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Introduction

The infinite dimensional version of Sard's theorem, due to
Smale [9], is very useful in the study of boundary value problems of
the form

Aw =f

where A is a Cl-Fredholm map from a Banach space E 1o a Banach
space F. In some applications, the existence of a solution is proved
only when f belongs to a closed subspace G of F. In this case, it can
be interesting to prove that the set of regular values of A in G is
residual in G. This is not possible, if G # F, by a direct application
of Smale’s result. A first concrete example is given by the periodic
problem for the forced pendulum equation

u" + A sin u = (), u(0) - &(T) = u'(0) - u'(T) =0,

which is solvable when f has mean value zero (see | 10} and [7] for a
more general version). Under this assumption, the periodic problem
has at least two geomeirically distinct solutions. An other proof of
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this result, using a generalization of the Poincaré-Birkhoft theorem,
was recently given by J. Franks [5]. A second example is a periodic
problem motivated by the Conley-Zehnder solution of the Amoid
conjecture {2]. Consider a Hamiltonian H : RN —» R which is
periodic in each variable. The associated periodic problem

Ju' + VH®) = {{t), u(0) = u(1),

is solvable when { has mean value zero (see | 1], [3]. [6] for more
general results),

Let C be the space of continuous T-periodic functions with the
supremum norm. The main result of this paper (Thcorem 2)
provides conditions under which all the solutions ol the N-
dimensicnal differential systemn

Lx + VV(x) =y,

are nondegenerate when y belongs to a dense subset G of the sel of y
€ CY% with mean value zero. In this equation, L is a linear
differential operator acting on T-periodic functions and V a smooth
function sublinear at infinity gnd verifying some pcriodicity
conditions. It is essentially assumed that the kernel and cokemel of
L coincide with sonie subspace Z of the constant mappings n C%, and
the condition on V is that, for each & on the unit sphere of 7, the set

NE) = {x € RN: (VV(x),£) = 0 and DV(x)E = 0}

is totally disconnected. The idea of the proof consists in considering
L + VV as a mapping between suitably defined Banach manifolds
and then applying 1he Sard-Smale theorem.

The assumptions of Theorem 2 are always satisficd for the
forced pendulum problem and its generalization
x" + g{x) = f{1)

where g is smooth, periodic, of mean value zero, and has a totally
disconnected set of zeros. This is the case treated in Theorem 3 and
then applied to obtaining a new proof of the result in {7] about the

Yt

L e

.



existence of T-periodic solutions of this equation when f is close
enough to a given y € G. Another application, related to [4], is also
given to the existence of subharmonic solutions when f € G.

The last section of the paper provides applications of Theorem
2 to the obtention of conditions for the genericity of Morse type
multiplicity results for the T-periodic solutions of T-periodic
systems of the form

(POX) + QUt)x + VV(x) = y(1),
or of the form
I+ Q()x + VV(x) = y(1),

with P a positive-definite matrix function, J the symplectic matrix
and V satisfying suitable periodicity conditions,

1 The abstract results

Given T> (0, N = 1 and k 2 0, define
X ={ue CKR,RN) : uis T-periodic}
together with the norm
k
iuly = 3 Hudll_,
i=0

so that CX is a Banach space.
Consider now a bounded linear operator L : C4 — C satisfying

(L) There exists a bounded projector P : C(} -3 C‘} such that the
following sequence is exact :

A P S,
C-C—-CG-C

where Py denotes the restriction of P to Ck. The range of P is
included in RN which is identified to constant functions.

(L.2) P is L2-symmetric, i.e,

[ (Px®yO)t = | (x(OPy@)dt
0 [

for every x,y € C9, where (.,.) denotes the usual inner product in

RN,

We shall denote by Y the range of L and by Z the kernel of L,
so that Y = Ker P, Z = R(P).

Consider now a function V € C2(RN,R} satisfying

(V) For every & € Z such that El = 1, the set
NE) = {x e RN: (VV(x),E) = 0 and D2V(x)E = 0}

is totally disconnected.

Under the previous assumptions, we anatyze the problem in C%
() Lx+VV(x)=y
assuming thaty € Y.

Definition 1 We say thary € Y is regular for problem (1) if
every solution x of (1) is non degencrate in the sense that the

corresponding linearized problem

Lu+D2V(0ou=0

only admits the trivial solution in CX.
We shall prove the following result :

Theorem 1 Under the preceeding assumption, if k 2 1, the set



G ={y€ Y :yisregular for (1)}

is residual in Y.

We shall use the following notations
M= {xe Ck:P(VV(x)) = 0}

X ={x € M : x is not constant} = M\RN,

Lemma 1 Under the assumptions of theorem }, X is a C!-
manifold.

Proof : Define the map
G©:CENRN 5 Z
by
O(x) = P(VV(x)}

so that X = ¢-1(0). We have only to prove that ®'(x) is onto for
each x € X. If this is not the case, there exists x € X and £ € Z such
that &l = 1 and

(2) (®'(xug)=0,Vue Ck
Since

O'(x)u = P(DIV(x)u)
we obtain from (2) and (L) that

{ @(.D2V(x(®)E)dt = 0, Vu € C¥,.
0

The above relation implies that
DIVxU)E =0, Vi e R.

On the other hand

% (VV(O)LE) = (x(1),D2V(x(1))E) = 0

and, since x € X, (VV(x(t)),£) = 0. Therefore, for everyt, x(1)
€ N(E) and (V) implies that x is constant, contradicting the fact that
xe X. O

Lemma 2 Under the assumptions of theorem 1, the map y : X
— Y defined by

y(x) = Lx + VV(x)
is a Cl-Fredholm map of index zero.

Proof ; Ateach x € X, the tangent space is given by
X = {ue C&:P(D2V(x)u) = 0}
and the derivative
yix):TX->Y
is defined by
y'(X)u = Lu + D2V(x)u.

It follows from {I.,) that

Ker(L + DZV(x)) = Ker(y'(x})

R(L + D2V{x)) N Y = R(y'(x})
and, from these identities, we obtain

codimc?_ R(L + D?V(x)} = codimy R(y'(x)).

Using again (L3, one sees that L is a Fredholm operaior of index
zero and since DTV(x) is compact, it follows that L + D2V(x) is also
Fredholm of index zero. Hence

dim Ker(y'(x)) = codim Riy'(x}). O
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Proof of theorem 1 : Lemma 1 and lemma 2 allow us to apply
Sard-Smale theorem [9] to conclude that
& = {y e Y :yis a regular value of y}
is residual in Y. It suffices now to prove that
S = {Lx + VV(x): x is constant, PVV(x) = 0}
has & residual complement in Y since
G {ySC G.
Forevery k 2 1,
Sj={Lx+ VV(x): x is constant, Ixly < j, PVV(x) = 0}
is a closed subset of Y with empty interior. Hence we obtain that
oo
(vyS= ~L{yS;
j=1

is residualinY. O

In addition we assume that

(Vy) lim VV(x)ixl =0
DAL

(V:) There exists a basis (z,,...,2,) of Z such that
Vix+2)=V(x), Vxe RN, 1 gis<m.

Theorem 2 Under the assumptions (Lyayand (Via23) ifk 2 1, the
set G is open and dense in Y .

Proof : By Theorem 1. it is enough to show that [vG is closed.
Assume that {v,) c [yG converges to y € Y. According to the
definition of G there exists sequences (xq) and (ug) in C?}‘ such that

(3) Lxy + VV(xp) = ¥n
4) Lup, + D2V{xu, =0, lugly= 1.

Writing xn = Xp + Xp where Xp = Pyx,, we can assume by (V3) that

m
Xn= 2 clz;, 0<c’<1, I<i<m
i=1

Let us denote by K : Y — Ker Py the generalized inverse of L, We
obtain from (3),

(5 X = K{yn - VVixa)).

Assumptions (V2) implies that (X,) is bounded in C'{-. Thus (x,) 1s
bounded in CX and, by the Ascoli-Arzela theorem, going if necessary
to a subseguence, we can assume that x, = x in C‘{. but then, by (5)
Xn =¥ X N C-"r. Similarly, going if necessary to a subsequence, we
can assume that u, — u in C!‘r. We obtain from (3) and (4)

Lx+VV(x)=y
Lu+ D2V(x)u =0, luly =1,

sothatye [(y@. O

Remark : We shall see in the next section that condition (V) is
not very restrictive when dim Z = 1. For higher dimensions, let us

consider the simple situation when Z = R™ and

m
Vix) = Y Vi(x)

i=1
with V; real analytic and not identically zcro.

If m = 2 and if we assume that



[Vix)2 + [Vi(x)]2> 0
foreach x € Rand i = 1,2, then (V) holds. Indced, for & = (§,.52),
N(&) is the set of solutions of
BV (x1) + E2V,(x2) = 0, E1V(x1) = £V (x2) = 0.

If £182 2 0, x € N(E) implies that V((x)) = Vy(x2) = 0 and thercfore
N (&) is discrete. If § = (1,0), Vy(x1) = V}(x;) = 0 and N(£) = ¢,
and the remaining cases are similar.

If m =3, it follows from the periodicity of V; (condition V3)
that V() = V3(B) = 0 for some a,p € R. Let (§2,E3) € R2be such
that &2 + £2 =1 and

§2Vy(@) + E3V5(B) = 0.
Taking & = (0,E2,3), one has
{(x1,0.B) : x; € R} N(§)
and N(£) is not totally disconnected.

2 Forced pendulum type equations

In this section we consider the existence of 'I-periodic solutions
of the equation

(6) X + g(x) = y(t).

We assume that y : R — R is a continuous T-periodic function such
that

[y(dt=0
0

and that g : R — R is a continuously differentiable function such
thai, setting

10

Vix)= ;g(s)ds.
0

the function V is 2x-periodic. Finally we assume that the set of
zeroes of g is totally disconnected. (We have in mind us a panticutar
case, the forced pendulum equation, when g(x) = A sin x).

Theorem 3 Under the above assumptions, the set G of regular
value for (6) is upen and dense in

Y={ye C}: [ywdt =0},
o

Proof : It suffices to apply theorem 2, with Lx =% and Px

= [xmd. C
Q0

The hypothesis "the set of zeros is totally disconnected” is
essential in the sense that if g vanishes on an interval, then theorem 3
i$ not true,

Corollary 1 For everyy e G, there exists € >0 such tha, if
ly-fl, S €, then x + g(x) = f has @ T-periodic solution.

Proof : By a result of [10], (6) has a T-periodic solution for
every y € Y. If 'y € G, the corresponding linearized problems only
admit the trivial solution. It suffices then to apply the implicit
function theorem. (O

Corollary 2 For every y € G, there exists a ky 2 2 such tha, for
every prime integer k 2 Ko, there is a periodic solution of (6} with
minimal period kT.

Proof ; By u result of {4], it suffices 10 prove that
(a) the T-periodic solutions of (2) are isolated,
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(b} every T-periodic solution of (2) having Morse index equal to
zero is nondegenerate.

If y € G, every T-periodic solution of (6} is nondegenerate,
and, hence, in particular, isolated, O

Remarks : 1. Corollary 1 was first proved in [7] by another
approach.

2. It is not known if the conclusion of corollary 1
holds forevery y € Y.

3 Conservative systems with periodic nonli-
nearity

In this section, we consider the existence of T-periodic solutions
of the system

7 (P(x'Y + Qx + VV(x) = y(1),

where P : R — S(RN,RN) is a C! T-periodic mapping from R to the
space of symmetric real matrices of order N, such that, for some p
>0 and all (tLv) e R x RN,

(P(t)v,v)} 2 pIviZ,

Q: R — S{RN.RN) is continuous and T-periodic, V € C2(RN,R) and
y : B — RNis continuous and T-periodic.

Equations (7) includes linearly coupled pendulums equations
and Josephson multipoint systems for which (V.2.3) are satisfied.

We denole by L the linear operator
Ch > C) i x — (POX) + QUidx.

As usual we denote by Y the range of L and by Z the kemnel of L.
We assume that Z consists of constant functions. It is easy to verify
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assumptions (L) and (L2). It suffices then to apply theorem 2 in
order to obtain the foliowing result :

Theorem 4 If V satisfies assumptions (V1.2.3), then the setG of
repular vatues for (7) is open and dense in Y.

Let us denote by m the dimension of Z.

Corollary 3 If V satisfies assumptions (Vy.2.3), then for everyy
€ G, system (1) has at least 2™ geomerrically distinct T-periodic
solutions.

Proof : By a sligthly generalized version of theorem 3 of [3], if
all the T-periodic solutions of (7} are non degenerate, then there are
at least 2m geometrically distinct of them. [

Remark : Let us recall ([1], [3]) that, for every y € Y, system
(7) has at least (m+1)} geometrically distinct periodic solutions.

Finally similar results hold for first order systems. More
precisely we consider the Hamiltonian systems

(8) Ix + Qt)x + VV(x) = y(1)

where Q : R — S(RIN,R2N) is continuous and T-periodic, V €
CHRIN,R) and y : R — RN js continuous and T-periodic.

0 -idgy
1= idgn 0

is the standard symplectic matrix. We denote by L the linear
operator

Let us recall that

Cp = Chix e Jx + QU



We assume that the kernel Z of L consists of constant functions and
that y belongs to the range Y of L. We obtain from theorem 2 the
following result :

Theorem 5§ If V satisfies assumptions (V1.2.3), then the set G of
regular values for (8) is open and dense in Y.

Let us denote by m the dimension of Z as before.

Corollary 4 If D2V is bounded on RN, then, for everyy € G,
system (8) has at least 2™ geometrically distinct T-periodic solutions.

Proof : By a slightly more general version of theorem 4 of [3],
if all the T-periodic solutions of (8) are non degenerate, then there
are at least 2™ geometrically distinct of them. O

Let us consider the simple case when Q(t) = 0. In this case Y

={ye C§: [y()dt = 0} and Z = RIN,
Q

The comresponding assumptions for V are

(A1) For every £ € R2N such that | = 1, the set
NE) ={x e RMN: (VV(x),§) = 0 and D2V(x)§ = 0}
is totatly disconnected.

(A2} V is periodic with respect to each variable.

Corollary 5 If V satisfies assumptions (Ay) and (A3), then the set
G of regular values for (8) is open and dense in Y.

Moreover for every y € G, system (8) has at least 4N geometrically
distinct T-periodic solutions. 0
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