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pump level is empty, the rate at which the upper laser level 2 becomes popuiated
by the pumping, (dN./dt),, can in general be written as

(@) = W,N, (1.10)
dr /,

r

Here N, is the population of the ground level (1.e., level I or 0 in Figs. 1.4a
and 1.4b, respectively} and W, is a coefficient that will be called the pump
rate. To achieve the threshold condition, the pump rate must reach a threshold
or critical value that we shall indicate by W.,. Specific expressions for W,
will be obtained in Chapter 5.

1.4. PROPERTIES OF LASER BEAMS

Laser radiation is characterized by an extremely high degree of (1) mono-
chromaticity, (2) coherence, (3) directionality, and (4) brightness. To these
properties a fifth can be added, viz., (5) short time duration. This refers to the
capability for producing very short light pulses, a property that, although
perhaps less fundamental, is nevertheless very important. We shall now con-
sider these properties in some detail.

1.4.1. Monochromaticity

Briefly, we can say that this property is due to the foilowing two circum-
stances: (1) Only an e.m. wave of frequency v given by (1.1) can be amplified.
(2) Since the two-mirror arrangement forms a resonant cavity, oscillation can
occur only at the resonant frequencies of this cavity. The latter circumstance
leads to the laser linewidth being often much narrower {by as much as six
orders of magnitude!) than the usual linewidth of the transition 2 > 1 as
observed in spontaneous emission.

1.4.2. Coherence

To first order, for any e.m. wave, one can introduce two concepts of
coherence, namely, spatial and temporal coherence.

To define spatial coherence, let us consider two points P, and P, that, at
time ¢ = 0, lie on the same wave front of some given e.m. wave and let E,{r)
and Ex(t) be the corresponding electric fields at these points. By definition,
the difference between the phases of the two fields at time 1 = 0 is zero. Now,
if this difference remains zero at any time ¢ > 0, we will say that there is a
perfect coherence between the two points. If this occurs for any two points
of the e.m. wave front, we will say that the wave has perfect spatial coherence.
In practice, for any point P,, the point P, must lie within some finite area
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around P, if we want to have a good phase correlation. In this case we will
say that the wave has a partiafl spatial coherence and, for any point P, we can
introduce a suitably defined coherence area §,(P).

To define temporal coherence, we now consider the electric field of the
e.m. wave at a given point P, at times ¢ and r + = If, for a given time delay
7, the phase difference between the two field values remains the same for any
time #, we will say that there is temporal coherence over a time 7. If this occurs
for any value of 7, the e.m. wave will be said to have perfect time coherence.
If this occurs for a time delay 7 such that 0 < 7 < 71, the wave will be said
to have partial temporal coherence, with a coherence time equal to 7,. An
example of an e.m. wave with a coherence time equal to 7, is shown in Fig.
1.5. This shows a sinusoidal electric field undergoing phase jumps at time
intervals equal to .. We see that the concept of temporal coherence is, in this
case, directly connected with that of monochromaticity. We will in fact show
in Chapter 7—as, indeed, is apparent from the example shown in Fig. 1.5—that
a stationary e.m. wave with a coherence time 7, has a bandwidth Av = 1/7,.
In the same chapter, however, it will be shown that, for a nonstationary beam
(e.g., a Q-switched or a mode-locked laser beam), the coherence time is not
related to the inverse of the oscillation bandwidth Av and may actually be
much longer than 1/4wv.

It is worth noting that the two concepts of temporal and spatial coherence
are indeed independent of each other. In fact, examples can be given of a
wave having perfect spatial coherence but only a limited temporal coherence
{(or vice versa). If, for instance, the wave shown in Fig. 1.5 were to represent
the electric fields at points P, and P, mentioned earlier, the spatial coherence
between these points would be complete while the wave would have a limited
temporal coherence.

We conclude this section by emphasizing that the concepts of spatial and
temporal coherence provide only a first-order description of the laser’s coher-
ence. Higher-order coherence properties will be discussed in Chapter 7. Such
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FIG, 1.5. Example of an e.m. wave with a coherence time of approximately 7.
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a discussion is essential for a full appreciation of the difference between dn
ordinary light source and a Jaser. It will be shown in fact that, by virtue of
the differences between the corresponding higher-order coherence properties,
a laser beam is fundamentally different from an ordinary light source.

1.4.3. Directionality

This property is a direct consequence of the fact that the active material
is placed in a resonant cavity such as the plane parallel one of Fig. 1.3. In
fact, only a wave propagating along the cavity direction (orin a direction very
near to it) can be sustained in the cavity. To gain a deeper understanding of
the directional properties of 1aser beams (or, in general, of any e.m. wave), it
is convenient to consider, separately, the case of a beam with perfect spatial
coherence and the case of partial spatial coherence.

We first consider the case of perfect spatial coherence. Even for this case,
a beam of finite aperture has an unavoidable divergence due to diffraction.
This can be understood with the help of Fig. 1.6, where a beam of uniform
intensity and plane wave front is assumed to be incident on 2 screen S
containing an aperture D. According to Huygens' principie the wave front at
some plane P behind the screen can be obtained from the superposition of
the elementary waves emitted by each point of the aperture. We see that, on
account of the finite size D of the aperture, the beam has a finite divergence
@,. Its value can be obtained from diffraction theory. For an arbitrary amplitude
distribution we get

8, = BA/D (1.11)

where A and D are the wavelength and the diameter of the beam. In equation
{(1.11) Bisa numerical coefficient of the order of unity whose value depends
on the shape of the amplitude distribution and on the way in which both the
divergence and the beam diameter are defined. A beam whose divergence is
given by equation (1.11) is described as being diffraction limited.

If the wave has partial spatial coherence, its divergence will be larger
than the minimum value set by diffraction. Indeed, for any point P’ of the
wave front, the Huygens argument of Fig. 1.6 can only be applied for points

FIG. 1.6. Divergence of a plane e.m. wave due to difiraction.
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lying within the coherence area S. around point P'. The coherence area thus
acts as a limiting aperture for the coherent superposition of the elementary
wavelets. The beam divergence will now be given by

8. = pr/[S,.]"" (1.12)

where again 8 ts a numerical coeflicient of the order of unity whose exact
value depends on the way in which both the divergence 8, and the coherence
area S, are defined.

We conclude this general discussion of the directional properties of e.m.
waves by pointing out that, given suitable operating conditions, the output
beam of a laser can be made diffraction limited.

1.4.4. Brightness

We define the brightness of a given source of e.m. waves as the power
emitted per unit surface area per unit solid angle. To be more precise, let dS
be the elemental surface area at point 0 of the source (Fig. 1.7). The power
dP emitted by dS into a solid angle d{) around the direction &0’ can be
written as

dP = Bcos8dSdQ) (1.13)

where @ is the angle between OO" and the normal n to the surface. The quantity
B will generally depend on the polar coordinates # and ¢ of the direction
00" and on the point O. This quantity B is called the source brightness at
the point O in the direction of OO'. In equation {1.13) the factor cos # arises
simply from the fact that the physically important quantity is the projection
of dS onto a plane orthogonal to the OQ’ direction. When B is independent
of # and ¢, the source is said to be isotropic (a Lambert source}. A taser of
even moderate power (e.g., a few milliwatts) has a brightness that is orders
of magnitude greater than that of the brightest conventional sources. This is
mainly due to the highly directional properties of the laser beam,

FIG. 1.7. Surface brightness at the point O for a source
of e.m. waves.
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1.4.5. Short Time Duration

Without going into any detail at this stage, we simply mention that by
means of a special technique calted mode locking, it is possible to produce
light pulses whose duration is roughiy equal to the inverse of the linewidth
of the 2 = 1 transition. Thus, with gas lasers, whose linewidth is relatively
narrow, the pulsewidth way be of ~0.1-1 ns. Such pulse durations are not
regarded as particularly short because even some flashlamps can emit light
pulses with a duration of somewhat less than 1ns. On the other hand, the
linewidth of solid state or liquid lasers can be 10°-10° times larger than that
of a gas laser, and, in this case, much shorter pulses may be generated (from
1 ps down to ~30 fs). This opens up exciting new possibilities for laser research
and applications.

Notice that the property of short time duration, which implies energy
concentration in time, can, in a sense, be considered to be the dual property
of monochromaticity, which implies energy concentration in wavelength. Short
time duration is, however, perhaps a less fundamental property than mono-
chromaticity. While in fact all lasers can, in principle, be made extremely
monochromatic, only lasers with a broad linewidth, and this in practice means
solid state and liquid lasers, may produce pulses of very short time duration.
On the other hand, gas lasers with their narrower lines lend themselves more
readily to very monochromatic operation.

1.5. ORGANIZATION OF THE BOOK

The organization of the book is based on the fact that, as explained earlier
in this chapter, a laser can be thought of as consisting of three elements: (1)
an active material, (2) a pumping system, and (3) a suitable resonator. Accord-
ingly, the next three chapters deal, respectively, with the interaction of radiation
with matter, pumping processes, and the theory of passive optical resonators.
The concepts introduced in this way are then used in Chapter § to develop a
theory of the cw and transient behavior of lasers. The theory is developed
within the lowest-order approximation, i.e., using the rate-equation approach.
This treatment is, in fact, capable of describing most laser characteristics.
Obviously, lasers based upon different types of active media have significant
differences in their characteristics. It is therefore natural that, next, Chapter
6 should discuss the characteristic properties of each type of laser. By this
point, the reader should have acquired a sufficient understanding of laser
operationto goontoa study of the properties of the output beam {coherence,
monochromaticity, directionality, brightness, noise). These properties are con-
sidered in Chapter 7. Finally, Chapter & has its basis in the fact that, before
being put to use, a laser beam is generally transformed in some way. This

includes (1} spatial transformation of the beam due to its propagation in



Prodiems 13

free-space or through a lens svstem, (2} amplitude transformation due to
propagation through an amplifier. {3) wavelength transformation, or frequency
conversion, due to a number of nonlinear phenomena (second harmonic
generation, parametric generation}.

PROBLEMS

L1

1.2,

1.3,

14,

1.5,

i.6.

That part of the e.m. spectrum that is of interest in the laser field starts from the
submillimeter wave region and goes down in wavelength to the x-ray region. This
covers the following regions in succession: (1) far infrared; (2) near infrared; {3)
visible: {4} ultraviolet (uv); (5) vacuum uitraviolet (vuv}; (6) soft x-ray; (7) x-ray.
From standard textbooks find the wavelength intervals of the above regions.
Memorize or record these intervals since they are frequently used in this book.

As a particular case of Problem 1.1, memorize or record the wavelengths corre-
sponding to blue, green, and red light.

If levels t and 2 of Fig. 1.1 are separated by an energy E.~ E, such that the
corresponding transition frequency falls in the middle of the visible range, calculate
the ratio of the populations of the two levels in thermal equilibrium at room
temperature.

When in thermal equilibrium (at T = 300 K}, the ratio of the tevel populations
N,/ N, for some particular pair of levels is given by 1/e. Calculate the frequency
v for this transition. In what region of the e.m. spectrum does this frequency fall?

A laser cavity consists of two mirrors with reflectivity R, = 1 and R, = 0.5. The
length of the active material is ! = 7.5cm and the transition cross section is
= 3.5 x 107"° ¢cm®. Calculate the threshold inversion.

The beam from a ruby laser (A = 0.694 um} is sent to the moon after passing
through a telescape of 1 m diameter. Calculate the beam diameter D on the moon
assuming that the beam has perfect spatial coherence (the distance between earth
and moon is approximately 384,000 km).
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71. INTRODUCTION

In Chapter 1 it was stated that the most characteristic properties of laser beams
are (1) monochromaticity, (2) coherence (spatial and temporal}, (3) direc-
tionality, (4) brightness. The material presented in eatlier chapters allows us
10 now examine these properties in more detail and compare them with the
properties of conventional light sources (thermal sources).

7.2. MONOCHROMATICITY

If the laser is oscillating on a single mode and if the output is constant
in time, the theoretical limit of monochromaticity arises from zero-point
fluctuations and is given by (5.66). This limit, however, gives a very-low value
for the oscillating bandwidth Av,. (avalue of Avyee/ Vasc = 107 !° was calculated
in Section 5.3.7 for a laser power of 1 mW) which has never been reached in
practice. Vibrations and thermal expansion of the cavity indeed limit Av,. to
much higher values. If a sufficiently massive structure made of material with
a low expansion coefficient (e.g., lnvar) is used to support the laser cavity,
Ar,,. can be reduced to a value in the range of 1-10kHz. For a low-pressure
gas laser (e.g., He-Ne) locked to the center of the absorption line of an
appropriate gas, one can obtain'" Aw,. = 50-500Hz (e, Avec/v=
10°'2-10~"Y). In pulsed operation the minimum linewidth is obviously limited
by the inverse of the pulse duration 1,. For example, for a single-mode giant
pulse laser, assuming 7, = 10 ns one has Av,, = 100 MHz.

In the case of a laser oscillating on many modes, the monochromaticity
is obviously related to the number of oscillating modes. For a solid-state laser

" {ruby, neodymium, semiconductor), where it is usuaily difficult to obtain
single-mode oscillation (because of the large linewidth Awv,) the oscillation

379
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bandwidth is often of the order of gigahertz. Of course, one does not always
want to have a very narrow oscillating bandwidth. We recall, for example,
that in order to get very short pulses of light (mode locking}, it is desirable
to obtain oscillation over as wide a bandwidth as possible.

7.3. COMPLEX REPRESENTATION OF
POLYCHROMATIC FIELDS

Before going any further with our discussion of the properties of laser
beams it is appropriate to introduce a very useful complex representation for
polychromatic fields (due to Gabor'?"). For the sake of simplicity we will
consider a linearly polarized e.m. wave. This can then be specified by a single
real scalar quantity V\7(r, 1) (e.g., |E| or {H| or the modulus of the vector
potential |A]). This quantity, which is a function of position r and time /£, can
be expressed as a Fourier integral, i.e.,

l +x
Vi, 1) =2—I Vir, w)expl—iwt) dw (7.1)
i

-a

Equation (7.1) has the well-known inverse relationship

Vir,w) = J V'r, £ expl iwt) di (7.2)

Since V' is real, we see from (7.2} that
Vir, —w) = V¥, o) (7.2a)
Hence, the negative frequency spectrum does not add any further information

about the field to that already contained in the spectrum of positive frequencies.
So, instead of V'", we can consider the complex quantity V(r, 1) defined by

Vir, t) =-2-!;1[ Vir, w) exp(—iwt) dw (7.3}

[1]
V(r, 1) is called the complex analytic signal associated with V"' Obviously
there is a unique relation Between the two functions. In fact, given V, we find

from {7.1), (7.2a}, and {7.3) that

Vi© = 2Re( V) (74)
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Conversely, it is easy to see that, if V! is given, then V is uniquely determined.
In fact, given v'") then from (7.2) we obtain V(r, @). With the help of (7.3),
we then get V(r, 1).

The analytic signal V proves much more convenient than the real signal
as a way of representing the e.m. field. If, for example, the real signal is
monochromatic, we can write V' = E cos wt. Hence, from (7.2) and (7.3) we
have V=E exp(—iwt)/2. In this case the analytic signal representation is just
the well-known exponential representation for sinusoidal functions, whose
advantages are well known. For all cases of interest to us, the spectrum of the
analytic signal has an appreciable value only in an internal Aw that is very
<mall compared to the mean frequency {w) of the spectrum (quasimonochro-
matic wave). In this case We can write

v(n) = E(tyexplilé(1) —{w)t]} (1.5)

where E(i) and G(t) are both slowly varying, ie.,

dE | |d¢
e o)

di
For a quasimonochromatic wave, one can readily express other relevant
quantities as functions of the analytic signal. In particular, one can define the
intensity I(r, 1} of the beam by the relation

Ir,t) = V(r, HVHr, (7.7

In fact it can be readily shown that I(r, ) is equal to the mean vaiue of
[V'"?/2] averaged over a few optical cycles.

7.4. STATISTICAL PROPERTIES OF LASER LIGHT AND
THERMAL LIGHT

Before embarking on 2 discussion of the coherence properties of a light
beam, it is worth briefly comparing the statistical properties of laser light with
those of a conventional light source. A

Let us consider the case of a cw laser oscillating on a single transverse
and longitudinal mode. As already pointed out in Section 5.3.1, the output
intensity of this laser is determined, for a given pump rate, by the condition
that the downward transitions due to stimulated emission must exactly balance
the upward transitions due to pumping. It was also pointed out that the output
intensity is only influenced to a very small degree by amplitude fluctuations
arising from spontaneous emission. The osciliation bandwidth of a single-mode
laser can thus be considered to arise predominamiy from phase fluctuations,
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1), rather than amplitude Auctuations of the laser feld. These fluctuations
are due either to the phase fluctuations arising from zero-point fluctuations
or, more commeonly, from cavity length variations induced by thermal changes
or acoustic vibrations. This means that, if we write the analvtic signal V{y) at
a given point in space as

Vi) = E(r)exp{i[¢(1) — wi]} (7.8)

the fractional amplitude fluctuations of E{1), |dE [ E dt], will be much smaller
than the phase changes |¢]. We can now make use of a very useful three-
dimensional representation in which the probability of measuring a given value
of Vis plotted versus the real and imaginary parts, £, and, E'", respectively,
of the phasor E(¢) = E{r)explia(n)]. Since amplitude Auctuations are very
small, the representation will appear as shown in Fig. 7.1a. Note that the
quantity p(E) in the figure has the meaning that piE) dE'"'dE"" gives the
elemental probability that the measurement yields a value for E'"’ between
E' and E'' +dE'"" and a value for E'" between E'' and E™ '+ dE'",
Alternatively we can say that PLENEAEdd) is the probability that the

FIG. 7.1. Plot of the probability distribution,
P(E}, of the signal £ of a light beam versus
the real and imaginary parts, E'", and, E*",
respectively of the signal. (a) The case of a
coherent signal, such as that of a single-mode
laser. (b} The case of thermal light, such as
that emitted by a conventional light source.
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measurement gives a value for E between E and E + dE and a value of ¢
petween ¢ and ¢ + d¢. Note that the amplitude fluctuations of (E| = E(1)
nave been greatly exaggerated in the figure, and in fact, for a laser just above
threshold, we can write the probability distribution p(E) as

P(E) < §(E - E,) (7.9)

where & is the Dirac 8 function and E,, according to (7.7} and (7.8), is related
10 the beam intensity I by the equation E 2 = I Thus, the point that represents
E(1)in the phasor plane will travel in time essentially along the circumference
of radius |E| = E,. Because of the statistical nature of the phase fluctuations,
this movement will take the form of a random walk whose angular speed, in
terms of the phase angle ¢(r), determines the laser bandwidth.

The light from a conventional lamp, on the other hand, can be considered
as arising from the superposition of uncorretated light emitted, by spontaneous
emission, from the atoms of the material. Note that, since this emission occurs
under essentially thermal equilibrium conditions, this light is also called
thermat light. In this case, since the number of these uncorrelated emitters is
very large, it follows, from the central limit theorem of statistics, that the
amplitude distribution of both the real and imaginary parts of E must follow
a Gaussian law. We can thus write p( E ) o€ expf —E*/ ], where C is a constant,
which can readily be shown to be equal to the average beam intensity (I).
According 1o the definition of I given by {7.7), we can in fact see that
Iy = [[E*p(E) EdEd®)/ [ pl ENEdEde) = [E°p(E)dE*/[p(E)dE™ = C.
Thus p(E) can be written as

plE) < expt—E* /(D) {7.10)

This function is plotted in Fig. 7.1b versus the real and imaginary parts of the
field E(¢). Note that the average value of both E'" and E'” is now zero while
the average value of E’ is just the beam intensity. In the E'"', E'” plane, the
movement of the point that represents E(r) can be viewed as a random walk
around the origin, The speed of this movement in terms of both amplitude
and phase changes (dE/ E di, and do/dt, respectively} determines the band-
width of the thermal light source.

A comparison of Figs. 7.1a and 7.1b, makes the profound differences
between laser light and thermal light clearly apparent.

7.5. FIRST-ORDER COHERENCE®

In Chapter 1 the concept of coherence of an e.m. wave was introduced
in an intuitive fashion, with two types of coherence being distinguished:
(1) spatial and (2) temporal coherence. In this section we give more detailed
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discussion of these two concepts. In fact, as will be seen better by the end of
this chapter, it turns out that spatial and temporal coherence describe the
coherence properties of an e.rp. wave only to first order.

7.5.1. Degree of Spatial and Temporal Coherence

In order to describe the coherence properties of a light source, we can
introduce a whole class of correlation functions for the analytic signal. For
the moment, however, we will limit ourseives o locking at the first-order
functions.

Suppose that a measurement is petformed of the analytic signal at some
point r, in a time intervaj between 0 and T. We can then obtain the product
Vir, 4)V*x,. 1,) where fy and 1, are given time instants within the time
interval 0-T. If the measurement is now repeated a large number of times, we
can calculate the average of the above product over all the measurements.
This average is called the ensemble average and written as

rm(ri-rl,fh i) :(V(ri,tn)V*(h, 1)} {7.11)

For the remainder of this section as well as in the next two sections, we wil]
consider the case of a stationary beam,t as would for instance apply to a
single-mode c¢w laser or to a cw laser oscillating on many modes that are not
locked in phase or to a cw thermal light source. In these cases, by definition,
the ensemble average will only depend upon the time difference 7 = I =1
and not upon the particular times ¢, and ;. We can then write

r“i(r!,rl‘ h, L) = F(”(rnrl, T) = (Vir,, 1+ T}V*(r:. ) (7.12)

where we have set 1 = 1, and where ! only depends upon 7. If now the
analytic signal, besides being stationary is also ergodic {a condition that also
usually applies to the cases considered above ), then, by definition, the ensemble
average is the same as the time average. We can then write

(T
' r, 1) = lim *J‘ Vir, o+ 1)y, 1) de (7.13)

Fox T 0
Note that, the definition of I*"' in terms of a time average is perhaps easier
to deal with than that based on ensemble averages. However, the definition
of I"" in terms of an ensemble average is more general and, in the form given

t A process is said to be stationary when the ensemble average of any vanable that describes it
(e.g., the analytic signal or the beam intensity, in our case), is independent of time.
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by (7.11), can be applied also to nonstationary beams, as we shall see in
Section 7.5.4.

Having defined the first-order correlation function ! at a given point
1,, we can define a normalized function ¥''(r,, r,, 7) as follows:

(V(rl, t+ T)V*(r]: r))

ay _
(V(r, OV, YV, 4+ )V, 1+ o)

Y

(7.14)

Note that, for a stationary beam, the two ensemble averages in the denominator
of (7.14) are equal to each other and, according to (7.7), are both equal to the
average beam intensity (I(r,, ¢)). The function y'"’ as defined by (7.14) is
called the complex degree of temporal coherence while its modulus |y'"| is called
the degree of temporal coherence. Indeed y'"' gives the degree of correlation
between the analytic signais at the same point r, at iwo instants separated by
a time . The function v'"" has the following main properties: {1) ¥''’ =1 for
+ =0, as evident from (7.14). (2) ¥'"'tr,.r,. —7) = ¥'""*(r,, r,, 7) as can readily
be seen from (7.14) with the help of (7.5} (3} |y 1,1y, 7} = 1, which follows
fram applying the Schwarz inequality to (7.14).

We can now say that a beam has perfect temporal coherence when [y'''| = 1
for any 7. For a cw beam this essentially implies that both amplitude and
phase fluctuations of the beam are zero so that the signal reduces to that of
a sinusoidal wave, i.e., V = E(r,) exp{—iw?), Indeed, the substitution of this
expression into (7.14) shows that [y'"} = 1 in this case. The opposite case of
complete absence of temporal coherence occurs when (V(r,,  + 7), Vir,, t))
and hence ¥'"’ vanishes for = > 0. That would be the case of a thermal light
source of very large bandwidth {e.g., a blackbody source; see Fig. 2.3). In
more realistic situations |y'"} is generally expected to be a decreasing function
of 7 as indicated in Fig. 7.2 [note that, according to the property stated in (2)
above, |yl is a symmetric function of 7]. We can therefore define a characteris-
lic time 7., {(called the coherence time) as, for instance, the time for which
(¥"|=1/2. Fora perfectly coherent wave, we obviously have 7, = @, while
for a completely incoherent wave we have 7., = 0. Note that we can also define
a temporal coherence length L. as L, = ¢1,.

FIG. 7.2. Example of possible behavior of the
degree of temporal coherence [y'(7)|. The
coherence time can be defined as the half-width

of the curve at half-height. ’ o ) T T
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In a similar way, we can define a first-order correlation function between
two points r, and r, at the same instant as

T

1
ru'(r].rz.O):(V(r,,!)V*{rz,!))‘—‘ lim ?‘[ Vie, 11V*e, 1) dr (7.15)
F—x

0o

We can also define the corresponding normalized function y''(r,,r,, 0) as

() (V(II,I)V*(rl,;))
Y o= (V(r]‘ 1) V*(r,, f))uz( V(r,, I)V*(rz, I))l/'.’ (7.16}

The quantity ¥'"(r,, r, 0} is called the complex degree of spatial coherence and
its modulus the degree of spatial coherence. Indeed y'"' in this case gives the
degree of correlation between the analytic signals at the two space points r,
and r; at the same instant. Note that from the Schwarz inequality we again
find that |y'""] < 1. A wave will be said 10 have a perfect spatial coherence if
[v'""| = 1 for any two points r, and £; (provided that they lie on the same wave
front or on wave fronts whose separation is much smaller than the coherence
length L ). Often, however, one has a situation of partial spatial coherence.
This means that, for a fixed vaiue of r,, [¥'"], as a function of r,, decreases
from the value 1 (which occurs for F. =1} to zero as ir, — r,| increases. Thus
[v'"'l will be greater than some prescribed value (e.g., 1/2) over a certain
characteristic area on the wave front around the point P,, described by the
vector r,. This will be called the coherence area of the wave at point P, of
the wave front.

The concepts of spatial and temporal coherence can be combined by
means of the so-called mutual coherence function, defined as

FVCr 1) = (Ve 0+ 1) V¥, 1)) (7.16a)
which can also be normalized as follows:

(V(n, 1+ 7)V¥r,, 1)
Vi, VA, o3V, 1) VE(r,, )"

(7.17)

i1
Y (r|,r2,T}:

This function, called the comptlex degree of coherence, provides a measure of
the coherence between two different points of the wave at different instants
of time. For a quasimonochromatic wave, it follows from (7.5} and (7.14) that
Wwe can write

y¥(7) = |y exp{il@p(r) — (w)r]} (7.18)
where |y'"'| and &(7) are both stowly varying functions of 7, i.e.,
dly(l}l d_d’ ]
[I}’ml a7l 1< {w) (7.19)
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25.2. Measurement of Spatial and Temporal Coherence

One very simple way of measuring the degree of spatial coherence between
wio points Py and P, on the wave front of a light wave is by using Young's
interferometer (Fig. 7.3). This simply consists of a screen 1, in which two small
holes have been made at positions P, and P, and a screen 2 on which an
interference pattern is produced by the light diffracted from the two holes.
More precisely, the interference at point P and time t will arise from the
superposition of the waves emitted from points P, and P; at times [t — (L,/¢)]
and [t — (La/ a)l, respectively. One will therefore see interference fringes on
screen 2 around point P that are more distinct the better the correlation
petween the two analytic signals of the light wave, Vir,t— (L,/c)] and
Vir,, f — {L,/¢)], where I, and r, are the coordinates of points P, and P:.
Note that the integration time T appearing in the cotrelation function [see
(7.13)] is now equal to the time taken for the measurement of the fringes (e.g.,
the exposure time of a photographic plate). 1f now the point P on the screen
is chosen so that L, = La, the visibility of the fringes around P will give a
measure of the degree of spatial coherence between points P, and P-. To be
more precise we define the visibility V,p, of the fringes at point P as

Ima\ - Imin
Vp = ]————- (7.20)

mak + ’mm

where I, and I are, respectively, the maximum intensity of a bright fringe
and the minimum intensity of a dark fringe in the region of P. If the two holes
1 and 2 produce the same illumination at point P and if the wave has perfect
spatial coherence, then I~ =0 and therefore Vo = 1. For the case in which
the signals at the two points P, and P; are completely uncorrelated (ie.,
incoherent), the fringes disappear {i.e., Tmax = fmin) and therefore Vip, = 0.
From what we have said in the previous section, it seems clear that Vp must
be related to the modulus of the function ¥'"(ry, r2, 0). More generally, for
any point P on the screen, We expect Vp to be related to the modulus of the
function y'"(r,, 13, 7), where 7= (L,— L)}/ c. At the end of this section we

will indeed show that, if the two holes produce the same jllumination at point

|

P

Light wove
- _
FIG. 7.3 The use of Young's interferometer for the
measurement of the degree of spatial coherence of an e.m.
wave between points P, and Pr. 1 2
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P, we have

Vi(7) =1y, e, 1) (7.21)

Thus, by measuring the fringe visibility V, at a point P such that L, =1, the
degree of spatial coherence between points P, and P, is obtained.

The Micheison interferometer (Fig. 7.4) provides a very simple method
of measuring the temporal coherence, Let p be the point where the temporal
coherence of the wave is to be measured. A combination of a small hole placed
at P and a lens with its focus at P transforms the incident wave into a plane
waxe (see Fig. 7.9 also). This wave then falis on a partially reflecting mirror
S, (reflectivity R = 509,) which splits it into two waves A and B. These waves
are reflected back by mirrors S:and §, (R = I} and recombine (o form the
wave C. Since the waves 4 and B interfere, the illumination in the direction
of C will be either light or dark according to whether 2Ly~ L,) is an even
or odd number of half-wavel‘engths. Obviously this interference will only be
observed as long as the difference L.~ 1, does not become so large that the
two beams A and B are uncorreiated in phase, Thus, for a partially coherent
wave, the intensity /. of beam ( as a function of 20L, - L) wil behave as
shown in Fig. 7.4b. We can again define a fringe visibility V() for some
given value of the difference £, — L, between the lengths of the interferometer
arms, i.e, for a given value of the delay 7 = AL, - L,)/¢ between the two
reflected waves, with Vp(r) as in {7.20), and the Quantities [ = and Ioin as
shown in Fig. 7.4b. Just as in the case of Young's interferometer, it can now

FiG. 7.4 (a) Michetson interfero-
meter for the measurement of the
degree of temporal coherence of an
€.Mm. wave at point P, (b) behavior
of the light output in the direction ¢
as a function of the difference L,-
L; between the lengths of the inter-
ferometer arms.
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be shown that
[¥ e, r, 7 = Vplr) (7.22)

where r is the coordinate of point P. Therefore the measurement of fringe
visibility in this case gives a value for the degree of temporal coherence of the
wave at point P. Once |y'"| is known, the value of the coherence time 7., can
be found and hence the coherence length L, = ¢,7.,. Using the definition 7,
adopted in Fig. 7.2, we then see that L, is equal to twice the difference L, — L,
between interferometer arms at which the visibility falls to V, = 1/2.

We conclude this section with a proof of (7.21). This also serves as an
exercise in the use of analytic signals. A similar sort of argument can be used
to prove (7.22). Let us call V(') the analytic signal at point P of Fig. 7.3 at
time ¢'. Since it is due to the superposition of signals coming from each of the
two holes of Fig. 7.3, it can be written as

V=K Vi t'—n+ K. Vir,, I' - ;) (7.23)

where 1, = Li/¢, £, = L,/ c. The factors K, and K, are inversely proportional
to L, and L, and also depend on the hole dimensions and the angle between
the incident wave and the wave diffracted from P, and P.. Since the diffracted
secondary wavelets are always a quarter of a period out of phase with the
incident wave'™' [see also the discussion of “Huyghens wavelets™ appearing
in Section 4.4.2] it follows that

K, = |K\ exp(—iw/2) {7.24a)
K = K, exp(—im/2) (7.24b)
If we now define r = t' — 1, and 7 = 1, — 1,, equation (7.23) can be written as
V=KV, t+7)+ K. Vir,, 1) (7.25)

The intensity at the point P therefore has the value
I'=VV*=L{1+7)+ L{O)+2Re[K,K¥V(r,, t + 1) V*(r,, 1)] (7.26)

where [, and I, are the intensities at point P due to the emission from point
P, alone and point P, alone, respectively, and are given by

L= KV, t+ 0 =K, + 7). (7.27a)
L =Kl V(ry, 0] = Ko I(rz, 1) (7.27b)

where I(r,, 7+ 7) and I(r,, 1} are the intensities at points P, and P,. Taking
the time average of both sides of (7.26) and using equation (7.16a), we find

() = (L) + (1) + 2K [} K| Re[T(ry, 72, 7)] (7.28)
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where equations {7.241 have also heen used. Equation (7.28) can be expressed
in terms of ¥'"" by noting that from (7.17) we have

'V =y N[y, 4 e, ] (7.29)
Substituting {7.29) in (7.28) and using (7.27}) we get
y = (1) + )+ 20D T Re[ v ey, s, 1]

= () + (I + 200U

¥ cos[dir) - {w)T] £7.30)

where we have used (7.18). Now, since both |v'''| and ¢ (7} are slowly varying,
it follows that the variation of intensity (1) as P is changed is due to the rapid
variation of the cosine term with its argument {w)7. So, in the region of P, we
have

Fooo = (L + (LY = 2000 3CE)" Ty (7.31a)
T = (13 + () = 2000 iyt (7.31b)
and therefore, from equation (7.20)

RITE RIS NI
iy + il

p=

VY T I 31 (7.32)
For the case where (/,} = {I.) equation (7.32) reduces to (7.21).

7.5.3. Relation Between Temporal Coherence and Monochromaticity

From the previous paragraphs it is clear that. for a stationary beam, the
concept of temporal coherence is intimately connected with the monochroma-
ticity. For example, the more monochromatic the wave is, the greater its
temporal coherence. So it is clear that the coherence time must be inversely
proportional to the oscillation bandwidth. In this section we wish to discuss
this relationship in more depth.

We start by noting that the spectrum of an e.m. wave as measured by a
spectrograph is proportional to the power spectrum W(r, @) of the signal
V(r, 1). Since the power spectrum W is equal to the Fourier transform of the
autocorrelation function I''", either one of these quantities can be obtained
once the other is known. To give a precise expression for the relation between
7., and Av,,. we need to redefine these two quantities in an appropriate way.
So we will define 7, as the mean square width of the function [T*'(7)%, i.e.,
such that (7,,)° = {*5 (r = (z)A0(7)|* d=/ |*% |[(7)|* dr. As a short-hand nota-
tion for the above expression, we will write

(1eo)? = {(r = (1) (7.33)
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where the mean value (r) is defined by (7) = | 7{['(7)]* dr/ [IT{(=)1* dr. Since
I1—7) = [I'(7)], we see from this definition that (r) = 0 and (7.33) reduces to

(7o) = (27 {7.34)

The coherence time defined in this way is conceptually simpler (although
sometimes more lengthy to calculate) than that defined earlier (i.e., the half-
width at half-height of the curve |[(1)|, see Fig. 7.2). If the curve in Fig. 7.2
were oscillatory, 7., as we first defined it, could not be uniquely determined.
Similarly we define the oscillation bandwidth Avg, as the mean square width
of Wi(»), i.e., such that

(Ave, ) = (v — (1)) (7.35

where (v), the mean frequency of the spectrum, is given by ()=
J¥W?dv/ § W dv. Now, since W and T are related by a Fourier transforn:.
it can be shown that Av, . and Teos @8 We have just defined them, satisfy the
condition

Tﬂf’Avﬂsﬁ 2 ]/4” (7-361‘

The relation (7.36) is closely analogous to the Heisenberg uncertainty relation
and can be proved using the same procedure as used in the derivation of the
uncertainty relation."’ The equality sign in (7.36) applies when |I'""'(7}| [and
hence W(w)] are Gaussian functions. This case is obviously the analogue of
the minimum uncertainty wave packet.'®’

7.5.4, Nonstationary Beamst

We will now briefly consider the case of a nonstationary beam. In this
case, by definition, the function I"'" in (7.11) depends on both t, and ¢, and
not only on their difference 7 = I, — t». Examples would include an amplitude-
modulated laser, an amplitude-modulated thermal light source, a Q-switched
or a mode-locked laser. For a nonstationary beam the correlation function
Can be obtained as the ensemble average of many measurements of the analytic
signal in a time interval between 0 and T, where the origin of the time interval
is synchronized to the driving signal (e.g., synchronized to the amplitude
modulator for a mode-locked laser or the Pockels cell driver for a Q-switched
laser). The degree of temporal coherence at a given point r can then be
defined as

{(V(1,) V¥
(VL) VN VL) VAL,

YU, ) = (7.37)

* The author wishes to acknowledge some enlightening discussions on this topic with Professor
V. Degiorgio.
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where t, and f2 are two given times in the interval 0-T ang where all signais
are measured at point r. We ¢an now say that the beam has a perfect temporal
coherence if ¥ (4, ) = 1 for all times 1, and f2. According to this definition
W€ can see that 3 nonstationary beam without amplitude and prhase fluctuarions
has a perfect temporal coherencet |n the absence of fluctuations, in fact, the
products V{r,) V*(1,), V{11 V¥(1,), and Vi v(y,) appearingin (7.37) remain
the same for all measurements of the ensemble. These products are thus equal
to the Corresponding ensembje averages and y''iy | 1) reduces to
. Vi) v¥(r,) .
¥ “l’{:)_{V(h)HV(IZ)! (7.38)
From (7.38) we then immediately seethat|y'" = |, According to this definition
of temporal coherence, the coherence time of a nonstationary beam, e.g., of

related to the inverse of the oscillating bandwidth. In 4 practical situation,
however, if we correlate, e.g.. one pulse of a mode-locked train with some
other pulse of the train, i.e., if we choose 2= 1, to be larger than the puise
repetition time, sorme lack of correlation will be found due to fluctuations.
This means that vl will decrease L £ =1, increases beyond the pulse

7.5.5. Spatial and Temporal Coherence of Single-Mode and
Multimode Lasers

Vir, 1) = E(r,) expl{il (1) w!]} {7.39a)
V(r;, 1) = E(r,) exp{i[p(r) - w! j} {7.39b)

where E(r) is the mode amplitude and o is the angular frequency at
band center. The subsgjitution of (7.39} into (7.16) then gives 'l =
E(r,)E*(rz)/lE(r.}HE(rg)[, which shows that [¥'") = 1. Thus, a laser oscillating
on a single mode has perfect spatial coherence. Its temporal coherence, on
the other hand, is established by the oscillating bandwidth Av,.. As an

¥ This is indeed the concept that a radio-engineer has in mind where he thinks about a coherent
signal in the radiofrequency field.
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example, 2 frequency stabilized laser of good frequency stability in the visible
range may have Avee = 1kHZ and hence the coherence time will be 7., =
1 Avg, = 1 mS. Note that, in this case, the coherence length is very long
(L, = T = 300 km!).

Let us now consider a laser oscillating on a single transverse mode and
on many longitudinal modes. The analytic signals at two points ¥, and T:
pelonging o the same wave front can generally be written, in terms of the
fields of the cavity modes, as

Vir,. 1) =¥ a,Udr) explildilt) = wt]} (7.40a)
k
Vir,, 1) = Zk akUJ\(r2) exp{i[d)k(l) - Wk’]} (7-40b)

where a, are constant factors, U, &, and w, are, respectively, the amplitude,
phase, and frequency of the kth mode and where the sum is taken over all
oscillating modes. Note now that, since the transverse field configuration is
the same for all modes (e.g., that of 2 TEM,, mode) the amplitude Ui is
independent of mode index k. We can then write

Uilry) = Uln) (7.41a)
Uplra) = U(ra) (7.41b)

Substitution of (7.41) into (7.40) then leads to the following result
vir,, 1) = [Utn)/ U V(ir, 0 {7.42)

This means that, whatever time variation Vir, 1) is observed in fy, the same
time variation will be observed at r, except for a proportionality constant.
Substitution of (7.42) into (7.16) then readily gives |y = 1. Thus the beam
still has perfect spatial coherence. The temporal coherence, if the phases of
all modes are random, is again equal to the inverse of the oscillating bandwidth.
If no frequency-selecting elements are used in the cavity, the oscillating
bandwidth may now be comparable to the laser bandwidth and hence the
coherence time may be much shorter than in the example considered previously
[nanoseconds to picoseconds]. Wwith mode-locking, however, the temporal
coherence may become Very long: thus a mode-locked laser can in principle
have perfect spatial and temporal coherence.

The last case we shall consider is that of a laser oscillating on many
transverse modes. 11 can be shown (see Problem 7.16) that such a laser has
only partial spatial coherence. This result comes about because the modes
differ in both their transverse profile and their resonance frequency.
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divergence B4. This can be understood with the help of Fig. 7.5a, which shows
the wave frong A'B’ obtained fro
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known from diffraction theory'”’ that the function [(r) is given by the Airy

formula
B ZJl(krD/?,j')]:
I*['—d—krp/:zf Iy (7.45)

where k = 27/ A, J, is the first-order Bessel function, and I, (the intensity at
the center of the focal spot} has the value

1 —P(ED;) (7.46)
[ 4A2f2 . . L

where P, is the power of the beam incident on the lens.
The behavior of the intensity I is shown in Fig. 7.6 as a function of

X = krD (7.47)
2f

Consequently, the diffraction pattern formed at the focal plane of the lens
consists of a circular central zone (the Airy disk) surrounded by a series of
rings of rapidly decreasing intensity. Now the divergence 8, of the original
beam is conventionally defined to correspond to the radius of the first minimum
shown in Fig. 7.6. So, from Fig. 7.6, with the help of (7.47) and (7.44) we
obtain (7.43). It can be seen then that the expression (7.43) for 8, has a certain
arbitrariness.

As a second example of the propagation of a spatially coherent beam,
we consider the case of a Gaussian beam (TEMg) such as can be obtained
from a stable laser cavity consisting of two spherical mirrors. If we let w, be
the spot size at the beam waist, the spot size w and the radius of curvature R

1,

FIG. 7.6. Distribution of light intensity in the focal plane
of Fig. 7.5b as a function of radial distance r {normalized,
Le., x = krD/2f). *
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FIG. 7.7 Fraction of total power of a given TEM, . mode that falls within a circular Cross section
of radius ¢ In the figure, w is the spot size of the TEM,, mode and the number on each curve
gives the mode indexes LLm

(i.e., for Az/awy » 1), We see that, at large distances, w = Az/mww,and R = z,
and since both w and R increase linearly with distance, the wave can be
considered to be a spherical wave having its origin at the waist. Its divergence
can then be obtained as

W A
Oy =— = — (7.48)
I mw,

We can now compare (7.48) and (7.43). If, for the purpose of comparison, we
put D =2w,, we see that, for the same diameter, a Gaussjan beam has a
divergence about half that of a plane beam.

TEMy, mode in the plane of the aperture. We can now define the effective
Spot size, w,,,, as the radius which contains, e.g., 90% of the beam power.
This spot size can then be written as

wLm = Cf,mw (7.49)
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where Cim is @ numerical factor, always larger than 1, which depends on the
mode indexes { and m and whose value can readily be obtained from Fig. 7.7.
Note that, according to this definition, one has Cgpp = 1.16 and the eftective
spot size of a TEMy mode is about 1.16w. Note aiso that the effective spot
size increases with increasing mode indexes { and m. We now define the beam
divergence as

Wi m W

= C.n lim — (7.50)
1-x 7

8, = lim

where (7.49) has been used. Since at large distances from the waist one has
w = Az/ mwp, from (7.50) we get
A
af,m = Ci',m - (751)

TW,

which shows that the divergence of a higher-order Gausstan mode is always
larger than that of the corresponding TEMu, mode. Note that, according to
the definition adopted for the efiective spot size, the divergence of the TEMy,
mode is a factor about 1.16 larger than that given by (7.48). Note also that,
if we define an effective spot size for the TEMgo mode, wy, in the waist plane
as wpg = 1,16, then the beam divergence of this mode could be written as
8o = 1161w, = (1.16)°A/ mwi 0.

As a conclusion to this section we can say that the divergence 8, of a
spatially coherent beam can always be written as

8, =BA/D (7.52)

where D is a suitably defined beam diameter and 8 is a numetical factor of
the order of unity whose exact value depends on the field amplitude distribution
as well as on the way in which both 8, and D are defined. Such a beam is
commonly referred to as being diffraction-limized.

7.6.2. Beams with Partial Spatial Coherence

For an e.m. wave with partial spatial coherence the divergence is greater
than for a spatially coherent wave having the same intensity distribution. This
can, for example, be understood from Fig. 7.5a: if the wave is not spatially
coherent, the secondary wavelets emitted over the cross section AB would no
longer be in phase and the wave front produced by diffraction would have a
larger divergence than that given by equation (7.43). A rigorous treatment of
this problem (i.e., the propagation of partially coherent waves) is beyond the
scope of this book, and the reader is therefore referred to more specialized
texts.® We will limit ourselves to considering first a particularly simple case
of a beam of diameter D (Fig. 7.8a), which is made up of many smaller beams
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FIG. 7.8. Examples to illustrate the different divergence
properties of caherent and parially coherent waves: (al
beam of diameter [ made of the superposition of several
smaller and coherent beams of diameter d; {b) beam of
ta: by diameter [} and coherence area A at point P.

{shaded in the figure) of diameter d. We will assume that each of these smaller
beams is diffraction limited (i.e., spatially coherent). Now, if the various beams
are mutuaily uncorrelated, the divergence of the beam as a whole will be equal
to 8, = Br/d. 1f, on the ather hand, the various beams were correlated, the
divergence would be 6, = BA/D. This last case is actually equivalent to a
number of antennas (the small beams) all emitting in phase with each other,
After this simple case we can consider the general case in which the partially
coherent beam has a given intensity distribution over its diameter D and a
given coherence area A. at each point P (Fig. 7.8b). By analogy with the
previous case we can readily understand that, in this case, 8; = Br/[AT ",
where the numerical factor 8 is of the order of unity, whose value depends
both on the particular intensity distribution and on the way in which A, 1s
defined. The concept of directionality is thus intimately related to that of
spatial coherence.

After these general remarks about a beam with partial spatial coherence
we can go on to consider the particularly important case of a laser oscillating
on many transverse modes. Thus we consider a stable laser cavity in which
the transverse dimension 2a of the active laser material is appreciably larger
than the spot size of the TEMg mode within the material. A relevant example
would be that of a cw or pulsed solid-state laser and we will therefore refer
to the case shown in Fig. 5.14. The considerations that follow, are, however,
of general application to any multimode laser using a stable cavity. For
simplicity we shall assume that the spot size w in the material is approximately
equal to the spot size w, at the beam waist. Since a is appreciably larger than
Wy, it is expected that many transverse modes will be excited, so filling the
available cross section of the laser material. The highest-order mode that is
expected to be excited is limited to a size that is not significantly truncated
by the aperture of the material. The transverse indexes. of this mode can then
be estimated from Fig. 7.7 once the maximum allowed loss for a mode to
oscillate is known. Assuming, for example, that this loss is 10%, then 90% of
the power of this highest-order mode must pass through the laser aperture. In
this case, the effective spot size wy,, as defined in the previous section must
be equal to the radius a of the material, i.e., w,, = a. With the help of (7.49)
we then get

a= Cr_m“' = Cr‘mwO (753)
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For given values of a and wy, (7.53) allows one 10 calculate Oy, which can
then be used in (7.51) to obtain the divergence of the mode. Since this mode
has the highest divergence, we ¢an get a rough estimate of the overall divergence
of the beam 8,4, by assuming it to be equal to the divergence of this mode 8 .
From (7.51) and (7.53) we then get

6, = 2 (7.54)

2
™G

Equation (7.54) is useful in a number of ways. If wg is in fact known, (7.54}
can be used to estimate the expected divergence of the multimode laser. Il wy
is not known and if a measurement of 8, has been performed, (7.54) can be
used in reverse to get an estimate of w,. Note that, according to the expression
{7.54), the beam divergence of a multimode laser is expected to decrease with
decreasing values of the cavity aperture, a, and with increasing values of the
TEM,, mode spot size, Wo.

Given an incoherent lamp 5, one can obtain a spatially coherent wave,
ie., drastically decrease its divergence by using the arrangement of Fig. 7.9.
The light from § is imaged on a pinhole of diameter d situated in the focal
plane of the lens L'. The light passing through the pinhole will fill a large cone
of angles (solid lines in Fig. 7.8} corresponding to the focusing cone of the
lens L. The beam produced by difiraction from the pinhole, however, has a
much smaller divergence given by 8 = 1.22x/d and will thus occupy the
hatched area of Fig. 7.9. If now the aperture D of the collecting lens L’ satisfies
the condition D = 268f = 2 44Af/ d, where f is the focal length of the lens, this
lens would collect just the light resulting from diffraction from the hole, thus
producing a coherent output beam. In fact, however, this argument is somewhat
oversimplified as it uses equation (7.43), which is only valid when the hole is
illuminated by light that is already coherent. To deal with this problem in a
more rigorous fashion requires a treatment of the propagation of partially
coherent e.m. waves.'®' Let us suppose for simplicity (and also because this is
frequently the case in practice) that the wave arriving at the hole has no spatial
coherence. Then, for this case, it follows from the well-known Van Cittert-
Zernike theorem'®’ that, if the exit beam from the tens L' of Fig. 7.8 is to have
some particular value of spatial coherence, the diameter D of the lens must
have the value D = BAf/d, where B is 2 numerical factor, which depends on
the degree of coherence we stipulate. If, for instance, we require that the

FiG. 7.9. Method for obtaining a coherent out-

lamp
put beam from an incoherent lamp. S
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degree of spatial coherence between two extreme points P, and P. on the lens
circurnference has the value {¥(P,, P., 0)! = 0.88. the corresponding value of
B turns out to be B = 0.32. This gives

v
1]
0
‘N
n

which is of the same form as that established by the earlier simplified argument
but with a different (and in fact significantly smaller; numerical factor.

7.7. LASER SPECKLE"™'"

Following what has been said in the previous sections about first-order
coherence, we now mention a very striking phenomenon characteristic of faser
light, known as laser speckle. Laser speckle is apparent when one observes
laser light scattered from a wall or transparent diffuser, The scattered light is
seen to consist of a random collection of alternately bright and dark spots
(or speckles) (Fig. 7.10a). Despite the randomness, one can distinguish an
average speckle {or grain) size. This phenomenon was quickly recognized by
early workers in the field as being due to constructive and destructive interfer-
ence of radiation coming from the small scattering centers on the surface of
the wali or of the transparent diffuser. Since the phenomenon depends on
there being a high degree of first-order coherence, it is an inherent feature of
laser light.

The physical origin of the observed granularity can be readily understood
both for free-space propagation {Fig. 7.10b) and for an imaging system (Fig.
7.10c), when it is realized that the surfaces of most materials are extremely
rough on the scale of an optical wavelength. For free-space propagation, the
resulting optical wave at any moderately distant point from the scattering
surface consists of many coherent components or wavelets, each arising from
a different microscopic element of the surface, Referring to Fig. 7.10b, we note
that the distances traveled by these various wavelets may differ by many
wavelengths. Interference of the phase-shifted but coherent wavelets resuits
in the granular intensity {or speckle pattern, as it is called). When the optical
arrangement is that of an imaging system (Fig. 7.10¢) an explanation of the
observed pattern must take account of diffraction as well as interference. Even
for a perfectly corrected imaging system, the intensity at a given image point
can result from the coherent addition of contributions from many independent
parts of the surface. It is only necessary that the point-spread function of the
imaging system be broad in comparison to the microscopic surface variations
to ensure that many phase-shifted coherent contributions add at each image
point.
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We can readily obtain an order-of—magnitude estimate for the grain size
d, (i.e., the average size of the spots in the speckle patiern} for the two cases
just considered. In the first case (Fig. 7.11a) the scattered light is recorded on
photographic film at a distance L from the diffuser with no lens between film
and diffuser. Suppose that, at some point P in the recording plane, there is a
bright speckle. This means that the light diffracted by all points of the diffuser
will interfere at point P in a predominantly constructive way S0 as to give an
overall peak for the field amplitude. In 2 heuristic way we can then say that
the diffractive contributions at point P from the waves scattered from points
p,, P}, Pi, etc. add (on the average) in phas¢ with those from points P2, P,
P etc. We now ask how far the point P must be moved along the X axis in
the recording plane in order to destroy this constructive interference. This will
happen when the contributions of, e.g., the diffracted waves from points P,
and P, at the new point P’ interfere destructively rather than constructively.
in this case we will show in fact that the contributions from points P, P
will also interfere destructively, as do those from points P! and P3 eic., and
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the overall light intensity will have a minimum value. Taking, for example,
points P, and P,, we require that the change 8x in the x coordinate of point
P is such that the corresponding change 8(P,P — PP} in the path differ-
ence PoP - P,P be egual to A/2. Since P.P={(x"+L)'" and PP =
{[(D/2y~ x)*+ L7}""7, we find (for D« L) that 8(P,P - P\P}=(D/2L)éx.
If we require §(P.P — P,P) = A/2, we get

dx = AL/ D {7.56)

By following a similar calculation it can readily be shown that the same resuli
is obtained by considering points P} and P; (or points P{ and P; etc.) rather
than points P, and P,, and all the corresponding contributions will now (on
average) add destructively rather than constructively. Thus, we can write for
the grain size, d,, the following approximate expression:

d, = 26x = 2AL/ D (7.57)

It should be noted that a similar argument can be used to calculate the beam
diameter of the spot in the focal plane of a lens. Consider in fact the case
where the diffuser in Fig. 7.11a is replaced by a lens of focal length f = L. An
intensity maximum will then exist at x = 0 (i.¢., at the center of the recording
plane) since, as a result of the spherical wave front produced by the lens, the
contributions from points P,, Pi, P}, etc. all add in phase with those from
points P,, P;, P7, etc. The size of the spot in the focal plane is again given
approximately by (7.57), i.e., for the case considered, d, = 2Af/ 2. This result
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should be compared with the exact value d = 2.44Af/ D as obtained from Fig.
76. We can therefore now understand the following general property of a
diffracted wave: whenever the whole aperture of diameter D contributes
coherently to the diffraction to one or more spots in a plane located at a
distance L, the minimum spot size in this recording plane is always approxi-
mately given by 2AL/D.* Note that, in the case of a diffuser, this coherent
contribution from the whole aperture D occurs provided that (1) the size 4,
of the individual scatters is much smaller than the aperture D; (2) there is an
appreciable overlap, at the recording plane, between wavelets difiracted from
various scattering centers. This implies that the dimension of each of these
wavelets at the recording plane (~AL/d,)} is larger than their mean separation
{~D). The length L must therefore be such that L > d.D/A. Ford. = 10 um
and A = 0.5 um, for instance, L > 20D.

The second case we will consider is that of scattered light recorded on a
photographic film after it passes through a lens which images the diffuser on
the film. An aperture of diameter D' is placed in front of the lens (Fig. 7.11b).
If the length L is again such that L > d.D/ A, the grain size d, on the lens will
be given by (7.57). As in the previous case, we will assume that (1} this grain
size d, is much smaller than the aperture D', (2) there is an appreciable
overiap, at the recording plane, of wavelets diffracting from these various
grains. This implies that the dimension of each of these wavelets at the recording
plane (AL'/d,) is larger than their mean separation (D'}. By use of {7.57) this
is seen to imply D' < D(L'/L}. Under the above two assumptions, the grain
size d;, at the recording plane is given by

d, = 2L/ D (7.58)

Now it is the whole beam of aperture D’ that acts coherently in its contribution
of diffracted light to each individual spot. Note that the arrangement of Fig.
7.11b also describes the case where one looks directly at a diffusing surface.
In this case the lens and the recording plane correspond to the lens of the eye
and the retina. Accordingly, d), given by (7.58) is the grain size on the retina.
Note that the apparent grain size on the diffuser d,, is then given by d,, =
dy(L/L") = 2AL/D’. This increases with increasing L, i.e., with increasing
distance between the observer and the diffuser. It also decreases with increased
aperture of the iris (i.e., when the eye is dark-adapted). Both these predictions
are indeed confirmed by experimental observations.

Speckle noise often constitutes an undesirable feature of coherent light.
The spatial resolution of an object illuminated by laser light is in fact often
limited by speckie noise. Speckle noise is also apparent in the reconstructed
image of a hologram, again limiting the spatial resolution of this image. Some

* Since, for L » D, the field distibution in the recording plane is the spatial Fourier transform
of that in the input plane,*" this property emerges as a general property of the Fourier transform.
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techniques have therefore been developed to reduce speckle in coherently
illuminated objects.''"”’ Speckle noise is not always a nuisance, however. In
fact techniques have been developed that exploit the speckle behavior (speckle
interferometry) to show up, in a rather simple way, the deformation of large
objects due, for instance, to stresses or vibrations."™"’

7.8. BRIGHTNESS

The brightness B at a given point of a light source for a given direction
of emission has already been defined in Chapter 1 [see Fig. 1.7 and equation
(1.13)]. It is important to note that the most significant parameter of a laser
beam (and in general of any light source) is neither power nor intensity, but
brightness. In fact let us compare, for example, two lasers | and 2 having the
same diameter and output power, one having a beam divergence 8, the other
8,, where 8- > 6,. From what was said in connection with Fig. 7.5b it can be
seen that the first of these beams produces the higher intensity at the focus of
a lens. Since the solid angle of emission ) is proportional to the square of
the divergence, the first beam is brighter than the second. It follows therefore
that the intensity that can be produced at the focus of a lens is proportional
to the beam brightness. Since, in most applications, one is interested in the
beam intensity that can be produced by focusing with a lens, it follows that
brightness is the significant quantity. This is further demonstrated by the fact
that although the intensity of a beam can be increased, its brightness cannot.
The simple arrangement of confocal tenses shown in Fig. 7.12 can be used to
decrease the beam diameter if f> < f,. The intensity of the exit beam is therefore
greater than that of the entrance beam. However, the divergence of the exit
beam (~A/D,) is also greater than that (~A/D,) of the entrance beam, and
so one can see that the brightness remains invariant. This property, seen here
for a particular case, is of general validity (for incoherent sources also): Given
some light source and an optical imaging system, the image cannot be brighter
than the original source''”' (this is true provided the source and image are
surrounded by media of the same refractive index}.

The brightness of lasers is several orders of magnitude greater than that
of the most powerful incoherent sources. This is due to the extreme directional-
ity of a laser beam. Let us compare, for example, a He-Ne laser oscillating

0,/0=6 /1y

Input T Sutput
ooyt

FIG. 7.12. Method for increasing the intensity
4 fe of a plane wave.
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on a single mode at a wavelength A = 0.63 pm with a modest output power
of 1 mW with what is probably the brightest conventional source. This would
pe a high-pressure mercury vapor lamp (PEK Labs type 107/ 109), with an
output power of ~100 W and a brightness B of ~95 W/cm’ sr in its most
intense green line (A = 546 nm, AA = 10 nm). To obtain a difiraction-limited
peam we can use the arrangement of Fig. 79. The solid angle of the light
emitted by the pinhole and collected by the lens L' is Q = wD*/4f* while the
emitting area is A = wd*/4. Since the brightness of the lamp image on the
pinhole cannot be greater than that of the lamp, the output beam power is,
at most,

p=BOQA=(A/4YB=1TX 107% W (7.59)

where we have used (7.55). The output power turns out to be about five orders
of magnitude less than that of the He-Ne laser. We also note from {(7.59) that
the diffraction-limited power dbtainable from a lamp depends only on its
brghtness. This further illustrates the importance of the concept of brightness.

7.9, COMPARISON BETWEEN LASER LIGHT AND
THERMAL LIGHT

Using the system of Fig. 7.9 we have arranged it so that the two beams
(from the laser and from the mercury famp) have the same degree of spatial
coherence. To obtain the same degree of temporal coherence it is necessary
to insert a filter in the arrangement of Fig. 7.9 so as to pass 4 very narrow
band, i.e., equal to the oscillation bandwidth Avey of the He-Ne laser. Assum-
ing Avee = 1 kHz, since the linewidth of the mercury lamp under consideration
is Ay = 10" Hz, it follows that this second operation further reduces the output
power by ten orders of magnitude (P = 10-"* W), We recall that the lamp
power that we started with was 100 W1 This also shows how much more difficult
it is to produce interference phenomena {which require sources with good
coherence) starting with incoherent sources.

This output beam from the mercury lamp now has the same spatial and
temporal coherence characteristics as a He-Ne laser. Itis therefore natural to
ask whether this light now has exactly the same coherence characteristics as
a laser beam. The answer, however, is negative. Despite having paid such a
heavy penalty in terms of output power, the laser light is still more coherent
than the “filtered” thermal light of this source. The difference essentially arises
from the statistically different properties of the two light sources as discussed
in Section 7.4. In that section we have indeed shown that the fluctuations of
a cw laser beam essentially consist of a random walk of its phase around the
whole 27 angle (Fig. 7.1a) while the fluctuations of 2 thermal source consist
of a random movement around the origin by the point representing E(1) in
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the '™ — E'"', plane. [f the two beams are now made to have the same temporal
coherence. the speed of movement of this representative point is the same for
the two cases of Figs. 7.1a and 7.1b. If the two beams are then made to have
the same degree of spatial coherence, this speed of movement will then be the
same, for the two beams, at any point of the wave front. Suppose, furthermore,
that the intensity of the two beams be made the same, as can be done in
principle either by attenuating the laser beam by a linear attenuator or amplify-
ing the thermal beam by a linear amplifier (by a factor 10'7 in the example of
the previous section!). This would simply mean that the quantity E, appearing
in (7.9 is such that E; is equal to the average intensity (1) of the thermal light
source. Despite this, the statistical properties of the laser light and of the
thermal light source remain different since a linear attenuation or amphfication
of a beam does not alter its statistical properties.

7.10. HIGHER-ORDER COHERENCE®™

A complementary way of describing the difference between laser light
and thermal light is to introduce some suitably defined higher-order coherence
functions for the corresponding fields. Indeed, the coherence properties of a
wave were defined in Section 7.5 in terms of the correlation function I'"'.
Since this function involves a product between the signals at just two different
times or two different locations, the function was called a first-order correlation
function. Correspondingly, the degree of coherence defined by these functions
describes the statistical properties of the wave only to first order. In fact, to
provide a complete characterization of the field, one can introduce a whole
class of higher-order correlation functions. For the sake of brevity we will use
the symbol x, = {r, 1,) for the space and time coordinates of a point. We can
then define the nth-order correlation function as

r"”(xli Xayoo- yXaa) = {V(x,}- - V(xn)V*(xn4l) - VRO R {7.60}

which involves the product of 2n terms, these being the function V evaluated
at 2n space-time points X, Xz, .. ., Xza. The corresponding normalized quantity
is then given by '

(V(x|) et V(x"}vt{x'"*"! T V*(x;,,))
27, (V{x ) V()

'Y(m(xl,xz,u-,xzn): {7.61)

where [] is the symbol for product. Obviously these expressions reduce to
{7.16a) and (7.17) for the case n = 1. Note that, in the experiment considered

* The author wishes to acknowledge some enlightening discussions on this topic with Professor
V. Degiorgio.
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in the previous section, the He-Ne laser beam and the beam from the mercury
lamp were made to have the same degree of spatial and temporal coherence,
i.e., to have the same first-order correfation function "' Since, however, the
statistical properties of the two signals are completely different, we can now
expect that the higher-order correlation functions I''"' will be different for the
two cases and can therefore be used to. distinguish between coherent and
incoherent waves. First we need to define, in terms of higher-order correlation
functions, what we mean by a completely coherent beam. We begin by noting
that, if a wave is perfectly coherent to first order (i.e., if |y'"'(x, » %)l = 1), then

T"Cxr, 330 = Vix,) v¥(x,) (7.62)

ie, "V can be separated into a product of the analytic signals at x, and x,.
Indeed, if field Auctuations are completely absent, the ensemble averages of|,

P00, X ) = [T Ve ) V¥(x,) (7.63)
=1

k=n+|

Indeed, when field fluctuations are completely absent, the ensemble average
of (7.60) will again be simply the product of the analytic signals. In this case
we find from (7.61) that

fy""(x.,x:,...,xz,,)l=1 (7.64)
for all orders n, For the particular case where x, = x.. .. = X2, = X, we find
from (7.63) that

T, x, ... x)= [VIx)" = 1"(x) = [T'"{x, x)]" (7.65)

since, in this case, /(x) = [V(x)] = 1" x, x).

The signal of a cw laser oscillating in a single mode can, to a good
dpproximation, be considered to have only phase fluctuations. For a frequency
stabilized laser the rate change of this phase is rather slow, however. For
¢Xxample, in the case of a laser with a bandwidth of Av,. = 1kHz the phase
change will occur in about 7. = 1/Av,,. = | ms (so that |de /¢ di| = Av,. ).
This means that, fortime intervals much smailer than 7. or, separations between
the equiphase surfaces of the 2n space-time points much smaller than ¢7, =
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laser) can also, in principle, be made coherent to all orders if fiuctuations are
again eliminated. In both cases, therefore. forx, = v:. = -+ - x, equation (7.65}
applies.

A thermal light source, on the other hand, has completely different
statistical properties and the higher-order correlation functions can be shown
to be ditierent from those of a coherent light source. Let us, in particular,
consider again the case x; = Y2 = - - X, = X. Then I""ix, x,...,x) can be
calculated from the following expression

r = J E"plE) dEz/ j plE)dE’ (7.66)

where E = E(x) is the field amplitude at coordinate x [see (7.8)} and p(E)
is the probability density introduced in Section 7.4. If now the expression
(7.10) for pt E} is used in (7.66), it can be shown that one obtains

T i x,...,x)=nuh" =n'[I""(x x)]" {7.67)

since, in this case, {J) = {V(x), Vix}) = F(x, x}. A comparison of (7.67) with
(7.65) then shows that, for the same value of I " x, x), 1.e., for the same value
of the (average) intensity, the nth order correlation function of a thermal light
source is n! larger than that of a coberent source. Substituting {7.67) into
{7.61) then pives

" =n! {7.68)
Comparison of (7.68) with (7.64) shows that a thermal source can satisfy the
coherence condition only for n = L, i.e., only to first order. It follows that one

can, at most, arrange that a thermal light source has a perfect (first-order)
spatial and temporal coherence, as indeed described in the previous section.

PROBLEMS

7.1. Show that, for a quasimonochromatic e.m. wave, the relationship between the
intensity f{r, t) as defined by {7.7} and V' is given by 2/ = (V') where the
average is taken over a few optical cycles [hint: use (7.5)).

7.2. Calculate I""{r,, r,, 7) for a sinusoidal wave.

7.3. Calculate ['V{r,, r,, 7) for a sinusoidal wave undergoing phase jumps as in Fig.
2.5 with a probability p, as in (2.52). Plot the corresponding ¥ r, . r,, 7} versus
7 and compare this curve with that of Fig. 7.2.

7.4. Prove equation (7.18).
7.8, Prove equation (7.22).
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For a Michelson interferometer, find the analytical relation between I and
2(L, — L;) for the e.m. wave of Problem 7.3. Calculate the corresponding fringe
visibility Ve(7).

A laser operating 2t A = 10.6 um produces an output having a Gaussian line
shape with a bandwidth of 10kHz [Ar . is defined according to (7.35)]. With
reference to Fig. 7.4b, calculate both the distance AL between two successive
maxima of the intensity curve and the coherence length L..

A plane e.m. wave of circular cross section, uniform intensity, and perfect spatial
coherence is focused by a lens. What is the increase in intensity at the focus
compared to that of the incident wave?

A Nd:YAG laser beam with a diameter of D = 6 mm and approximately a constant
intensity distribution over its cross section has a divergence 8 = 3 mrad. Show
that the laser is not diffraction-limited and estimate the spot size wy of the cavity
TEMge mode.

How much would you need to reduce the aperture of the active rod in the previous
problem to reduce the corresponding divergence by a factor of 2?

How would you measure the beam divergence of the laser in Problem 7.97

Suppose the beam of Problem 7.9 passes through an attenuator whose (power}
ransmission T varies with radial distance r according to the law T=
expl—{(r/ w, )] with w, = 0.5 mm. Thus the beam, after the atienuator, has a
Gaussian intensity profile. Does this mean that the beam is now a Gaussian beam
of (intensity) spot size w,?

The laser beam of Problem 7.9 is passed through a telescope as in Fig. 7.12.
Calculate the diameter of the pinhole that must be inserted at the common focus
F, = F. in order to produce a difiraction-limited output beam. Note that, since
the beam already has a fairly good spatial coherence, one should use the equation
appropriate to a coherent beam, rather than that for an incoherent beam [i.€.,
(7.551].

Show that (7.62) holds for a perfect sinusoidal wave.
Show that (7.63) holds for a perfect sinusoidal wave.

Consider a laser beam oscillating in ! transverse modes. Write down the corre-
sponding analytic signals at the two points r, and r; as in (7.40). Assuming that
the mode frequencies are all different, show that

N !
{vir,, 1), V(r;.r))=2;a;a’f UJ(T)UT(I'] X
1

where the sum extends over the ! oscillating modes. Then show that

(X 1a Pl (OFT L g Ui
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If we now define two {|-dimensional vectors R, and R, with components
[a, Uytr), - a,Ux,)] and La, LhArs), . - a; Ut} respectively, show that ¥’
can be writlen @s v =R - Ry R, R,, where R, and R are the magnitudes of
the vectors R, and R.. Show that according to this last expression, since R # Ry,

one always bas Lyt w2 1, 1e., the beam has only partial spatial coherence.
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