) s “'2)__' )

and Poisson, in his "“Traité de Mécanique ™ of 1811, will analyze (he pendulum
cquation by using 4 method of development in series of power of a small parameter.
Relution (3} will be formulated by Legendre in 1825 ¢ trgité des Jonctions ellip-
tigues ) and by Jacobi in 1829 ( " Fundamenta nova theoriae functionem ellipticar-
um "} through clliptic integrals and functions, nanely

T- 4/ PRk =41/g) 2sn Y1 K)

where
n2

K{k)=J "

dx

~k? sin? x)t?

is the complete clliptic integral of first kind. s»n ' the inverse sinus-amplitude func-
tion and k?=sin*(A4/2). The importance of the clliptic functions n the present
renewal of the integrable mechanical systems has not 1o be emphasized here.

3. Phase planc analysis (qualitative theory)

The quantitative theory of the frec pendulum was completed by the expression
of the solutions of equation (1) in terms ol clliptic functions, We owe to Poincaré
in I8K1 the qualitative study of the solutions of nonlincar differential equations,
namely, in the case of equation (1) the topological description of the orbits
(w{t), w(t) of the solutions of (1) in the phase-plane (n. w). The corresponding
picture, with the stable equilibria (2kn, 0) ¢centers). the unstable equilibria
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2k Uym, O) {saddle poinis ), the nonconstant periodic solutions (closed orbits),
the rotatory solutions and the separatrices connecting unstuble equilibria (heteroc-
linic orbits or homoclinic orbits if we identify, modulo 2x, the unstable eguilibria,
ie. il we work on the natural cylindrical phase manifold). As ofien, the history
has tuken the opposite way with respect to Poincaré’s methodology in attacking
nonlinear differcntial equations: the quauntitative study of the free pendulum has
preceded the qualitative one.

The quaiitative approach is particularly useful in the discussion of the damped
free pendulum eyuation

' +ew +(g/h)sinu=0

whose solution vannot be expressed in terms of known functions, which is also
the case for the cquation

W+cu+asinu=>b

which occurs in the study of synchronous motors (Edgerton, Fourmarier, Tricomi).

II. The forced pendulum
1. Duffing’s heuristic approach (approximations and jumps)
The study of the forced pendulum equation
u” +asinu=>bsin(wt) 4)

where a=+0 and > 0 has a much more recent history than that of the free pendulum
equation. It can be traced to Duffing’s monograph " Ercwungene Schwingungen
bei verdnderlicher Eigenfrequenz ™ published in 1918 and motivated by questions
of applied mechunics. The main question is to analyze the phenomenon of resonance
when the period of the oscillations of the unforced equation depends upon the
amplitude. The forced pendulum is considered as the simplest model which exhibits
this behavior.

Duffing starts by replacing equation (4) by its first nonlinear approximation
W +au—au/6=b sin(wr) (5)

and uses then a first-order Gulerkin or harmonic balance method which consists
in obtaining an approximate solution of the form

(1) = A sin(wi)

by inserting it in (5), developing the left-hund member in Fourier series and cquaiing
the Fourier cocfficient of sin{we) of the left-hand and the right-band member.
This gives an algebraic third order equation in A, with coeflicients depending upon
a, b and w, which provides therefore an approximate relation between the frequency
of the forcing term and the approximate amplitude of the periodic response, which
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is of course supposed 10 exist (the frequency-amplitude carve). The study ol this
curve alowed Dulting to discover the typically nonlincar phicaomenon of the wapli-
tude jump of the periodic response whea thic external lrequeney varies, o phenome-
non which has been “rediscovered™ and reinterpreted recently in the frame ot
catustrophe theory.

Let us notice that Dufling also considers the influence of o daniping lerm (propor-
tional to '} in (3}, thal he gives a very detailed treatmoat of the free equation
(1) using the cllipue funclions of Weierstrass and that he alvo finds, in an appendix,
his frequency-amplitude curve by using the Ritz approximation method, e, a vari-
tional approximation method which consists in replacing the minimization of the
corresponding Hamiltonian action

2w/ . H“(I) ]
J(u)= j (L/2)' (8)) — e () +a e t b sin(we) u(r)JJ:
0

by the minimization of the real function of A obtained by replacing w{r) by A sin{w!t)
in J.

2. Hamel’s mathematical treatment (direct method of he calculus of variations,
fixcd point method, Liapunov-Schmids reduction)

From the mathematical viewpoint, a fundamental contribution was given in 1922
by G. Hamel (a student of Hilbert) in the Muthematische Annalen. Hamel siarts
by giving the first existence proof of a T-periodic solution of equation (4) {with
T=2n/w) by the direct method of the calculus of variutions claborated in the begin-
ning of the century by Hilbert 1o legitimate the Dirichlet principle in potential
theory. To this elfcct, Hamel tries to minimize 1the Hamiltonian action of (4) given
by

T
)= [ [(1720 (0)* + @ cos u(ty+ bu(t) smiwn ] dt
o

over a suilable space of T-periodic functions. He make: the basic observation
that J can be writicn in the equivalent form
T

Jw) = J [ 2 ) +acosu(ty+w Ybu't) coslwn | d,

a
from which it is evident that J is bounded from below and such that
T+ 2m)= 1 (). ©®

Because of this condition, one can, without loss of gencrality, restrict itself to
the solutions such that [u(0) <2m, so that, by using the equation, oue sec that
all the possible corresponding critical points wre such that [u()], [w'(0} and (1" (1)
are uniformly bounded by quaniitics depending only upon g, b and 1. The sesult
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276 The {orced pendulum: nonlingan analysis and dynanncal systems

then follows from the Hilbert method. We shall come back later to recent reforma-
tions and developments of this approach in the setting ol modern critical point
theory.

Hamel uses then the Ritz method, like Duffing, to obtiin an equation for the
approximate value of the ficst Fourier coefficient of the periodic solutions (assumed
to be odd lunctions). This equation is easily found to be

A~ 2aJ,(A)+b=0

where J; is a Hessel function, and has a unigue solution when [a| <1 or when
|a|>1 and |h/u| is large, three solutions when |al> 1 and |b/a} is small enough,
and so on, according to the oscillatory properties of J,.

The next step in Hamel’s paper consists in using the symmetry of (4) (with respect
to u and ¢) 10 notice that the odd T-periodic selutions of (4) can be obtained by
extending, using oddness and periodicity, the solutions of {4) which satisfy the
Dirichlet boundury conditions

w(0) = u(1/2)=0. (7)

Problem (4) — (7) is then written in the equivalent form of a nonlinear integral equa-
tion or fixed point problem

r:2
u(ty=a | K(1,8)sinu(s)ds - bsinfwr)=(F u)t), (8)

L}]

where K is the Green function of the differential operator ~ d/d 1’ with the Dirich-
let boundary conditions on [0, T/2]. Lquation (8) is then solved uniquely, for |u| <. L,
by the method of successive approximations (notice that the famous memoir of
Banach on the contraction mapping theorem also appeared in 1922). Indeed, Hamel
already uses here a refincment of the contraction mapping theorem, namely that
the method of successive approximations converges to a unigue fixed point when
the #'" iterate F" of F is a contraction for some n. Notice that (8) is a very carly
example of what will be called a Hammerstein vquation,

To study equation (8) when [a¢]= 1. Hamel uses the method introduced by [
Schrudt in 1908 to study nonlinear integral equations and called now the Liapunor-
Schmidt method. He first considers the case of small solutions when b s small,
i.e. the solvability of an implicit function problem of the form

Glu, by=0

near the solution (0,0). When a=+n? (neIN*), (,(0,0) is invertible as a linear map-
ping in the space of continuous functions on [0, T/2] verifying the Dirichlet condi-
tions, and the existence and uniqueness of small solutions u for small |b| follows.
This 15 essentially the method already used by Horn for the same problem in
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1920, as Hamel notices it. When a is the square of an integer, Hael, following
E. Schmidt, first writes (8} in the cquivalent form

T T2
u(t) m® | K(,shuls)ds=m? [ KN, [sinuis)- wisttds- bsinle, 1), (9)
1) 4]
where m? = a. Setting B (1, s)={(4/T)m™ 2 sin(ment) sinimems), K,=K B,
12
z=(4/T) | uls}sin(mws)ds, (10)
L]

he can then write (9) as
il

u(t)y -m? qu,,,(!.s)u{.v)d.s
(]

2
=zsinfmwn+m® [ K6 s)[sinu(s)—u(x)ds b sin(or), (t1)
1]

which is now an implicit function problem of the form
Gl b 2)=0
such that
T2
(Gl (90,0,0): visr =m? | K (~.8)r(s)ds
Q
is again invertible, in contrast to G0, 0). The implicit function theorem provides
a umque small solutton a=U(z, h) of (11} for small b and . and this ¢ will be
a solution of our original problem (9) is z satisfics the bifurcation eguution
T2

=4/ T) ]" Uz, hiis) sin(mins)ds
@

deduced from (10).
The same approach is used by Hamel to study equation (8) with |al= 1, |b] small
and 1 is close to a nontrivial solution of the equation

w+asinu=0
expressed in terms of elliptic functions.
We think that this description is sufficient to convince the reader that Hamel's
paper is one of the most siriking pioncering coniributions (o nonlinear analysis.

3. The Dirichlet problem (Hammerstein und Lichtenstein variational trcatments,
Birkhoff-Kellog-Schauder fixed point theory, continuation methods)

The followers of Hamel will concentrate on the Dirichlet problem (4) -(7) and
to its generalization
' +asinu=e(t)

4(0) = u(7172)=0. 2
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In particular, between 1927 and 1930, Hammerstein gave a very complicaled proof
of the existence of at least ane solution for (£2) for all values of a and all continuous
functions ¢ by first approximating equation (8) by a finite system of equalions
in [initely many unknowns via a Gulerkin method, proving the existence of 4 solution
to the Galerkin equations by a variational method (i.¢. by muumizing a real function
whose gradient zeros correspond to the Galerkin equations) and then going to
the limit with the approximate solutions. It is interesting to notice that a much
more simple variational treatment was available (but not used) by dwelling on
a remarkable paper written by Lichtenstein in 1915 in Crelle’s journal and guoted
by Hammerstein in his 1930 paper in Acta Mathematica. Denoting by E(i) the
uniyue solution of the linear problem

u'=e(t), uwl®@=u(1/2)=0,
and making the change of unknown quantity given by u= v+ E, we gei the equiva-
lent problem

v't+asinfp+ E{t))=0 (13)
v(0)=v(T/2)=0.

For the more general problem
vV'=f(t,0),  o0)=v(T/2)=0 (4

Lichtenstein proves the existence of a solution when there cxists AR such that

F(r,v)==jf(!,s)dszA

(1]

for all te[0, 7/2] and velR, by showing that the associated action functional given
by
T2

Jy= | [/ (@) + F(L o) de,
0

which is clearly bounded below, achieves its minimum on a suitable space of func-
tions verifying the Dirichiet conditions on [0, T/2]. Lichtenstein’s theorem can
of course be directly applied to (13) and provides a much more simple proof of
Huammerstein’s result. Notice that, besides the use of a Galerkin argument, the
difficulties of Hammerstein treatment comme from the fuct that if we start from
a variational equation in a Hilbert space H,

Lu=g'(u),

with L self-adjoint and g a differentiable real function, which corresponds to the
gradient of the real function

@ u—{(1/2)(Lu, wy— g (),
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the left-hand member of the equation

u-- Lty =0
(when we assume 1oto be dnvertible) s not, in general, the gradient of a real
function on H.
Hammerstein’s result could also have been proved by using a gencral existence
theurem for nonlincar boundary value problems stated und proved by HBirkhoif
and Kellogg in their pioneering paper ol 1922 (decidedly a great year lor nonlinear
analysis) in the Transactions of the Americal Mathematical Socicty where they
extend the Brouwer fixed point theorem to the infinite dimensional spaces 772 and
C*, and therefore pave the way for the more general Schauder’s fixed point theorem.
Indeed, the operator F defined in (8) (with b sin(ow ) replaced by a general continu-
ous lunction e(r) clearly maps the space C[0, T/2]) into a4 compact set of this
space (by the Ascoli-Arzela theorem) and hence has at least one fixed point. The
appheation of this method 1o the penduluin equation will be explicitely mentioned
in the thirties by the Italian school (Caccioppoli, Scorza-Dragoni, ...}
En a series of papers published in the thirtics, 1plish has used the Liapunov-Schmidt
method and the continuation method (i.e. plobul implicit functions theory) to study
extensively the hifurcation of the solutions of (4) —(7) when the parameters ¢ and
b vary, a problem which is still today far from being solved completely and would
deserve a further study based upon the modern techiques of bifurcation theory
which have been developed recently.
We can finally notice that the Dirichlet problem for the dumped and forced pendu-
lum equation

W tcw+asinu=e(l) 3

w{Oy=u(1;2)=0
can be treated exactly like the undamped case through the use of the Schauder
fixed point theorem (providing existence for cuch ¢, u, T and ¢) but hus no variation-
al structure when ¢ +£0. However, the change of unknown quantity given by

(13)

e Wy
transforms the problem (15) into the equivalent one
v () e+ e g sin(e I p) = e (1),
v(O)=o(1;2)=0
which has a variable structure and still verifics the assumptions of the Lichtenstein

theorem.

4. ‘T'he periodic problem: existence of a solution {upper and lower solution method,
variational treatments)
In contrast to the Dirichlet problems (12) and (15), the corresponding perivdic
problems
U’ tasinun =e(t), UuO)—ui M= {0)—1'(T) -0, (16)
U tew +asinu=e(), u0)—u(T)=u'0)-uw'(T)=0, . K
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are not solvable for all forcing functions s. Indeed. for bath problems, the following
necessary condition for sovability

-
|(‘|=:—-|T_1 jc(r)dr < |u| (18
o

is vasily oblained by integrating the differential equation over [0, T] and using
the boundary conditions. This condition is trivially sufficient when the forcing
term is a consiant. In contrast to the Dirichlet case, the associated linear operator
— J3/d1* with the periodic boundary conditions is nol inverlible, and hence prob-
lems (16} or (17) are not reducible to a Hammerstein equation of type (8) with
F bounded on the function space. This may be the reason why. except maybe
for cases where e{ty=¢£h(t) with |¢| small, the periodic problem was not considered
between Hamel's paper and that of Knobloch, in the Mathematische Zettschrift
of 1963, dealing with the merhod of upper and lower solution for periodic boundary
vitlue problems. Knobloch's general result for the problem

wl=finu ), ut) - u(T)=u'(0)— u'(T) (19)
with f continuous and such that an estimate of the type
[ £ u o)< v + ¢y

holds for bounded . is that the existence of T-periodic functions x and f of class
¢ such that the inequalitics

Nz alnad @), = a), )

and
() < 1)

hold for te[0, TJ, imply the existence of one solution 10 (19) such that
a(ny=ult) < 1)

for te| 0, T'). The choice of alty=m/2 and f(0)=23m/2 implics that problems (16)
or (17) have at least one solution taking values in {#/2, 37/2] for all forcing terms
¢ such that

max |ett)] < ldl. {20}

e T

If we apply Knobloch’s theorem to the equivalent formulation for (17)
v+ cv +asin(e+ Eun=¢  v0—uv(T)= (0 () =0 21)
where E(f) is the unique solution of the lincar problem
.

w=elf) 6, w0 —a(Ty=w)=u (=0, [ulndr=0.

i
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we oblain existence of a solution if ¢ is such that

osc Fi= max E()— min Ein<gn 20
e |0, 1] |, Tl

and ¢ satisfies the condition
el < al cos[(1/2) osc E]. (23

Condition (22) will be in particular sutisfied if the £2-norm of ¢ —¢ is not o
large. so that hypotheses (18) and (23) are distinct.

On the other hand, motivated by a result of Castro who used in 1980 a variational
version of the Iiapunov-Schmidt method 1o prove the existence of a solution for
(16) when

=0 and [|u|<1,

Willem in 1981 in the Publications du S¢minaire d'analyse non linéaire de |'univer-
sité de Besangon and Dancer in 1982 in the Annali di Mathematica rediscovercd
independently the Hamel original variational treatment (simplified by the cxplicit
use of Sobolev spaces and lower semicontinuity) of the periodic problem {16) and
proved the existence of a solution of (16} when

e=0 (24)

by minimizing the corresponding action functional. Notice that condition (24) is
distinct from conditions (18) and (23) and that we do not know, up 1o now, any
condition which would unify them. Notice also that the only known prools under
condition (24) are the variational ones. As, in the periodic case, no transformation
is known which, like in the Dirichlet case, would reduce problem (17) with ¢+0
lo a periodic problem having variational structure, the guestion was open to know
if (24) still implicd the existence of a solution of (17) for all @ and all ¢4 0. Very
recently, Ortega has answered this question ncgatively by showing that if
T=2ny:>0, there exists he C7(R), T-periodic and verifying the condition h=0
and A, >0 such that, for all 1> Ag. the problem

W+ Ay + 4 sinu=4h(t), u(0) = u(M=u0) -1 (T}=0
has no solution.

Those results show that, aithough some contributions of Dancer, Fournier, Kannan,
Ortega, Willem and the author provide a good mathematical deseription of the
set of forcing terms ¢ for which problems (16) or (17} have a solution, much remains
1o be done in oblaining explicit conditions generalizing (20), (23) or (24).

5. The periodic problem: multiplicity of the solution set (topological degree and
critical point theory)

If we apply the existence results of the previous section to the special cuse wherc

e= 0. we can casily check that they provide the solution u=n {or the geometrically
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equivalent solution u={2k+ 1y x, ke £), 1e. the unstable equilibrium of the pendu-
{um (the physically unobservable one). When e—0, we know that there always
exist another geometrically distingt 7-periodic solution, namely u=0, the stuble
equilibrium. A natural question is then that of the existence of two geometrically
distinct solutions of (16) and (17) when one of the conditions (20), (23) or (24)
holds. This was done by the author in 1982, when condition (20) holds. with strict
inequality, using topological degree, a way of counting algebraically the number
of solutions of an equation. The simple underlying idea can be cxplained as follows.
If we choose 10 use the Leray-Schauder degree to prove Knobloch theorem then,
when strict inequalities hold in its assumptions, we obtain from the proof the
supplementary information that the absolute value of the Leray-Schrauder degree
d(E, g) associaled to the corresponding fixed point operator and to the open set
of C([0, T])

E,p={u: alh<ult)<p() forall re[0, T1}

is equal to one. Now, because of the periodicity of the nonlinear term in the
pendulum equation, we can take (x, f)=(n/2,3n/2) or (o f)=(5n/2,7=/2) or
(o, )=(n/2, Tn/2). Now the additivity property of degree tels us that if
D=E, ;102 MExj2, 302 Esxjz,7x12), then

d(Eu,'z,wz):d(Eu;z,auf2)+d(Esx;2.vuz)“'d(D)»

and hence necessarily d(D)+0. But then, the Leray-Schauder (ixed point theorem
implies the existence of a solution in D, ie. of a solution geometnically distinct
from the one in E, ;5 3, Or its transiates by 2kn. A similar argument can be
used when conditions (22) and (23} hold with strict inequalities.

When we consider equation (16) under condition (24), the existence of a second
solution can be obtained, as shown by the author and Willem in 1984 in the
Journal of Differential Equations, by a minimax method close to the Ambrosetti-
Rabinowitz mountain pass lemma and its ancestors in minimal surface theory. Here
again, the underlying geometrical idea is rather simple. Because of condition (24),
the action Runctional associated to (16) und given by

T

Jiw)= I CEL/2)(u ()2 +a cos u{t)-+u(tye()] de

V]
has the periodicity property
Ju+2m)y=J(u) (25)

for all u in the suitable Sobolev space of T-periodic functions. Consequently, J
has infinitely many minimums, and hence two, and if they are isolated (there is
nothing to prove in the other case), there must exist another critical point of
J (the mountain pass connecting the two valleys). This critical point provides the
second geometrically distinct solution.
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This mubtiphicity resull cun also be obtained using another mmimax method, the
Lusternik-Schnircmann theory, as shown recently by Fourner, Willen and the
author. The periodicity property (25) of the action suggests 1o consider J s delined,
instead of the Sobolev space considered above. on the infinite-dimensional cylinder
oblained by taking the product of the circle $' with the corresponding vector
subspace of T-periodic functions having mean valuc zero. Now this Banach mani-
fold bas Lusternik-Schnirelmann catcgory eyual to two (in contrast to that of
a Banach space, whicli is equal to one), where the Lusternik-Schnirelmany category
of a topological space S is the least integer k such that § can be covered by
k closed contractible subsets. Now, a theorem of Palais ensures that, in our situation,
the number of critical points of J is greater or eyual to the Lusternik-Schnirelmaon
category of the underlying manifolds, so that (16) has at least solutions. Such
a result can also obtuined, as shown independently by Rabinowilz, using, in the
usual Sobolev space, a4 minimax argument on a fumily of subscts which takes
advantage of the penodicity property of the functional. Those Lusternik-Schmircl-
mann approaches huve the advantage, over the mountain pass lemma argument,
of giving better multiplicity results for variational systems of second order cquations
with periodic nonlincarity: the number of distinct periodic solutions in this casc
will be greater of equal to the dimension of the system plus ong, instead of the
value two still given by the mountain pass argument.
Morte gencrally, the results can be carried to Lagrangian systems with N degrees
of freedom

(d/d (D, Lt w u)=D, L{t,u, ')

W —u(T)=u'{0)—u'(T)=0
where the Langrangion L, sufficiently smooth, has the form

L{t, x, ) =(1/20M {8, x) p, p)+ (/) (A%, x)+ V{2, x) H(el), x)
with M{t, x) symmetric and uniformly positive definite and A symmetric and semi-
positive definite. Thuse assumptions easily imply that problem (26) with V=0 and
¢=0 only admits constant solutions, which will be necessanly then clements of
ker A. The natural periodicity assumption which las now to be made on M and
¥, and which generalizes the 2r-periodicity of sin u in the forced pendulum cquation,
is to assume the existence of a basis {a, ..., 4} of ker 4 and of positive numbers
Tys ..., T, (where 1< m < N) such that the relations

Mit,x+ Ta)=M(t,x), V,x)+Ta)=Vux} (1<i<m)

hold for all 1[0, T] and xeRY. Under thoses assumptions, it can be shown by
the Lusternik-Schnircimann arguments sketched above that the following natural
generalization of condition (24)

(26)

(ésai)iox {l.“_*lﬂnl)

implies the existedce of at least m+1 geometrically distinct solutions of (26)
(Mawhin, Fournier, Willem, Rabinowitz). Systems (26) and the assumptions are
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general cnough to contain as special cases the Beletski equations for the libration
of sateliitcs and the equations of the forced multiple pendulum.

A sharper multiplicity resull can be obtained, under some nondegencracy assump-
tions, using Morse theory. In this approach, the cntical points of a functional
¢ over a manifold M are detected by analyzing the changes in the topology (namely
the homology} of the scis ¢ ={ueM: @(u)<c} when ¢ crosses a critical value,
ie. the umage by ¢ of a critical point. If « is a crilical point of ¢ with critical
value c, its critical groups are defined by C, (@, w)=H, (¢ " U, ¢ U\{u}), where
the H, denotc the relative homology groups and U is a closed neighbourhood
of u. The most precise information provided by Morse theory concerns the casc
where the critical points u are non-degenerate, i.€. when " (u) is invertible. IT it
is the cuse, and if ¢ is bounded from bclow und satisfies some compactiess condi-
tion, Morse theory implies that the number of critical points of ¢ in M is greater
or cqual to the sum of the Betti numbers M, ie¢. the sum of the dimensions of
its homology groups. The functional J associated to (26), i.e.

.,.
HHu)= j L, u(t), v’ () de

LH

is bounded from below under the assumptions above and salisfies the periodicity
conditions

Ju+ T a)=J), (I<gi<m)

for all v in a suitahle Sobolev space. 1t is therefore natural o consider J defined
over the product M of an m-dimensional torus 7™ and of an infinite dimensional
subspace of functions u satisfying the conditions

(ag)=0, Il<i<m

[t is easy to show that the sum of the Betti numbers of M is equal to that of
the Betti numbers of T™, i.c. to

£l

Consequently, when ali the critical points of J are non-degencratc, their number
is not less than 27,

Weakening the assumption that A is semi-positive definite in the results described
above is important for applications like lincarly coupled forced pendulums, some
models of muitipoint Josephson junctions in solid state physics und systems coming
from space discretizations of some boundary value probiems for the sine-Gordon
equation. The difficulty is that, without this assumption, J is no more bounded
from below, but mure sophisticated minimax methods than the Lusternik-Schnirel-
mann one and more elaborate techniques of Morse theory allow (o extend the
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above conclusions, modulo some mild restriciions upon .1, as shown very recently
by Chang, Fonda and the author. This lasi extension is closely related to the
Conley-Zehnder proul of a conjecture of Arnold in symplectic geometyy, that they
reduce to an estimation of the number of periodic solutions of a Hamiltonian
system

JZ+ D, Hit,2)=0

where H is periodic in ¢ach of its variables.

6. The periodic problem: perturbation of the non-constant solutions (subharmonics,
invariant tori and chaotic solutions)

All the global existence results described up to now give periodic solutions which
correspond, in the unforced case, to the stable and unstuble cquilibria of the frec
pendulum cquation: they can be considered as deformations, under the action
of the forcing term, of those very special periodic solutions. Much less is known
about the effect of a periodic forcing term ¢(f) on the other trujectories of the
free pendulum, and all what is known refers to the special case of the equation
(with, say, a>0)

Wt asinu=chi) 2N
where h is T-periodic and £>0 is a small parameter (perturbation problems).

Using Morse theory for nondegenerate critical manifolds, Willem has shown recently
that il T=2=/a, and & is suofficiently small. the closed orbils of (27) with £=10
having period jT for some jeN* generate at least two solutions of penod jT°
for (9). A similar result had been obtained by Sari and Schmitt when the forcing
term h satisfies some symmetry conditions. The Kotmogorov- Arnold-Maoser theory
is a powerful tool for the study of the perturbation of the gualitative phasc-plane
portrait of the pendulum equation.

Recently, much attention has been paid to the perturbation of the homoclinic orhits
of the frec pendujum cquation under the action of a small periodic forcing term,
In particular, Kirchgraber, in an unpublished paper of 1982 and Palmer, in an
article published in 1984 in the Journal of Differential Equations, have considered
the following special case of (27)

Wb sinu=rsint. (28)
WWeg= —m, ¢y == m, s{thand - s(t} respectively denote two consceutive unstable equi-
libriums of (28) and the connecting homoclinic orbits, and il #,(¢) and »,{t) arc
the 2 -periodic solutions of (28) gencrated by ¢ and ¢, respeciively, Palmer proves,
for & small, the cxistence of solutions a , () and o _ (1) near s(f) and — s{t) respectively,
such that

g, (D=}~ 0 as t-»—00, o, ()= {M)>0 as -+

Moreover, if x=(....a.,, tg, ¢,, ...} is a doubly infinite scquence with a;e b,
£} for all integers j, Palmer prove that for £:-0 sufliciently small and m sufliciently
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large, there is a unique solution u, of (28) along which the pendulum rotates counter-
clockwise during the time segment [(2k-2)mn, 2kmn] if o, =1 and clockwisc
if a,=40. This shows how the forced pendulum leads us to the exploding domain
of chaotic motivns where a rundom behavior can come from a Jdeterministic system
with very few degrees of freedom. The importance of pendulum-like equations
in the study of those fascinating phenomena is examplified by the variants of
the forced pendulum equation, like

W'tcu +asinu=bsin(s—t),
u +eut— 1) +asinu=hcos,
which rcgularly occur in popular articles or books about class.

We arc far away from (he isochronous oscillations of the suspended lamp in the
cathedral of Pisa and from the commonsense expression “ regular as a clockwork™,
but we see that, although chaos came from order, there is still some order in
chaos.
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