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CLOSED ORBITS OF FIXED ENERGY
FOR SINGULAR HAMILTONIAN SYSTEMS

ANTONIO AMBROSETTI & VITTORIO COTI ZELATI

§1. Introduction

This paper deals with the existence of periodic solutions of

¢ +V'(g)=0 (1.1)

such that
HeP+V(g=h (1.2)

where ¢ € RY, his a given number, V' € CZ(RN\{O},R) has a singularity at z = 0, and
V' denotes the gradient of V.

Our main results are collected in Theorems 3.6, 4.12 and 5.1.

In the former we deal with potentials which, roughly, behaves like ——‘a with ¢ > 2
(referred to in the sequel as “Strong force” case) and prove the existence of solutions q
of (1.1-2) such that ¢(t) # 0 Vi € R (non-collisions).

In the latters we are concerned with the case in which V(z) = ——Tl—lb with 0 < b < 2,

and prove the existence of solutions ¢ which can, possibly, pass through the singularity
x = 0 {collisions).

To have an idea of the kind of problem we can handle, let us state two specific results
concerning potentials of the tvpe

Viz) = —% + W(z)

1z

when (1.1) becames the perturbed Kepler’s equation

¢ + %a + W'(g) = 0.

THEOREM 1.1. Suppose V(z) = + W(z) with W e C}(R";R) satisfying

3W'(z)z + W' (z)z-z > 0;
)z > ~L;

(W1)

(W2) n B
(W3) W'(z)z — W (z)
(W4) hmmffﬂ( )+ 3

[z]— oo

I=|

> 0;
W'(z)2) > 0;
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Then for all h < 0 (1.1-2) has a periodic solution.

THEOREM 1.2. Let h < 0 be given and suppose V(z) = _731:7 +eU{z) with U smooth in
all R™ . Then there exists € (depending on h and ||U|{c2 )} such that V|e| < & the problem

¢+ %3 +eW'(z) =0
Lg'(t)2 — ——— + eW(q(t)) = A

1g(t)]

has at least one solution.

Theorems 1.1 and 1.2 follow from the much more general results contained in Theorems
4.12 and 5.1, respectively.

In the last vears there has been a remarkable amount of work on existence of periodic
solutions of systems with singular potentials, having a given number 7 > 0 as period,
see, for ex. {2, [4], (7], [8], [11], [6], [14], [18|.

On the contrary, much less is known on problem (1.1-2) where the energy is prescribed
rather then the period. As far as we know, only the papers [12], [5' deal with such a
problem in the large (for perturbation results see, for example {15}).

A short comparison with these two works is in order.

First of all we remark that [12] covers a rather restricted class of potentials satisfying
the Strong force condition, only.

As for [5], it deals with the existence of solutions of (1.1-2) confined in an annulus A
where the shape of V' differs strongly from that of —%b.

For example, neither the potentials V(z) = -ﬁ - fl”’ 0 < b < 2, {covered by

Theorem 4.12 or, for 1 < b < 2, by Theorem 1.1) nor any V(z) = —L +elU(z), e > 0.
(see Theorem 1.2) can be handled by [5..

On the other hand we do not confine the solutions in any annulus, and in the case of
Theorems 1.12, 3.1, the solutions we find could be collisions.

When 17 £ CHR™,R) an usual wav to seek for solutions of (1.1-2} is to look fur
stationary points of

1 1
foy =4 [ wia [ h-viw)d
0 0
on Hl(Sl,RN\{O}) with fol lu'i? dt > 0. If this is the case, g(f) = u(wt) where

1( - 1
U2 j;, h - V(u)idi

1 ful ty? 2 dt

2

solves (1.1-2). See, for example, (19!,
In the present paper the idea of the proof relies on a variational principle.discussed in
section 2, which amounts to find solutions of {1.1-2) as critical points at positive level of

the functional ) .
flu) = %/ u"zdt-/ V') dt
0 0

2



on the set

1
nn::{ueJ\:/.nquy+%vquy@dz:h}.
0

where
A={ve H(S;R") suchthat wu(t)#0Vt}.

Our principle is related to the preceding one by the fact that fth =fand Vi, =0
if and only if Vf = 0.

A similar approach has been used in [3] and, earlier, for semilinear elliptic boundary
values problems, in {13], {1], [16] but it is new in connection with singular Hamiltonian
systems.

To clarify why our approach is appropriate for our purposes and seems more suitable
for a rather direct application of the Lusternik- Schnirelman (LS, for short) theory let
us shortly outline the arguments of the proof.

Assuming 1'(z) = ‘ﬁﬂ y @ > 0 near z = 0 we distinguish between a > 2 and a < 2.

In the “Strong Force” case, studied in section 3, it is natural to take h > . It turns
out that for such an h: (i) My # 0 and it is a smooth manifold; (ii) cat My = +oo
(here cat denotes the LS category); (iii) f is bounded below on Afy; (iv) f satisfies the
Palais-Smale (PS for short) condition on Af,; (v) M} is complete. Then the LS theory
applies yielding infinitely many critical points for f on M, with f(u) > 0.

The case in which V' does not satisfy the “Strong force” condition (as it is the case in
theorems 1.1 and 1.2) is discussed in section 4 and requires some care. Taking h < 0,
which is now the “natural” value of the energy, one still has that (1), (i1) and (iii) hold,
but now Af} is no more complete.

To overcome such a problem (and the related lack of PS) we modify V" by setting

Vi(z) = V(z) — E-}—

x|

. A remarkable feature of our approach is that the manifold ALY, corresponding to the
potential 1;. coincide with the manifold 1/, corresponding to V7, and one is led to seek
critical points of

1 1
fe= %/ lu'i? dt-/ V/(u)-udt
0 0

on AM,. Since 1, satisfies the Strong&Force condition, the preceding arguments yield a
critical point u. € My, such that f,(u.) > 0. A limiting procedure, based on some energy
estimates, allows us to show that u, — u as ¢ — 0 and this gives a solution of (1.1-2).

The hypotheses of Theorems 3.6 and 4.12 are global in nature. In the last sectjon we
state a result, Theorem 5.1 (which is related to Theorem 4.12) where such assumptions
are made in { V' < h} only.

The same variational approach can be used to handle a class of Hamiltonian systems
including the N-body problem. This results will make the object of a forthcoming paper.



Notations. In all the paper we let

N
Ty = Zfz‘yz' Vr,y € RV

1=1
lz| = Vz-z vz e R"
H = HY(S'.RM)

1 1
(ujv) = / u' v +f u-v Vu,v € H
0 0

lul? = (ulu)  Vue H

@ =R™\{0}
A={u€H suchthat u(f)#0Vt}



§2. The Variational Principle

In this section we state the Variational principle.
Always in the sequel we assume

Ve C}R).

We define f € C'(A,R) by

1 1
f(u) =;:—/n lu' 2 dt-/o V'(u)udt (2.1)
and g € C'(A,R) by
1
glu) = /0 V() + 1V (w)u] dt (2.2)

and set, for h € R
My={ueld:glu)=nhrl. (2.3)

We remark that, from the Sobolev embedding theorem, it follows immediately
Up — @&, Up,UEA = 9(un) — g(&) and Vg(un)— Vg(a). (2.4)
In the rest of this section it is understood that My # 0. It will be shown in §3, 4 that

this is actually the case for suitable values of & related to the behaviour of V" at z = ¢
and at |z, — oc.

LEMMA 2.1. Let V" satisfy

(41) W' z)z ~V"(z)zz £ 0 Ve e Q.

Then M; is a C? manifold of codimension I in A. More precisely, there results:
(Vg(u)lu) #0 Yu € M,. (2.5)

Moreover, if V' satisfies also |

(42) Vi(z)xz >0 Ve e

then f(u) > 0 on My and f(u) =0, w € M,, if and only if u is a consiant.

PRrROOF: By direct calculation one has

(Vg(u)u) ::/D BV (u)u — 3 V" (w)u-u] dt

and the first statement follows from (Al). The second one easily follows from (A2). 1

5



REMARK 2.2 Al is obviously closed with respect to A, but not necessarely with
respect to H, as we will see for the class of potentials discussed in §4. However, if 3,
denotes the closure of Af, in H, one has that AT,\ A, C SA. 3

LEMMA 2.3. Suppose(Al)and (A2) hold. Letu € M, be a critical point of f constrained
on M), such that f(u) > 0. Then, setting

1
Vi{u)udt
w? = iﬂ_l_(i)_u__, (2.6)
fo w2 dt

we have that ¢(t) = u(wt) is a (non-constant) periodic solution of (1.1-2).

PROOF: Let u € M}, be a critical point of f constrained on My. Then there exists A € R
such that

Vf(x) = AVg(u) (27)

and, taking the scalar product with u, one obtains

(Vf{u)u) = MVg(u)iu).

1
A= gf u'? dt.
0

Inserting this value into (2.7) one obtains

1 1 1 1
/ u'v' dt - / Viu)udt = / ju'? dt/ Vi(u)w Vo e H
0 0 0 0

Note that f(u) > 0 implies ful lu'|2 dt > 0. Then it follows

From this one easily deduces

Lu‘2'l_l” _ 1.-!‘(11] —_ (?8)

with w? given by (2.6). and ¢(#) = u(wt) solves (1.1). Moreover, {2.8) being autonomous,
the conservation of energy yields

L) = V() = c. (2.9)
Integrating, one finds
1 1
%.u? / w2 di +/ Viujdt = ¢
0 0
and thus, since u € M, ¢ = k. This implies that ¢ (which is non-constant since

Sl dt > 0) satisfies (1.2). &



L /]

§3 Existence results (Strong forces)

To prove the existence of critical points of fon M, an important réle is plaved by the
behaviour of V' as ¢ — 0. Let us explain this fact with the “model” case

V(:c):—méa, a> 0.

Note that Va # 2 (A1) and (A2) hold and the variational principle applies. Here the
“natural” values of the energy are: A > 0ifa>2and h < 0if 0 < a < 2. In fact if ¢(t)
is a radial, periodic solution of

" q
q + ama+l =0
the corresponding energy is
1
h=34q'(t) -
: lq(¢)]°

=(%—1)i-¢1_(1t')_!°'

On Al (nonempty by lemmas 3.3 and 4.3), the functional f takes the form

f(u)=%/oliu’|2dt-/oli—]a-

Ifu — @ € M\ My, one has (see remark 2.2) @ € AA. Then it is well known (see Lernma

3.1) that
1
j— — 00 if a>?2
o [ul®

while, when 0 < a < 2, the integral above can converge to a finite value. ,
This model case shows that it is worthwhile to distinguish between potentials which
behave (as |z| — 0) like —%]a, a > 2 (Strong forces) or like ——-i—b, 0 < b <2 (Weak

forces). The former is discussed in this section, the latter will be discussed in §4.
It is worth noticing that one of the interest of the Strong force case relies on the fact
that the Weak force one will be handled perturbing V with a Strong force potential.
We start dealing with potentials satisfying (A1), (A2) and

(A3) 3v > 2, such that Vi(z)z < —yV(z) Vz e Q
(A4) 33>2 and r>0 such that Vi(z)z > —3V(z) VOo<lz, <7

(A3) limsup [¥(z)+ %V'(.’r)-x} <0

| —o0
We note that (A2) and (A3) imply
Viz) <0 Yz € 0 (3.1)

First of all we show that (A4) implies the so colled “Strong force condition” '10]. We
recall that in {10, it is proved:

=1



LEMMA 3.1. Suppose that V' satisfies the “Strong force condition”, i.e.

3r>0 and a>2 such that Viz) < —-_-C—
izi®

VO < 'zl < r.

Then, for any sequence u, in A converging weakly and uniformly to @ € 8A we have that

1
/ V(tn)dt — —co.
1]

LEMMA 3.2. If (A4) holds then 3¢, > 0 such that

V)< - W<iai<r
@

As a consequence we have that
1
/ Viup)dt - —0 Vun, — u € OA
i]

PROOGF: For |y| = r define p,: (0,1 — R by

From (A4) it follows

: y 1 (Ay) pu(A
PN = V() < a0 - _gPrld)

hence
py(A) 2 p, (AP > 0P W< A<

where

€3 = min{ —V(y) I lyl=r}.

Then, letting y = %r, there results for 0 < jz|, < r:
) 'z 'z! c
I' j = ‘ _ = — _— <
o (ry) “(ry)— [0

The last statement follows from Lemma 3.1. |

with ¢; = cor3.

Next we prove

o

(3.2)

(3.3)



LEMMA 3.3. Suppose (A1-2-3-4-5) hold and let h > 0. Then:

(1) My # 0 and M, is complete;
(2) catar,(Mp) = oc; more precisely Ym > 0 31X C My, X compact, such that
Ca.tM,l(.Y) > m.

PROOF: Let u € A be fixed. For a > 0, one has:
1
gu(a) = glau) = / [V(au) + 3V'(au)-au] dt.
0

According to (2.5) -ad:gu(a) # 0, hence g, is strictly monotone. Using (A5) it immediately
follows that

lim g,(a) <O.
a—oo

Let @ — 07. Then au(t) — 0 uniformly and (A4), (3.2) imply

gula) > (1—%)]01V(au)dtz (g‘l)f%[ﬁad‘

and g,(e) — +oo as a — 07,

Then for all & > 0 the equation g,{(a) = A has a unique solution a(z) and a(u)u € Af,.

Again from (2.5) it follows that a depends continuosly on uz. Then M, is a deformation
retract of A. From [9] it is known that caty{A) = oo and that Vm it exists ¥ ¢ A, ¥
compact, with caty(X) > m and thus (2) follows.

To show that A, is complete, let us take a sequence {u,} C Ay such that u,, — 4 in
H (actually, it suffices {u,} C M, such that u, — @ weakly and uniformly in [0, 1]). We
claim that @ € A. Otherwise, there is an interval I ¢ 10,1! and an integer i > 0 such
that lu,(t) < rVte I, Vn> . Then, using (A4), it follows readily, for n large

h = / {1"(11,1) - %V'(un)'un] di

= / [V(‘un) + %V'(un)-un] dt + / [V(un) + -%—V'(un)-un] dt
o, 1]\ T I

1 R
_>_(1_£)/ V(u,)dt + ¢,
2/ Jo

in contradiction with lemma 3.2. So @ € A and (recall that u,, — u uniformly) g(u) =
limg{#,) = 0. Then @ ¢ My, as required. J

To investigate the PS condition. we first show:

LEMMA 3.4. Suppose that (.-11~—2—3—4-—5) hold and let u,, € M), be such that
flun) < C. {3.4)

9



Then both |ju; ;i > and |jun|t= are bounded.

PROOF: Inserting the expression for f in {3.4) we find

1 1
% / |u;|2 dt - / V'(un)-un dt < C (3.5)
9 0

Moreover, using (A3), we find

h= [{V(un) £V (un)un]dt < (% _ ;/1-) /01 V' (un)un dt

hence

T > 0. (3.6)

35—

1
/ V'(un)un, >k, where k= -

0 ¥
From (3.5) and (3.6) one deduces

iz < e (3.7)

To show that jjun|z> is bounded, we argue by contradiction. Let u, = £, + w,, with

1
€n = / u, dt.
0

From (3.7) it follows that ||w!|z: < ¢;, and up to a subsequence, w, — 1 uniformly. As
a consequence, if [ju, .~ — oo, then £, — oc. Then, from

min iun(t)i 2 |€n — max iwn(t): > £ni—c2

it would follow that ju,(t)| — oo uniformly. Using (A5) we would then find

1
limsupf W(up) = 2V (un)unidt <0 (3.8)
0

n-= oo

contradicting g{un,) =h >0 J

%

LEMMA 3.5. Let (A1-2-3-1-5) hold. Then f satisfies PS on M), namely ¥{u,} C M,
such that
flun) < e (3.9)

Vfinn (4n) (3.10)
Eu’ﬂl — i € .n!h Such that vf~‘1f.(ﬁ) = 0.

Proor: From (3.9) and Lemma 3.4 it follows that | u,], < const. Then, up to a sub-
sequence, un, — % uniformly and weakly in H, and @ € M, (see the proof of Lemma

3.3).

10



There results

Vi (v) = Vf(un) — AaVg(un) (3.11)

From (3.10) it follows
T f(tn) = AnVg(un) — 0. (3.12)

Multiplying by u, one has

(Vf(un)lun) - Aﬂ(Vg(""'n)""’n') — 0.

Since
1 1
(Vf(u)lu) ~ MVg(u)lu) = 1 [%/ lu'|? dt — /\} / [BV'(u)u + V"(u)u-u]dt
) 0
and since, by (2.4) and (A1),
1 1
/ BV (up)u, + Vup)nunydt — / BV'(z)a + V"(a)a-a|dt > 0
0 0
we have that

1
%/ ! 12dt — X, — 0. (3.13)
0

Finally, from (3.11) it follows
! 1
VSinn(un) = — (/ V'(un)un dt) uy + (%/ ul 2 dt — gxn) V()
0 0

1
+1 (% f WP dt - An) V" (tn ).

Since [y V'(un)undt — f'V'(a)a > 0, V'(u,) — V'(#) and V"(up)u, — V"(@)a
we deduce. using {3.12), that u] converges (up to a subsequence) in H, and the resuit
follows. J

We can now state the main result of this section.

THEOREM 3.6. Suppose V satisfies (A1-2-3-4-5). Then Vh > 0 problem (1.1-2) has a
periodic solution ¢(t), with ¢(t) # 0 Vt.

PROOF: According to the variational principle {lemma 2.3) it suffices to find critical
points u of f sy, with f(u) > 0.
These critical points will be found by using the LS theory. Let

ij = {AY C ﬂ[h ! catMﬁ (_Y) E m}

and

= i 3.14
b Xlenlém mj'?xf ( )

11



Note that Km # 0@ Vm by Lemma 3.3(2). Moreover b,, is a non-decreasing sequence
with0 < b, < +o00 VYm.

Since PS holds for f5;, (Lemma 3.5) then the LS theory, extended to ¢’! manifold in
[17), implies that each b, is a critical level and, if

bzbm:bm—rl :"':bm-f-k

then
catM,‘(Zb) > k + i,

where

Zy={u€ My|f(e)=5, Vfia(u)=0}

We claim b3 > 0. If not, the preceding remark with b = b, = b, = b, vields
catag, (Zp) > 3.

But Lemma 2.1 implies that Z, = {u = const } "" Al,. The arguments of Lemma 3.3
show then that
ZO ~ SN—I

which implies catp, (Z) = 2, a contradiction. Then the level by carries a critical point
u of fiar, such that f(u) > 0, and this completes the proof. i

ExampLe 3.7. I V(z) = *ri_lb with & > 2 then (A1-2-3-4-5) hold true. Note that
for b =2 15(z) = "iTz verifies
3(z)z + 1y (2)zz =0 vz # 0. (3.13)

On the other hand, all the periodic solutions of

1" q
g +2—, =0
g

have energy h = 0.

EXAMPLE 3.8. Let
1
Viz) = —— + Wi{r)
.'r.

with b > 2 and W € C*(Q,R). Then (A1) and (A5) became respectively:
b(b —2)

zl®

Wiz)+30'(z)z <0 as r] — oc. (3.17)

IV (z)z + MW"(z)zz < Yz #0 {3.16)

12



As for (A2) (A3) and (A4), they are verified provided

W'(z)-z > —féfb Va #£0 (3.18)
iz

3 ! r T b
dy > 2W'z)e +4W(z) < D (3.19)

! ﬂ -b
IBe (2,9, r> 0 Wiz)z +BW(z) > — VO<lz|<r (3.20)

1T

For example, if W(z) = _—'Q:_I“ ¢ > 2, then (3.16) to (3.20} hold. In fact. (3.16),

(3.17) and (3.18) are trivially verified; to satisfy (3.19) and (3.20) it sufficies to take,
respectively, ¥ > max{b,c} and 2 < 8 < min{b, c}.

Moreover, let us remark that that if W is smooth on all R" then (3.16), (3.18-19-20)
impose no restrictions near £ = 0. This is clear for (3.16) and (3.18) because b > 2. So
for (3.19) and (3.20) it suffices to take any B, satisfying 2 < 3 < b < ~.

13



§4 Existence results (Weak forces)

We study here the case when 1" behaves like —%a with 0 < a < 2. In particular, this

will include the interesting case of perturbations of the Kepler potential — -1, such as

1!

V(z) = —— + W(z).

2|

Note that in the present case the meaning of a solution of (1.1-2) must be specified,
because solutions passing through the singularity x = 0 could arise. The following
definition has been introduced in (4]

DEFINITON 4.1. We say that ¢ € H'(S';R") is a solution of (1.1-2) if

(1) The set {t € 5'|q(t) = 0} has zero measure;
(2) in the set {t € S' | q(t) # 0} q is of class C? and solves {1.1-2).

In addition to (A1) and (A2) we suppose

(A3) W<a<?2 such that Viz)z > ~al(z) VzeQ
(A4) 20<é<2 and r>0 such that Viiz)z < -é6V(z) V0< |z <r
(A8') liminf [V(z) + $V'(z)-2z] >0

iz|—o0 2

We will follow here a procedure similar to that of §3. First, as in lemma 3.1 we have:

LeMMa 4.2, If (A3'-4) hold then 3¢y > 0 such that

Proot: [t suffices to repeat the arguments of lemma 3.1 using (A3') and taking into
account that (A4') yields min{-V(y):ly|=r} < 0. &

We explicitely remark that (3.1) and (3.3) do not necessarely hold in the present
situation. -~
The next Lemma substitute Lemma 3.3.

LeMMa 4.3, Suppose (A1-2-3-4'-5') hold and let h < 0. Then:
(1) My #0;

(2) catas, {My) = >x; more precisely ¥m > 0 ZX C M, X compact, such that
catpr (X) > m.

PROOF: From (A1) it still follows that

1
gula) = ofa) = [ {1 (au) = 417w o

14



ltrictly monotone, and from (A5') one deduces that

liminf g,(a) > 0.

& 00

‘hen, using (A3') and Lemma 4.2 we deduce that, for each u € A,

gu(a)g(1-%)/011/(%)&5—(1—%):—;"!/01%‘:&

gu(a) — —oo as a — 01, Therefore Vh < 0, the equation g,(a) = h has a unique
:tion and A, # 0. _
‘he remainder of the proof is the same as that of Lemma 3.3. §

1 the present situation, as we have already remarked, A, is no more complete, so
LS theory cannot be directly applied. To be able do deal with such a situation we
lify V setting
. £
Ve(z) = V(z) - — e>0

z?’

‘EMARK 4.4. Let
1
ge(u) =/ WVe(u) + 1V, (u)u] and My.={ueA:gf(u)="h}
0

ording to example 3.7 there resut

Viz)x=V'(z)z + 2%2 > V'(z)z > 0

refore Lemma 2.3 applies and, Vh < 0, the cntical points of f, on Af; such that
1) > 0 give rise to periodic solutions of

¢ V(g +2L =9 (4.1)

iq|*

h energy
£

H' (07 + V(g(t) = =, =k (42)
4
in order to find critical points of f, on Af, we state some lemmas which are the
interpart of Lemmas 3.4, 3.5. We always suppose {A1-2-3'-4'-5").

13



LEMMA 4.5. If u, € M} is such that

fe(un) <C (43)

then flul';2 and ||u,!l1~ are bounded.

PROOF: From (4.3) it follows

1 1
0> fun) =4 [ i [ |V r2- | a
¢ 1]

iUnj
1 1
> i'/ lul |? dt / V' {un)u, dt. (4.4)
0 0
If u, € M} then (A3') implies

h = /OI[V(u,,) + 3V (un)un) dt > (% - é) /01 V' (up)un dt,

hence

This and (4.4) yield
lul °dt < ¢; = E (4.5}
0 k

From (4.5) and (A5') it then follows, as in Lemma 3.4, that ||u,llp = < co. B

LEMMA 4.6. f, satisfies PS on A},

PROOF: Let u, € A, be a PS-sequence. By Lemma 4.5 one has
:‘un;i S C
hence u, — # uniformly and weakly in H. We claim that ¢ € M,. Indeed. in view

of {2.4), it siffices to show that © € A. We shall prove this by contradiction. First, let
% = 0. Then u, - 0 uniformly and (A4’) and Lemma 4.2 imply, for n large,

h= /OI[V(uﬂ) + 3V (un)un dt < (1 - g-) /01 V(un)dt

1
S—C:J(l—‘é)] 1 dt.
2 0 1Unl®

Since the last term tends to —oc, we have a contradiction.
Next, let 4 £ 0A with ¢ # 0 (hence u # const.). There results

1 1 1
fe(un) = T‘/ :'U‘n 2 ] h — 1;(11,,.1) .
2 0 [y
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Since
£ £

Velo) = V(o) ~ oy S~

then V, satisfies the SF condition and

/01 [h = Vi(ua)] — oo.

1 1
0</ |ﬁ'|2§liminfj u', |2
[1] 0

and we reach a contradiction, proving that @ € M.
The rest of the proof follows as in Lemma 3.5. §

Moreover, there results

We explicitely remark that the arguments of lemma 4.6 actually show that the sublevels
{u e My f(u) <c} are complete.

The preceding result allows us to apply the LS theory to f. on Al;; repeating the
arguments of Theorem 3.6 we find

LEMMA 4.7. Ve >0 3u, € M, such that V feim, (we) = 0 satisfying

= = i >
fluc) =b, \?fg max fe, m>3

and u. # const. Moreover, setting

1
V! (e ), dt
w? = J f(” ) (4.6)
fo [ul)? dt

and y.(t) = u.(w.t), there results

Ye () + V(ye(t)) = 0 (4.7)

and

Fwelu (D)* + Ve(uc(t) = h. (4.8)
REMARK 4.8. It will be convenient to take u, in such a way that

fe(ue) = Yienﬂic‘m m\@x fe

where m > 3 is fixed independently from ¢. In particular, in the following lemma we will

takem = 3.

In the sequel.our plan is to show that u, converges to some u° which gives rise to a
solution y* of (1.1-2). For this, some estimates are in order.
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LEMMA 4.9. zk > 0 such that ju.|| < k and v, — v’ uniformly.

PROOF: As anticipated in Remark 4.8, we have that

b, := fz(ue) = cuMi:l(f;a)zs Teaf ft(‘h'-).

Since Ve(z) = V(z) - 5, > V{z) - %12 Ve < 1, then there results

flu) < fil)  VO<e<1, VueA.
Thus
el ) — b, <b:= inf ¥ < 1
) =be <032 | ansa Ve VO<e s

and the result follows from Lermnma 4.5. J

LEMMA 4.10. There results

(1) V(u*(t)) # h;
(2) »*(t) # 0.

PROOF: (1) If not, u*(t) # 0 for all ¢ and one has

V(ue(t)) - V(u'(2)) =k
Viue(t))ue(t) — V'(u*(t))u'(2)

uniformly. Therefore

1 1
h=g(u,) = / (Viue) + %I-"'(us).u,]dt — / T{u') + %V’(u')-u'} dt
0 0

1
=h+ % / V'(u*)-u* dt
0

Hence fol V' (u")u” = 0, in contradiction with (A2).

(4.9)

(2) Ifnot.u” =0andu, — 0 uniformly. Then, using (A4') and the fact that u, = ;.

it follows (for ¢ small enough)

h=f V(ue) + 1V ()] de < (1-3) ] Vi)

/DIV(u,)Blf

On the other side, since u, — 0 uniformly, from lemma 4.1 we infer

namely

tafon

]Dl Vlu) — o0 (£—0°)

a contradiction. J

18



LEMMA 4.11. 38, A > 0 such that

b <w, <A.

PROOF: From Lemma 4.10 we deduce that there exists a closed interval [ such that I
has positive measure and

W) £0, V(u'(8) #h
Integrating (4.8) in I, one finds

g&/mma+/h@gm h|I|

Vie I

(4.10)
1 I

Since .
/[u2|2dt < f lul*dt < C
/ 0

then (4.10) implies
b~ V(u,)]
jwi > <

C
But on I one has that u, — u* uniformly and that u* # 0, so that

/m V.(u mﬁ]m—v dt
I

From (4.8} h — V,(%,) > 0 and thus, from the definition of I, one has

/m_wwnm>a

I .

(e - 0%).

:J.'his shows that w, > é > 0.

To prove w, < A, we start using (4.8) and (4.9) to find

fel(u. ‘ b
; /|u|2dt /[hV,)]—l (2 511'2.
fo |ul|? dt Efo |ul |2 dt
Then

1 2 b
1 1 t |2

we

Hw, — oc,it follows that f |u|® dt — 0 and hence both u, and y, converges uniformly
to some cunstant £ € RV

. From Lemma 4.10 ¢ # G and 1°{¢) # A. Using now +.7) we
have (since V/(y.) converges uniformly to V'(€)) that y, converges in C? to £. Finally
passing to the limit into (4.8), we find V(¢)

= h, a contradiction. JJ

We are now in position to state the main result of this section
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THEOREM 4.12. Suppose (41-2-3—4'-5') hold. Then Yh < 0 (1.1-2) has a non-costant
periodic solution.

PRrROOF: We shall show that u“ gives rise to a solution of (1.1-2), in the sense of definition
4.1,
Taking into account the preceding lemmas, this follows in a rather standard way. We

report, for the reader’s convenience, the complete proof.
Let

J={tel0,1]{u*(¢) =0}.

From (4.10), with J replacing I and using lemmas 4.8 and 4.11 we deduce

[Vc(u,_,)dt = Jth — 1wl / el |? dt

J J
> 1Jih— 186%K%.

(4.11)

But v, — 0 uniformly on J and hence, if J has positive measure, from Lemma 4.1 we
have that

fl",(us)dt — —ox,

I

in contradiction with (4.11). Thus J has zero measure.
Let K, C '0,1\J be an increasing sequence of compact sets with

Unlen - {0, lj\J.

and set
K ={u"(t) te K},

Each K C Q is compact and has a neighborhood A}, such that A, Z Q. Then
Ve = Vin CY{N,,R) and therefore

Vi(ue(t)) - V'(u'(t))  uniformly in K,.

Since u, solves

wiul < V](u)=0

and w, —~ w* # 0 (Lemma 4.11), it follows that
U, —u" in Cz(Kn.RN)

and
e LYY =0 on K.

Since _K,, = 0,1,\J, then
W S VW) =0 vee 0, 1\J
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snd y*(8) = w'(w'1) soves
vy +Vi(y)=0  vtel[o,1\J

The energy conservation (1.2} follows directly from (4.8). &

EXAMPLE 4.13. Any V(z) = ~ 0 with 0 < a < 1 satisfies (A1-2-3'—4'-5'),

To enlight the signification of Theorem 4.11 we discuss below a specific example con-
cerning a perturbation of the Kepler potential.

EXAMPLE 4.14. Let us take

V(z) = —Ti—l + W(x)

with W € C*(Q,R). In this case (A1) and (A5') became, respectively

W' (z)z + W"(z)z-z > —J—'_lc- Ve e 2 (4.12)
Ilizrirfgj [(W(z) +iW'(z)z] >0 (4.13)

Similarly (A2) and (A3’) became, respectively

1
Iiﬂ(I) T > —ﬁ VZ? e Q (4.14)
T
- -1
20 <a <2 suchthat TW'(z)zx+aW(z)> "‘ ; vz e (4.15)
T
while (A4') gives
-t - 6 - 1 o
Ja<6<2 and r>0 suchthat W'(z)=z +6W(z) < iz W<z <r
T
(4.16)
For example any W(z) = “ﬁa with ) < a < 2 verifies the above conditions (take a,8

suchthat 0 <a<a<é<2andl<a<l<é<2).1

The case discussed in example 4.13 allows us to derive Theorem 1.1.

PROOF OF THEOREM 1.1: It sufficies to note that (W1), (W2) and (W4) imply (4.12),
(4.14) and (4.13) respectively. To satisfy (4.15) we take @ = 1 and use (W3). Lastly,
since W is smooth at z = 0, then W'(z)-z + 6§ (z) is bounded in any neighborhood of
the origin for any é, so that (4.16) holds taking § > 1. }
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§5. Other existence results

From the conservation of energy it follows that any solution g of (1.1-2) is such that
Vig(t)) <h Wi

Therefore it is natural to expect that assumptions ( A1-2-3-4) or (A1-2-3'-4') need

to be verified only in
{zcQ|V{(z)<h}:=0Q,. (5.1)

We will discuss only the “Weak force” case; in the “Strong force” one, V < 0 and
h > 0 imply Q, = Q.

Let us denote by D, the connected component of Q; such that & € D,; and let
0Dy = {z € Dy |V(z) =h}.

THEOREM 5.1. Let h < 0 be given. Suppose that D is compact and V": ) — R satisfv
(A4 ) and

(Aly) 3V'(z)z + V"(z)zz >0 Yz € Dy;

(A2} V'(z)z > 0 Ve € Dy;

(A3}) 30 < o' < 2 such that V'(z).z > —a'V(z) Vz € Dy;

(A6r) V € C* in a neighborhood of D), and 8 = maxgcap, V' (E)E-£] < 0.

Then (1.1-2) has, corresponding to such a value of h, a periodic solution.

PROOF: Since '(£)-£ > 0 on OD;, then 8D, is star-shaped with respect to ¢ = 0. Set
Gr = Q\Dy.
For every z € G, there exists a unique £ € D, and s > 1 such that
z = sé.
We claim that there exist functions 4, B, S € C?(8D4) such that, letting

A(£)

®(z) = Ry B(¢)
the modified potential
i _"{ Viz) z€ Dy
@)= e@2) zea

is of class C? in Q.
To see this, it suffices to take

(1(6)¢-¢)?

A= e

B&) = h - 3V"(O)¢¢
Ve €

G
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Let us remark that (A2,) and (A5,) imply

A(¢) >0
B§)>h-6>h
S(¢) < 1.

Lastly we rescale V' setting

V(z)=V(z)+ L

where L = max(@ — k,0) > 0. Since V(z) = V(z) + L in D, and L > 0, it follows
immediately that V satisfies (A1-2) and (A3') in D,. As for (A4'), one has that, for
& > & there results

Vi(z)z < —6V(z) = -6V (z) + (§ - 8)V(2).
Since V(z) — —oc as £ — 0, taking r small enough one deduces
V'(z)z < -6V (z) - 6L = —4(V(z) + L),

and (A4') follows.
Next, we take ¢ = s£ € G4. For such an z there results

d

V'(:c)-z = aL,'(A$)|A=1
d
= a‘b(’\x)uzl
A(¢)
NG (5:1)
and. similarly
: es - SAO A
Ve = TR T s
Hence :
3‘“/ ( ) T+ V”(:c) 4(5) >0

RG]

and (A1) holds.
Since A(£) > 0, (A2) follows form (5.1), and since D), is compact and B(§)> h -8,
then

fmind(2) + 4 7o)l = i [4=—2E by~ 1

>h-0+L2>0,
and also {A3') holds.
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Finally we prove that (A3') holds in G,. It is enough to notice that
o A(£) A{¢)
Viiz)z = - >

=TS T v s

We are now in position to apply Theorem 4.12, from which it follows the existence of
a periodic solution of

- (B} + L) = -V(z) VYre G,

{ 7'+ V'(q) =0 (5.2)

2ldP+V(g) =
for all e < 0. Since L < —h, then e = h+ L < 0 is an admissible value of the energy. For
such a choice of e (5.2) becames ‘

{ ¢ +V'(g)=0
32+ V(g) = h

and hence V" (g{t)) < h. For z = s € G, one has that
Viz) = ®(s€) > ®(£) = h.
therefore g(t) € Dy, and 1'(q) = V(g) and g satisfies (1.1-2). g

As application of theorem 5.1 we can prove Theorem 1.2.

PROOF OF THEOREM 1.2: We first notice that D), will be compact provided ¢ is small
enough. Hence there exist constants m, m', m", M, M’ M" such that

m<U(z) < M
m' < U'(z)z < AL
m" <U"(z)z-z < M"

for all z € Dy. It is then immediate to check that. for €| small enough, (A1,-2,-3}-6,)
are verified. J

REMARK 5.2. We notice that £ of theorem 1.2 can be explicitely estimated in terms
of b and of the C* norm of U'. For example, if W= = U e = UV px =1, 0t s

hi APy

not difficult to see that £ can be taken to be min{ 5 T3h T

The following example is related to Theorem 1.1 and can be obtained as a stright
application of Theorem 5.1:

EXAMPLE 5.3. Let & < 0 be given and suppose V' (z) = —n,lq + W{z) with I smooth
in (! and such that

(1) V(z} — —oc as 'z2' —~0 and Wirxy>0

(2) 3W'(z)z + W'(z)zz > —%  Vzj < o

(3) W'(z)z> -+ Yiz| < o5;

=l -

() Wizjzz < = vz <

z|

Yr with ‘7' = <

i3t
Then (1.1-2) has at least one periodic solution.

We point out that (1) is used only to show that { z | V{z)<h} o {z: 2| < —hl-‘ }
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