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QUANTUM WELLS AND SUPERLATTICES: AN OVERVIEW

G. Bastard

Département de Physique ENS. 24 rue Lhomond. F-75005 Paris (France).

Abstract

We shall present a broad coverage of the electronic properties of
semiconductor superlattices emphasizing electric field effects (Quantum
Confined Stark Effect and Wannier-Stark quantisatiory. The following notes
are part of an article(1) to be published in Solid State Physics.

1) G. Bastard, J. A. Brum and R. Ferreira. To be published in Solid
State Physics
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V. Stark Effects in Semiconductor Quantum Wells and
Superlattices

V1. Introduction

The previous paragraphs have been devoted to a presentation of the
electronic structure of heterolayers under flat band condition. In this
section we consider the case where an external and constant electric field
is superimposed to the band edge profile of the heterostructure. We
confine our discussion to a theoretical description of Stark shifts in
semiconductor quantum wells and superlattices. In the first kind of
structures the field leads to a red shift of the ground electron and hole
states and thus of the fundamental band-to-band transition'16.117  |n
superlattices instead, the electric field leads to a blue shift'25.126 gf the
band to band absorption edge. The opposite signs of the two effects stem
in their different physica! origin. In quantum wells there is a
field-induced polarization'® of the bound eigenstates and thus a nearly
quadratic energy shift due to the interaction of the induced dipole with
the field. In superlattices, the field suppresses the tunnelling between
the consecutive wells'25 and thus isolates the different wells from each
others. Thus, the lowest lying optical transition occurs in strong field
between the levels of quasi-independent wells while at zero field it takes
place between the lowest lying eigenstates of interacting wells which, as
shown in the previous paragraphs, occur at an energy lower than roughly
half of the electron or hole subband widths.

The Stark effect in isolated wells or superlattices have stimulated
a significant amount of academic researches. They are also at the heart of
novel opto-electronic devices (e.g. fast electro-optical modulators)?19-121
In the following we shall first describe the Stark effect in isclated
quantum wells, then in double quantum wells, which are the shorter
possible superlattices and finally in superlattices

V.2. Electric field effects in isolated quantum wells

As pointed out in the introduction there is a rich technological
potential in application and switch of a longitudinal (F//z) electric field
to guantum wells. The usefulness of these structures lays in their
capability of standing large electric fields (F < 10° V/em), which produce
large Stark shifts, while still displaying quasi discrete bound states.

We shalil assume that the field is uniform over the whole structure,
as approximately realized when the quantum well is inserted in the
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intrinsic part of a reverse-biased p-i-n junction or in the depletion length
of a reverse-biased Schottky diode. In the case of multiple quantum wells,
the barrier separating two consecutive wells will be assumed thick
enough to prevent any sizeable coupling between their eigenstates. Thus,
neglecting band mixing effects, the Schrddinger equation we have to
investigate is

[-h2/2m"d2/dz2 + Vp(z) + eFz 1 X(z) = £ X(2) (V-1)

In eq. (V-1) the in-plane motion has been dropped, Vp(z) is the

potential energy profile of a single rectangular quantum well and the
electrostatic potential eFz has been set equal to zero at the center of the
quantum well. It may sometimes be more convenient to take its origin on
the left hand side (l.h.s.) corner of the well. A constant electric field leads
to pathological behaviour of the eigenstates of eq.(V-1) versus F. At zero
field the Schrdédinger equation admits at least one bound state (&€ < Vp)

while an arbitrarily small F is sufficient to transform the allowed energy
spectrum into a continuum. This is because the potential energy is
arbitrary large and negative at large and negative z. Despite the lack of
true bound states we expect, if F is not too large, that there will exist in
the continuous spectrum some particular energies where the carrier
wavefunction piles up in the quantum well''7.123 Moreover, these
particular energies will smoothly extrapolate to the true quantum well
bound states when F — 0. In fact, we do know from experiments that, over
a significant field range (typically F < 105V/cm), the quantum well
structures support states which behave as if they were truly bound. Thus,
it is worth trying to convince ourselves that some stationary eigenstates
of eq.(V-1) are indeed peculiar in that they display an accumulation of
their wavefunctions in the well. An alternative description, which is often
more revealing, is to consider them as metastable (i.e. non stationary)
solutions of the time dependent tilted quantum well problem. This kind of
description is relevant when the decay time of the quasi bound states is
long. Hereafter, we shall also denote the peculiar stationary solutions of
eq.(V-1) as the metastable state, since it can be shown that the real part
of the complex eigenenergies of the time-dependent problem coincide with
the (real) energies of the peculiar solutions of eq.(V-1).

Apart from the exact, Airy-like solutions, there are various ways
to find the metastable states of eq.(V-1). Firstly, one may cut the
electric field at some large distance from the investigated quantum well
(fig. 45) and impose the existence of an infinite barrier. The problem
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becomes that of finding true bound states in a complicated band edge
profile. The outcome of such calculations is that there exists a large
number of states which are essentially localized in the large triangular
well and show a very small probability of being in the well. A small
number of states are found to display an enhanced probability of being in
the well. These are the metastable states whose energy positions
extrapolate smoothly to those of the zero field bound states of the well.

One may also cut the electric field at some large distances on both
sides of the well and investigate the transmission coefficient T(e) = lt(e)l2
of a plane wave with unity amplitude impinging at z = - L on the barrier
and being finally transmitted at z = + L. T{e) is very low (because £ is
large) except in the vicinity of some energies which belong to the
segment [n,, n,] where it displays sharp peaks (T <1). As usual, these

transmission resonances''? correspond to the trapping of the particle
inside the the quantum well. If the resonances are narrow this means that
the corresponding trapping times Trap are long Ttrap AE> h/2 where AE is

the width of the resonance.
Another way to depict these resonances is to consider them as

virtual (or metastable) bound states35.123 je. as bound states of the
quantum well with a complex energy En - ih/21:trap. The reason why the

energies of these states have to be complex and not purely real is that the
solutions of the Schrédinger equation eq.(V-1) with the boundary
conditions corresponding to a piling up of the wavefunction at t = 0 in the
quantum well and to an outgoing wave at z = - « do not fulfill the
requirement of the probability current conservation, i.e. are not
stationnary. On the other hand, it can be shown35 that such solutions are
approximate eigenstates of eq.(V-1) provided their energies are complex.

In order to set up a criterion allowing us to neglect, in a first
approximation, the escape of the particle outside the guantum well, the
condition

eFkp 1 << Vp-E4 (V-2)

was proposed some time ago''®, where Eq is the confinement energy in
the quantum well and Kb'1 the characteristic decay length of the bound

state wavefunction at zero field. The meaning of eq.(V-2) is that the
lowering of the barrier by the field over the characteristic decay length of
the zero field wavefunction must remain negligible with respect to the
effective F=0 barrier height V}, - Eq.
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One can derive a similar criterion by looking at the problem from a
different angle. Suppose we know that we have built up at t = 0 a quasi
bound state E4, which, if the L.h.s. barrier were flat, would be truly bound.

Correspondingly, the particle would (classically) oscillate back and forth
in the well for ever with a period T(E4). Since, however, the Lh.s. barrier

is tilted the electron which oscillates in the well progressively escapes
to infinity. Using the same semi-classical approach as in section Ill, we
get:

1/Tge =D(Eq) /T(Eq) (V-3)

where D(Eq) is the transmission of the tilted barrier. In the semiclassical
approximation D(E4) is given by:

D(Eq) = Dy exp{ -(4/3eF) (2m"/h2)1/2 (v, .E4)3/2 } (V-4)
with Dg = 1. As for the evaluation of T(E4) one gets :
T(E4) = 4/eF(m E4/2)1/2 if Eq<eFL (V-5)

T(Eq) = 4/eF( m E4/2)1/2 x[(1 + (1-eF/E{)1/2] i Eq 2 eFL (V-6)

The lifetime T(E4) will be long if the argument of the exponential
in eq.(V-5) is large and negative, which means :

Vp- Eq >> 3/4 eFx ] _ (V-7)

which (apart from the factor 3/4) is just the criterion we derived
previously on the smallness of the barrier lowering by the field over the
distance xb‘1 where the wavefunction is important in the barrier.

Assuming that the lower bound for >> is 10 and taking Vp-E4 = 0.125 eV,
m* = 0.07mg we find that eq.(V-7) is satisfied if F < 7.93 x 104 Vicm. If,
in addition, L = 100 A, Dg =1 and Eqy = 70 meV, we get h/2Tgg(Eq) = 2.5
104 meV and Tesc(E1) =1.3 ns. For these typical sample parameters the

level broadening is still small with respect to the confinement energy. The
escape lifetime is relatively long but is not much longer than a
recombination lifetime ( =1 ns). The capture of the carrier by some
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shallow impurity may eventually be more efficient than the field-induced
tunnelling. Notice finally the strong dependence (F exp(-Fq/F)) of Tesc'1

with the field. It arises from the transparency coefficient eq.(V-4). If
instead of applying 8 x 10% V/iem we only apply 50 kV/cm, T(E4) increases

by several decades and the field-induced tunnelling becomes a completely
negligible effect with respect to recombination or capture phenomena.
Figure (46) shows the calculated Tesc versus F for Eq, HH4 and LH4 in

GaAs-Ga(Al)As quantum wells with thicknesses 30 A, 60 A and 90A. Tesc

is found to vary considerably (from 1ps to 1s) in the investigated field
range. Moreover, fig.(46) clearly shows that the field-induced escape of
the carrier outside the quantum well is practically negligible when
L>100A. Most of the quantum well structures which have been so far
investigated (e.g. in electro-absorption) have shown excellent
performances (i.e. pronounced exciton peaks) in field up to = 10° V/icm.
The previous considerations have aimed to point out why it could be so in
spite of the field-induced tunnelling. From now on we shall neglect this
effect and investigate the second useful feature of the electric field
effects on quantum well states, which is the existence of large Stark
shifts.

The zero-field eigenstates of eq.{V-1) may be classified according
to the parity operator. Since the eFz is odd in z it only couples the
zero-field eigenstates of opposite parities. Since we forget about
field-induced tunnelling we may have recourse to perturbation or
variational approaches''$.117 to calculate the field dependence of the
eigenenergies. The basic physics is that the quantum well bound states
become polarized by the electric field which in turn lead to a shift of
their eigenenergies by 1/2 D,.F where D is the average value of the

dipole operator in the nth state. In the low field fimit D = anF where an

is a c-number. This results in a quadratic (Stark) shift upon F. For larger
fields oy becomes F-dependent displaying some saturation : D=el/2. This

is the carrier accumulation regime where the wavefunction piles up near
the L.h.s. of the well for electron and the right hand site (r.h.s.) for holes
(see fig.47). This carrier accumulation is the useful feature for
electro-optical devices : by inhibiting the carrier escape towards + o
(which is unavoidable in bulk materials) the quantum well walls give
access to large ( = 30 meV) energy shifts while preserving the carrier
localization and thus the beneficial action of enhanced excitonic
binding''7.122 " This effect has led to a number of electro-optical devices,
e.g. fast modulators?19.129,

In the small field limit we can use a second order perturbation
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approach to obtain:

E(F) = En(0) + 02F22 [<miz|n>| 2H(En-Em) (V-8)

mzn
where | n > is the nth zero field bound eigenstate with energy EL(0) and

where the summation over m runs over the zero field bound and unbound
states. The latters give a small contribution and are usually neglected.
From eq.(V-8) we see that the ground state (n=1) experiences a red shift,
as always. Since En-Em=L2and<n|z|1>=L, E{(F) -E4(0) scales like
L4F2m*. But the domain of validity of eq.(V-8), which is that the
field-induced shift remains small with respect to the unperturbed energy
splittings, narrows like m*FL3 = constant. Once the field is too large to
use eq.(V-8), one may use variational approaches. A linear variational
treatment consists of expanding %(z) on the uncomplete basis spanned by
the zero-field bound eigenstates of eq.(V-1). In this way, one obtains the
field dependences of all the states. In fig.(48) we show the outcome of
such a calculation. If one is interested in the ground state only (as often in
device applications), a non linear variational wavefunction like :

x(2) = x(0) (2) exp(-Bz) (V-9)

is quite accurate, as it describes the tendency towards accumulation (f3
>0 for electron; B< 0 for holes), and of simple use. in eq.(V-9) x(o) (z) is
the ground bound solution of eq.(V-1) at zero field. The wavetunction given
in eq.{(V-9) also contains the signature of significant field-induced
tunnelling : as {B| increases with F it happens that it becomes larger than
xp(0) the zero-field wavevector characterizing the evanescent wing of the

ground bound state. The minimization procedure becomes impossible and
one may rightfully consider that the very notion of quasi discrete bound
state fades away. To examplify the tunability range of energy level shifts
upon the electric field we show in figs.(49,50) the calculated field
dependence of the Eq-HHq interband energy for various well thicknesses L

in GaAs-Ga(Al)As and Ga(in)As based quantum wells. It is seen that
considerable shifts can be produced for L >100A. The data obtained in
GaAs quantum welis'2? are very well described by the calculations.

The electric field-induced polarization of the carrier
wavefunctions suppresses their parity properties. Thus, optical
transitions which were parity-forbidden at zero field become allowed at
non vanishing F. Their growth occurs at the expense of the F=0
parity-allowed transitions. Miller et al''® have very nicely discussed the
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sum rules associated with optical transitions in biased quantum wells as
well as the progressive evolution of the optical absorption lineshape from

that of biased quantum wells to the Franz-Keldysh effect in thick,
bulk-like, structures (L=500A).

V.3. Electric_field effects in double quantum wells

The eigenstates of double quantum wells can accurately be
obtained by diagonalizing the eFz term between all the zero field bound
states of the problem (these states are analytically known). The physics
is however more transparent if one attempts a tight .binding expansion of
the eigenstates on a basis spanned by all the zero field bound states of
each well when considered as isolated'2®8. For symmetrical double
quantum wells one, for instance, would write:

2(2) = 2. i12n°i=” O10c{M(z-id/2) (V-10)

where d = L+h would be the period of the associated superlattice, L (h)
being the quantum well (intermediate barrier) thickness and ¢|OC(”)(2~20)

is the nth bound state wavefunction of the quantum well centered at zg
when considered as isolated and .under flat band condition. To keep the

matter simple, let us assume that the ¢|oc(”) are orthonormalized:

< O1ocM(z-1d72) 10;5(M(z-id/2) > = 8 iBpm s 0, 0= (V-11)

Then, in the case where the unbiased, isolated, wells admit two bound
states (Eqand Ep) the hamiltonian takes the matricial form:

Eq - eFd/2 Aq eFZ4» eFzqo

2.1 E1 + eFd/2 er12 eFZ12 (V-12)
eFZ4o eFzq4o Es - eFd/2 Ao

eFzqo eFZ4o Ao Eo + eFd/2

where some terms have been dropped since they do not b'ring essential
physical features and Z4, (respectively z4p) are the matrix elements of

the z operator between ¢loc(1) and ¢Ioc(2) which are centered in the same

well (respectively in different wells). The two diagonal 2x2 blocks
express the couplings between the same sort of states ( E4 or Eo) in either
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wells while the eFZyo term is just the intra-well field dependent
polarization (the one which gives rise to the Stark effect in isolated
wells) and the eFzqo term is the inter-well field dependent polarization .
24p is in general smaller or much smaller than Z4, since the
wavefunctions involved in the former matrix element peaks in different

wells while those in the latter matrix element are both centered in the
same well. A4 and Ao are the nearest neighbour transfer integrals between

the wells corresponding to the ground and excited states respectively. If
one neglects the off-diagonal blocks, which amounts to performing two
one-band tight binding analysis separately, one gets immediately:

€1 4+ = Eq N [(eFd/2)2 + 212 (V-13)

€n 1+ = Ep i\/[(eFd/2)2 + Ao?) (V-14)

Equations.(V-13,14) are for the specific double well problem the
equivalent of Wannier one-band tight binding analysis'2® of the
superlattice eigenstates in an electric field. The physics behind
eqs.(V-13,14) is the field induced turning off of the resonant tunnel
coupling between wells and the concomitant localization of the
eigenstates. What primarily does the field to the double well is to
misaligne the levels of both wells by eFd while they were lined up at F = 0.
If eFd exceeds the coupling terms between the wells ( A4 for the ground

state, Ao for the excited state), the tunnel effect between the wells

becomes effectively non-resonant and thus weakens, to the extent that if
F becomes very large there is no more coupling between the wells: the
eigenenergies respectively converge towards E{+1/2eFd and Ep+1/2eFd

while their associated wavefunctions converges towards ¢|oc(1)(zid/2)
and §)oc(2)(z2d/2) respectively.

The second important physical feature exhibited by our simple
mode! arises from the effect of the off-diagonal blocks on the
eigenstates. When these blocks are absent there exists a crossing

between €4, and €s. taking place at F=Fg (where eFcd = (Ep - Eq) if
eFqd/2 >> A4, Ao). This crossing is actually replaced by an anticrossing

when the off-diagonal blocks are taken into account. If the field was
strong enough to have localized both the Eq and Ep related states (i.e. if

1/2eFqd >> Aq, Ao) in either wells, the eigenstates again delocalize in a
field range AF around F, which strongly depends on the intermediate

(@]
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barrier thickness: the thicker the barrier the smaller are the anticrossing
and the departure of the eigenstates from a linear dependence upon F. In
the field range F. + 1/2AF a carrier assumed to be in the upper branch

will make a very efficient relaxation towards the lower branch by
emitting acoustical or optical phonens (energy conservation permitting) or
by being elastically scattered in the lower branch and converting some of
its longitudinal energy into transverse kinetic energy, this process being
followed by a subsequent intra-lower branch desexcitation128.131 0Of
course, if the wells are not identical, the afore-mentionned anticrossings
may as well take place between the ground, now unequivalent, bound
states of both wells. Finally, the off diagonal blocks, mainly via the
eFZ4o term, induce a deviation from a straight line dependence at large F

(F>>F.) of the eigenstates which is quadratic upon F. This is nothing but

the intra-well Stark effect. Figure (61) displays the results of the
field-dependent energies for a 100A-20A-100A GaAs-Gag 7Alg 3As double

quantum well (barrier height: 213 meV, m*= 0.07mg). The electrostatic

potential is taken to vanish at the center of the middle barrier and the
energy zero is taken at the bottom of the GaAs conduction band edge at F =
0. The states moving up (down) in energy are those which are mostly
localized in the right hand side (left hand side) well. Figure (52) shows a
plot of the spatial dependence of the 4 lower eigenstates of that structure
for four different electric field strengths. At F = 0 the four levels are
delocalized over the whole heterostructure. When F increases, the
eigenstates become progressively localized in a given well, except near Fg

where an anticrossing take place between €44 and €5_. When this

anticrossing is passed through there is an interchange between the main
spatial localizations of the second and third states respectively.

V.4, Electric field effects in superlattices

One of the original motivition for the growth of semiconductor
superlattices was the hope of achieving a negative differential resistance
by realizing a Bloch oscillator'. The Bloch oscillator, suggested in
1927132, results from a semiclassical analysis of the electron motion in a
potential which is the sum of a periodic term V(z) and a linearly varying
term eFz. F is considered as so small that its effects can be treated
semi-classically on the band structure defined by V(z). The fully
quantum-mechanical version of the Bloch oscillator was derived by
Wannier in the late 50's'2%.133 Wannier showed that a one band analysis
of the problem leads to the replacement of the quasi continuous band
spectrum of the crystalline solid (F=0) by a ladder of bound levels evenly
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spaced by eFd where d is the period of the lattice along the electric field
(Wannier-Stark ladder). Wannier's results were long disputed!34-'4' on the
ground that the electric field-induced interband mixing (Zener breakdown)
would unavoidably wash out the ladders. Careful theoretical and
numerical analysis'4? however showed that Wannier's findings were
essentially correct, the interband couplings leading to a broadening of the
bound levels into virtually bound ones. The width of the virtual bound
states were estimated to be much smaller than the spacing eFd under
many circumstances, thereby leading to the conclusion that the
Wannier-Stark ladders could be in principle observable. in actual bulk
samples, however, it was quickly realized that the time needed to
complete a period of the semiclassical bound motion was considerably
longer than any realistic collision time on impurities, defects, phonons
etc..., thus leaving only a faint hope to observe this fascinating effect.

In fact, on the experimental side, the search for Wannier-Stark
ladders proved to be elusive, although there has been reports on their
observation in the early seventies in wide bandgap semiconductors'#2.
Actually, the dominant effect of an electric field on the absorption edge of
a bulk semeiconductor is the appearance of the Franz-Keldysh effect!43.144
(tail below the F=0 edge and oscillations above). These effects originate
from the field-induced breakdown of the optical selection rules (Ak=0)
along the electric field. Like in the Biloch oscillator mode!l, the
Franz-Keldysh formulae requires that the potential energy drop eFd over a
lattice period remains much smaller than the bandwidths (or bandgaps), in
order to treat the eFz term in a one band effective mass approximation.

Recently, Voisin45 suggested to re-examine the Wannier-Stark
problem in semiconductor superlattices from the point of view of the
inhibition of the resonant tunnel effect between consecutive wells. He
pointed out that this should result in an effective blue shift of the
superlattice absorption edge. Bleuse et al'2% proved this idea to be
algebraically correct and Mendez et al'?6 and Voisin et al'4®
experimentally demonstrated the existence of a blue shift in
GaAs-Ga{Al)As superiattices.  Since then, several experiments have
evidenced various aspects of the Wannier-Stark quantization'4?, including
a room temperature achievement of an electro-optical switch utilizing the
blue shift!48,

In the following we attempt a theoretical survey of the
Wannier-Stark quantization in semiconductor superlattices. Efforts will
be made to provide a comparison between the fully quantum treatment and
the semiclassical one. We shall first discuss the simplest case which
corresponds to the one band analysis made by Wannier and which is
applicable to a good approximation to the conduction subbands of
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superiattices whose wells, if they were isolated, would only support a
single bound state (section V.4.a). Section (V.4.a) will aiso include short
discussions of the intraband and interband optical properties associated
with the Wannier-Stark states. The Wannier-Stark localization for the
valence subbands of superlattices is again complicated by the k,-induced

couplings between the light and heavy hole dispersions and by the fact
that, usually, many subbands come into play due to the heavy hole mass.
No analytical solutions appear thus manageable in the general case. The
outcomes of numerical diagonalizations of the valence hamiltonian in
biased but finite superlattices'® are however sufficiently clear to allow
the drawing of reliable conclusions about infinite superlattices.  Section
(V.4.b) will thus be devoted to the multiband effects on the Wannier-Stark
quantization both for electrons and holes.

V.4.a. The Wannier-Stark ladders

We consider an infinite semiconductor superlattice subjected to a
constant electric field. For simplicity we assume that the conduction
states are built out of a single parabolic band which has the same
symmetry (say T'g) for both host materials. The hamiltonian is written as:

H=T +Zn V(z-nd) + eFz (V-15)

where V(z-nd) is the "atomic" square well potential felt in the
superlattice period centered at z = nd. Consider the translation operators

Tig = exp(ipzjd/h) (V-16)
We find:
[Tjg , HI = Tjg H-H Tjq =jeFd Tjq (V-17)

Equation (V-17) states that the transtation operators are no longer
constants of motion if F«0, a result physically arising from the potential
energy drop eFjd between two superlattice periods separated by jd.
However, the fact that [Tjd , Hl is proportional to Tjd itself implies that

this operator evolves harmonically with the time. In particular, suppose
that at time t = 0 the eigenstate of eq.(V-15) was aiso an eigenstate of
'de with the eigenvalue exp(ikgjd). Then, eq.(V-17) shows that the
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sigenstate of eq.(V-15) will remain an eigenstate of Tid with the
eigenvalue exp[ik(t)jd] where:

k() = kg -eFdth (V-18)

which is a rigourous justification of the "Newton" law of the
semi-classical mechanics:

hdk/dt = -dVgyi/dz = -eF (V-19)

Notice that this law is exact only because the potential is linearly varying
with z. Any other variation wouid not allow the generalization of
eq.(V-19) to be exactly derivable.

When eq.(V-19) is used in conjunction with the definition of the
velocity for a semi-classical electron:

v = 1/hdepn/dk (V-20)

the semi-classical equations of motion becomes entirely prescribed. In
eq.(V-20) epn(k) is the dispersion relation of the nth subband (at zero field)

and n is a constant of motion in the semi-classical analysis. Assuming a
decoupling between the z and (x,y) motion, we obtain:

vo(t) = V.FIF = 1/h d/dkglen(ko-eFt/h)] (V-21)

which proves that both v,(t) and z(t) are periodic function of time with a
period Tg equal to:

Tg = 2nh/eFd = 2n/wg (V-22)

since sn(q) is periodic upon q with periodicity 2r/d. The oscillatory
motion described by egs.(V-21,22) is the Bloch oscillator and wg is the

Bloch angular frequency. The Bloch oscillator is independent upon the
exact shape of the dispersion relations €n(q). To go one step further and

obtain more explicit results, we restrict our attention to the ground
subband €1(q) derived from the ground bound state Eq of the isolated

wells. We adopt the simple but accurate tight binding expression for
€4(q):
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£1(a) = E4 - 2|4 | cos(qq) (V-23)
The subband width A4 is thus equal to 412}, From eqs.(V-21) we obtain:
vz(t) = 2| & | d/hsin[(kg-eFt/h)d] (V-24)
z(t) = zg + 2| A |/eFcos|(kg-eFt/h)d] (V-25)

where zp is a constant of integration. The Bloch oscillator executes an
harmonic motion with period Tg and amplitude 2|A |/eF around its
equilibrium position zg. This oscillator is however peculiar in that its
amplitude is unrelated to its total energy Eiot since Einy is equal to Eq
+eFzq whereas for a regular harmonic oscillator (e.g. a mass m~ attached
to a spring) one knows that the amplitude a is related to Etot by Etpt =

1/2m*a2(02, where o is the angular frequency of the oscillator. The
difference between both kinds of oscillator ultimately rests on the
difference between the dependence of their kinetic energies upon the
momentum.  While the conventional oscillator can display an arbitrarily
large kinetic energy, the Bloch oscillator one is bound by Eq + 2|l|. The

latter property is closely associated with the counterintuitive response of
the electron to an external field in the crystalline solid. While our
intuition associates a constant acceleration to the electron motion in a
constant field, the electron in the solid actually oscillates. The band
structure (or the Bragg reflection effect) is still overwhelming in the
semiclassical equations and falsifies our intuitive representation. Notice
finally that the amplitude of the Bloch oscillator blows up when F
vanishes. This raises the question of the applicablity of egs.(V-24,25) to
real superlattice structures, which are finite. The finite size effects
could be incorporated in eq.(V-19) by adding, say, infinitely repulsive
potential walls corresponding to both ends of the structure. We
immediately see that, for such a finite structure comprising 2N + 1

periods, one should get |zg+ 2|/Al/eF|< (N + 1/2)d to ensure that

egs.(V-24,25) are still relevant. This criterion is better fulfilled for
oscillators centered as far as possible from the edges (zg = 0) or for

strong fields. Otherwise, one should numerically solve eqgs.(V-19,20) to
get the "edge-interacting Bloch oscillator” motions. Actually their period
Tedge is equal to:

— [y -
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Tedge = 20gx[ Arcsin[(N+1/2)d-zg)eF/21A ] +
Arcsin[(N+1/2)d-zg)eF/2 | A | ]] (V-26)

One notices that the Bloch oscillator centered right on the edge (zp =

(N+1/2)d) and which does not bounce the -(N+1/2)d other interface has a
period which is half of that of the bulk Bloch oscillator. A similar result
is obtained for a regular harmonic oscillator bouncing on an infinitely
repulsive wall placed at its equilibrium position.

Let us now examine the quantum treatment of eq.(V-15) restricting
ourselves to a one . band tight binding expansion. The general form of the
spectrum can be obtained without any approximation. Suppose that vy, is a

solution of eq.(V-15) corresponding to the eigenvalue g£;3. Consider the
function Tq Yy (2) = Yy (z + d) and apply H on it. We find:

HTq Yy (2) = (eg-eFd) Tq wy(2) (V-27)

which shows that Tg4 v (2) is an eigenstate of H corresponding to the
energy gg-efd. This procedure can be iterated and so can the application of
Tg* (=T_g) which translates the energies upward. Finally through the
successive translations 'de, j a relative integer, one generates the ladder:

€y =€y + VeFd , v a relative integer (V-28)

Since we have restricted our analysis to a gne band tight binding
description of the problem there are as many availabie states as periods
in the superlattice (i.e. a countable infinity). Thus, the spectrum given by
eq.(V-28) exhausts all the possible states of the biased superlattice and
we may conclude that in the one band analysis the Wannier-Stark ladders
are evenly spaced. Notice that the one band assumption is here crucial
insofar as the unknown &g in eq.(V-28) is necessarily unique. Had we

included several bound states per well or, a fortiori, the continuum states,
it would have been impossible to draw any conclusion on the even spacing
of the level and, in fact, when several bound states are included in the
calculations, the spectrum is unevenly spaced. What remains however is
the existence of a periodicity in eFd on the energy scale because eq.(V-27)
always holds, but the "elementary cell" of this periodic "iattice" instead
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of containing a single eigenvalue contains as many of them as the number
of states per period which have been retained. The one band result is
called a Wannier-Stark ladder since Wannier first derived it129.132  [n its

derivation, he was able to prove that €; is actually the center of gravity of
the band at zero field:

£g = d/27t,[BZ £4(q)dq (V-29)

which coincides with Eq in the simplest tight binding scheme. The spacing
between two consecutive eigenvalues is hwg as one could have anticipated

from the semiclassical result.

The Wannier-Stark spectrum recalls in many respects the harmonic
oscillator one. There exists several differences however. Firstly, the
Wannier-Stark spectrum has no ground state, which implies that the usual
rules on the nodes of the eigenfunctions do not apply. In fact each
eigenstate of the Wannier-Stark problem has an infinite number of nodes
and the yy 's are all but the same wavefunction whose argument is

translated by an integer times d (since Tid Yy = Yy.j) when going from
one state to the other. The equivalent of the raising (c*) and lowering
operator (c) of the harmonic osciliator are the translation operators Tq*
and Ty respectively. However, Tq and T4+ commute while ¢ and ¢+ do not.

This has some important implications when considering the perturbation
of a Wannier-Stark ladder by a harmonically varying electric field, i.e.
when one addresses the question of light absorption or emission by an
electron moving in a linearly biased superlattice. We shall return to this
point later on.

To know more about the actual shape of the Yy's we expand the

solutions of H on the basis spanned by the QO|oc(2z-nd) which are the
isolated quantum well eigenstates (confinement energy Eq) centered at z =
nd:

Wy = & Cny blog(z-nd) (V-30)

We assume the ¢'s are orthonormalized (a convenient oversimplification),
neglect couplings between all the neighbours but the nearest and absorb
the shift integral into a redefinition of E4 to finally end up with the

secular equation:
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chvl E1-€y +eFnd) - |A | (Cnpqy + Cn-1v) =0 (V-31)

where the identification of the < ¢, | eFz| ¢ yy> matrix elements to
andESn'm has been used. One recognizes in eq.(V-31) the recursion
relations of the Bessel functions. [f the superlattice is infinite the cpy's
should not blow up , which implies that the divergent Bessel functions (ln)
should be eliminated . This leaves us with:

gy = E1 + VeFd (V-33)

where f is the dimensionless strength of the electric field:

f = eFd/| A |= 4eFd/A4 (V-34)

In finite superlattices one should take the cp's as linear combinations of
the J,'s and I,'s and determine the eigenenergies by writing appropriate

boundary conditions at the superiattice edges (see Saitoh'4'! for a more
complete account of edge effects on Wannier-Stark ladders).

Equations (V-32-34) call for several remarks. Firstly, the one
band tight binding model provides a universal description of the electric
field effects on a superlattice: one only has to scale eFd and €y, - Eq to the

bandwidth . This scaling allows us to readily understand why the
observation of the Wannier-Stark quantization is far more easy to observe
in superlattices than in the bulk materials: a typical bandwith in a bulk
crystal is 2eV corresponding to a lattice periodicity of 6A while the
corresponding Aqand d are typically 70 meV and 60A in a superlattice.

Assuming an electric field strength of 10° V/em, we get fy |k = 0.012
and fg) = 3.43. In other words, the electric field has a small effect in a

bulk crystal compared to that produced by the periodic potential while in a
superiattice the two effects are comparable. Secondly, the replacement
of the extended minibands spectrum by a set of discrete localized levels
as evidenced by eqs.(V-33) calls for a physical interpretation. This is the
field-induced turning off of the tunnel effect between consecutive wells
which is at the heart of the Wannier-Stark quantization and which again
explains why the semiconductor superlattices are ideal candidates for its
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observation. Consider the biased superlattice (or bulk material) as a
coliection of localized potential wells whose bound states are misaligned
by the electric field and which are nearest neighbour coupled with an
interaction strength -|2|. By extension of the familiar Ho* molecular ion

or the double well (section(V.2)) problems, we know that the tunnel
coupling between the wells 0 and n will remain operative if the
misalignement between the two levels neFd remains smaller than 2|2 |
(see fig.(53))'30%. This means that the number of sites visited by an
eigenstate y,, on each side of the vih site is 2| A |/eFd = 2/f. Thus, for a

typical bulk material, a Wannier-Stark state extends over 2x170 periods
while for the same field strength Yy hardly extends beyond the vih site in

a superlattice. This is because the superlattice periods are larger that
the minibands are narrower and that the misalignement of consecutive
energy levels are bigger than the corresponding quantities in bulk
materials that the tunnel coupling between the wells of the superlattice
can be so effectively turned off. An extra benefit is gained by the 10 fold
increase between consecutive eigenstates of the ladder, making the ratio
efFd/(h/T) (= ®wgT, where 1T is scattering time) 10 times longer in a
superlattice than in a bulk material if the T's are identical. Notice finally
that the argument on the number of sites visited by an electron in any of
the Wannier-Stark state on each side of the vih site leads to a result (2/1)
which exactly coincides with the amplitude of the Bloch oscillator.

A more quantitative assessement of the spatial localization of the
Yy's is obtained by computing Ppy, the modulus squared of the projection

of y,, onto the localized wavefunction ®loc(z-nd). from eq.(V-30) we see

that Py, is equal to (cqy)2. Figure(54) shows a plot of Pny versus |v-n |
for different values of f. The increasing localization around the vth period
when f increases is evident. This localization is very strong (faster than
exponential) since Jy2(x) = x2P/(p)2 if x is small,

Another striking property of the Wannier-Stark states (when
compared with our intuitive expectation) is the even probability
distribution of the wy,, around the vith peried (since Jp.y(x) = (-1N-V
v-n{X)). In the one band approximation, there is as much probability for a

Wannier-Stark state to be found in regions of lower than in regions of
higher electrostatic potential energy, while one might have expected a
piling up of the eigenstates where this energy is the lower. Such a piling
up for instance occurs for the lowest state of a biased single quantum
well, but the comparison between the two results is , we believe, not
pertinent. A better one is made if one compares the spatial distribution of
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the vth Wannier-Stark state around the Vi period with that of the second
level of a biased single quantum well which binds at least three levels at
zero field. In the latter structure, the Eo level shift (and thus the spatial

polarization) depends sensitively on the energy separation Eg3-Ep and
Eo-E¢ at zero field: the lower level pushes Ep upward while Eg

counterbalances this trend. In some occasion, there is nearly a
cancellation of these two effects, which leads to a small shift of the Ep

state (ideally a vanishing one). The Eo eigenfunction remains then nearly

unpolarized, like at zero field, and thus displays an almost
equidistribution over the regions of higher and lower electrostatic
potential energy. The exactly even spatial distribution of the
Wannier-Stark states around their center appears in the light of the
previous discussion as resulting from the peculiar situation where
equidistant levels (the diagonal terms Eq+neFd in eq.(V-31)) are

symmetrically coupled to their nearest neighbours.

To complete our survey of the one band analysis of the
Wannier-Stark ladders let us summarize the comparison between the
quantum and the semi-classical approaches. We have already mentionned
that the semi-classical motion occurs with an angular frequency ©p
which is exactly that expected from the quantum spacing hwg Moreover,

we found that a rough evaluation of the spatial extent of a quantum
eigenstate is just equal to the amplitude of the Bloch oscillator. This
agreement can be further quantified by calculating the root mean square
deviation A, of the particle position around its equilibrium position:

A, = [<(z-zo)2> -<z-20>2]w2 {V-35)

where the symbols <..> either denote quantum averages over V., (with zg =
vd) or over the period 2n/wg of the semi-classical motion. We find:

[A,lBIoch = 2dV2/f (V-36)
Ayly =< 0g | 22 | dg> + 2dV2/f (V-37)

Both expressions are nearly identical in the limit of small f (where one
indeed expects the semi-classical analysis to be the more valid). For
strong fields the field dependent uncertainty decrease in both cases as
both the semi-classical and quantum motions become increasingly
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restricted. This shrinking can reach a complete collapse in the case of the
Bloch oscillator, since both the position and velocity of the Bloch
oscillator can be defined with an arbitrary accuracy whereas, in the
quantum case, there aiways remains a residual uncertainty < g | 22 | oo>

associated with the finite extension of the isolated well eigenstates in
the well and barrier layers.

An even more demanding comparison between the two descriptions
is obtained by plotting the integrated probability of finding the particle in
the j"h cell versus j when the oscillator is centered at z=vd. The
classical probability is equal to:

Pjy =2 J‘jthce” dz/|v, | | (V-38)

if the Bloch oscillator visits the jth cell and Pi= 0 elsewhere. The
quantum probability is equal to:

Pjy = ,[jthce“ dz |y |2 (V-39)

= Z”, Clv C'y jjthcell O10¢c(z-1d) ¢gc(z-I'd )dz (V-40)

If the "atomic" wavefunction $joclz-1d) is well localized in the well
centered at z=Id, one gets to a good approximation:

Piv = lejy |2 = uy22/) (V-41)

The comparison between the classical and quantum Pjv is shown in fig.(55

) for a small value of the reduced electric field. The agreement between
both descriptions is excellent and recalls the well known outcome of a
similar comparison for a regular harmonic oscillator.

We have previously mentionned that the Wannier-Stark ladder has
no ground state and that T4+ and T4, the equivalent of the harmonic

oscillators raising and lowering operators, commute. These two
properties lead to an interesting consequence with respect to the response
of the Wannier-Stark state to a sinusoidally varying electric field
(paraliel to the static one). Let the electromagnetic (e.m.) perturbation
be described by eFgpzcos(mt). If Fem is small one can investigate by

perturbation the transition rate that an electron in the v state makes a
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transition to the pth one. This rate is proportional to |<vi{z|u>1|2. By
using the tight binding expansion (eq.(V-30)) we get:

<vlzlp> = E“_ et Sy <Ploc(z-id) 1z dog(z-d )> (V-42)

By writing that z= (z+ld)-Ild and by neglecting any integral of the form
<¢iq lz-1d]1 dpg > one finally gets:

<vlzlp>=vddy | +(@HBy, 41 (V-43)

The diagona! term is of no relevance here since it leads to no absorption or
emission of energy by the electron. The off-diagona! term displays the
expected shape. Namely, a given Wannier-Stark state is coupled by the
e.m. wave to its nearest neighbour. The key point is that the coupling is
v-independent, a feature clearly associated with the fact that all the
Wannier-Stark states are characterized by wavefunctions which are
isomorphical. If the transitions rates (o) between v and vi1 are the
same, it is not very difficult to show that no net energy is absorbed by the
electron due to its interaction with the oscillating electric field'5%. Let
fy be the (arbitrary) distribution function of the vih state. The net power

absorbed due to the v — v£1 transitions is hwo [f,(1- fy, 1)+ fy_ (1= ) -
fu(1— fy_p —fy+1(1- fy)). This is equal to hwo [fy,_; -], i.e. does not
depend on f,. Instead of considering only the v — v*1 transitions, one
may calculate the net power absorbed due to all the transitions between
the states -N, -(N-1),..., N-1, N and find that it is equal to h® o [f_ - fy]-

Thus, there is no bulk absorption. The only possible absorption inside a
Wannier-Stark ladder is therefore due to edge effects, i.e. to the fact that
any real superlattice is finite. Notice that we have neglected the
spontaneous emission in the previous analysis. Had we considered the net
power absorbed by a regular harmonic oscillator (say a ladder of Landau
levels) that the results would have been entirely different. The transition
rates n—n+1 (n-1) would have been proportional to n+1 (n), where n is the
Landau level index, and the net power absorbed by the electron due to the
n—nt1 transitions would have been proportional to [(n+1){fh-frq) +

n(fn-1-fn)]. The total power absorbed due to all the possible transitions

would be proportional to En(n+1-n)fn, i.e. to the concentration of

electrons as it should for a bulk effect.
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The Wannier-Stark states are thus of little interest for the
intraband transitions. They display however rich electro-optical
properties which are associated with interband transitions, i.e. to
transitions between the valence and conduction ladders. It is not the
purpose of the present review to give a detailed account of the optical
properties of the Wannier-Stark states (for recent reviews see e.g. (151).
Let us only sketch here the salient features.

Consider the possible optical interband transitions in a finite but
thick superlattice. The electromagnetic wave is assumed to propagate
along the growth axis. The in-plane wavevector has to be conserved for
allowed optical transitions in the dipole approximation. If there is no
electric field the superlattice wavevector q is conserved as well. If the
superlattice is biased, the electrostatic potential breaks the o}
conservation rule, but we have seen that the superlattice minibands are
destroyed and replaced by the Wannier-Stark ladders. For single, parabolic
and non degenerate conduction and valence bands, the optical matrix

elements involving the coupling between the light and the electron breaks
into:

Mgy = <uC lep | ts<yl®) | yiv)s (V-44)

where uC (uVY) is the periodic part of the conduction (valence) zone center
Bloch function, € is the light polarization vector and \p(C) , q;(V) are the

envelope wavefunctions of the conduction and valence subbands, in our

case the Wannier-Stark states Wv @, wy (V). Notice that although both the
valence and conduction ladders are evenly spaced by the same eFd and
parallel, the eigenstates wv(c) ) \;JV(V) are not the same, for their
projection on the ‘atomic” wavefunctions 0|q¢(C)(z-nd), 6|oc(V)(z-nd),
namely Jy._n(-2/fg), Jy_p(2/f,), are different due to the diiferent

conduction and valence subband widths. The overlap integrals <q;(C) |
w(")> are thus, in general, non vanishing and all the possible transitions
between v and L become allowed. This result, again, contrasts with the
case of the magneto-absorption (i.e. the interband transitions between
Landau levels) where, in spite of different ladder spacings (hws and ho,,)
the conduction and valence eigenstates are the same for a given n, which
leads to the selection rule on the envelope functions An = 0.

It is not very difficult to calculate the transition rates for |v, u>
— lc, v> transitions, to integrate over k,, taking into account its

conservation in the optical process and to finally end up with an

)é__')
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absorption coefficient which, for a type | superlattice, in the limit of a
thick sample is given by'25:

a(w) = (2N+1)ag 2p Jp2(2/ic) Y [ho-(eg+Eq+HH +peFd)]  (V-45)

where 2N+1 is the (large) number of periods in the superlattice, Y(x) the
step function, €g the bandgap of the well-acting material, E4 and HHy the

confinement energies of the ground electron and hole states in the
quantum wells when they are isolated, p a relative integer (-N < p < +N)
and fo, the dimensionless electric field strength:

foy = eFd/(1A ¢l + Ay) | (V-46)

Finally, oy is the absorption coefficient related to the HHy — E4 optical
transition in the isolated quantum well ( o= 0.6% in IlI-V quantum wells).

We see that the absorption coefficient is just the sum of staircase
absorption edges taking place at the energies Eg + E4 +HH4 + peFd. These
staircases have a simple physical explanation: they are associated with
the oblique transitions in real space which promote an electron in the oth
valence Wannier-Stark state to the pth conduction one. These oblique
transitions are symmetrically placed on the energy scale with respect to
the p=0 vertical transition. There is therefore no absorption edge for the
band-to-band transitions (if NeFd > €4 + Eq +HH{). However, the oscillator

strength of the oblique transitions sharply drop with p, to such an extent
that they quickly become unmeasurably small. We illustrate these
considerations in fig.(56) where the absorption coefficient of a 41 periods

superlattice is plotted versus the reduced photon energy € (€& =
[hm-(eg+E1+HH1)]/(|7\. cl+ Ay) ) for several field strengths fo,. At zero

field the unperturbed superlattice absorption coefficient is drawn and
displays the well-known Arccosine shape. When fg, increases steps

corresponding to the oblique (p#0) and vertical (p=0) transitions develop.
It is seen that their amplitudes are not monotonic functions of f¢y

(because Jp2 has an infinite number of nodes). However, when fey > f5,
where Zlfp is the smaller zero of Jp2, the p"h oblique transition fades
away. For fs, > 4 (which corresponds to a potential energy drop over a

period equal to the sum of the conduction and valence subband widths), one
is left with a dominant p = O vertical step (nearly 80% of the total
absorption coefficient) and two small p = +1 steps, evenly sharing the

_;23 —
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remaining 10% of the absorption. There is therefore an effective bl
shift of the band-to-band absorption edge. This blue shift can be quite
large since 1/2( A +A,) can easily reach 30 meV. Notice that when the

blue shift is significant, the well and barrier thicknesses are usually
small ( = 30A), which implies that the intra-well Stark shift (Esqw)

discussed in section (V.2) is small ( = 1-2 meV). On the other hand, the
excitonic effects (to be discussed in section VII) become larger with
increasing fo, because the structure continuously evolves from a quasi

three dimensional material (foy = 0) to a quasi bi dimensional material

(foy 2 4), which enhances the exciton binding energy. Thus, the measurable
blue shift Agg is limited to:

Agg = 1/2( Ac+Ay) - (R qw - R'sL) - Esow (V-47)

where R'QW - R*SL is the increase of the exciton binding energy when

going from the coupled to the electric field-isolated quantum well
situations. We show in figs.(57-59) an estimate of the periods where a
useful blue shift can be obtained in three different superlattice systems
assuming equal well and barrier thicknesses. The criteria used to define
the rectangles in figs.(57-59) are that 1/2A . should be larger than 10

meV and that the electric field required to achieve an almost complete
Wannier-Stark localization (f = 4) should be smaller than 105v/iem. It is
seen that for the three systems a period d = 70 A , which is not
exceedingly demanding from the growth point of view, fulfills both
criteria.  Figure (60) illustrates the experimental confirmation of the blue
shift in a (Ga,In)As-(Ga,Al,In)As superlattice’*’? and the significant
potentialities of this effect for electro-modulation . Figure (61) shows a
"fan" diagram (transition energies versus electric field strength) showing
the field dependences of the vertical and oblique transitions in a
GaAs-(Ga,Al)As superlattice. Oblique transitions from p=-5 up to p = +3
have been observed, which demonstrates both the relevance of the
Wannier-Stark description of a biased superlattice and the fact that the
coherence of the conduction states extends at least up to 7 periods (the
hole states are quickly field-localized in a given period and, actually, act
as markers'S3 of the conduction envelope functions).

V.4.b. Multiband effects on the Wannier-Stark quantization

The previous paragraph has been devoted to a one band tight binding
analysis of the Wannier-Stark quantization. In reality, any bulk or

~24 -
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superlattice band structure displays an infinite number of bands. Let n be
the subband index of a superlattice miniband centered at E,. The zeroth

order of approximation consists of constructing a Wannier-Stark ladder
attached to each subband:

Eny = Eno + VeFd , v a relative integer (V-48)

For discrete values of the field there will exist crossings between
Eny and eq (edFyy = (Eno-€mo)/(L—V) ). In reality these crossings are

replaced by anticrossings since there is no reason why the matrix
elements < ¢joc{M)(z-id) 1eFz | d1oc{™)(z-jd) > should all be zero if m=n.

When considering the ladders whose energy corresponds to the continuum
the index n or m becomes continuous and thus there exists a broadening of
the Inv> Wannier-Stark state due to its interaction with the |mpu>
continuum. These interactions have long cast doubts!34-141 on the very
existence of the Wannier-Stark ladders, for it may have happened that the
escape could have been faster than the Bloch period Tg, invalidating

Wannier's approach. It took some time to formally establish that these
effects were in practice small, a feature which recalls the findings in the
problem of the intra-well Stark effect (section (V.2)) were one also deals
with virtual bound states but where many physical quantities are
accurately calculated by models which neglect the interaction with the
continuum.

If one thus forget about finite lifetime effects, there are still
possibilities of interactions between the ladders attached to different
subbands generated by the hybridization of different quantum well bound
states. In the vicinity of the Fy, 's defined above, the eigenstates which

were field-localized in the one band approximation delocalize again. This
delocalization, simitar to the one described in section (V.3) for double
wells, is very important for the carrier relaxation and transport along the
growth axis. Notice however that its spatial extent is limited: if only
nearest neighbour couplings are significant the larger achievable
delocalization, out of completely localized states at the zeroth order of
approximation, takes place over two superlattice periods at the maximum
of the anticrossing between the two interacting ladders.

The reasoning we made in section (V.4.a) about the linear variation
of the Wannier-Stark states with F is no longer operative when several
bound states per period are admixed by the field. Instead of dealing with a
single €, appearing as an additive constant to all the energy levels of a

ladder, and thus liable to be absorbed in a redefinition of the zero of

..9\5__
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energy or to be evaluated by some direct calculations (e.g. gy = center of

gravity of the miniband), there are as many Enp @s bound states per period.
They cannot be all eliminated. Moreover, the previous reasoning on the Ty
(eq.(V-27)) is unable to tell us a priori if the Eno are field dependent or

not, which precludes us to assert that the eigenstates vary linearly with
F in the multiband situation. In fact they do not, as shown by the
numerical diagonalizations of the superlattice hamiltonian. What remains
true however, is the fact that the sequence e,(N), where n =1,2,..M labels

the various bound states per period, repeats itself periodically on the
energy scale and that the wavefunctions \pv(”)(z) generate all the

eigenfunctions of the problem by successive applications of Tq or Tg.

Figure(62) shows the calculated eigenstates of a 11 period (100A-20A)
GaAs-Gag 7Alg 3As biased superlattice versus the electric field strength.

The well thickness is such that two states are bound at zero field. The
eFz term has been diagonalized within the basis spaned by the 2x11 bound
states at zero field. At zero electric field one sees clearly two minibands
centered around 30 meV and 117 meV respectively. Since the superlattice
is finite, each of the subband continuum actually gives rise to 11 levels.
At non vanishing F the actual spectrum is derived from the two
interpenetrating Wannier-Stark ladders Eq1+vd, Eo+pd (-5s v, u <5)

attached to the two zero-field subbands. There exist two kinds of
departures to the zeroth order spectra. The first kind is an edge effect:
since the superlattice is finite and that there exist 2x11 non degenerate
bound levels at zero field, the small field behaviour (here F < 1kV/cm)
should be a quadratic regime analogous to the intra-well Stark effect
described in section (V.2). Because the "equivalent quantum well" is very
thick the non degenerate perturbation approach which describes the
quadratic Stark shift quickly becomes invalid and the levels start varying
linearly with F . The departure from the linear behaviour is the smaller for
the central level and the larger for the +5 levels which are the more
sensitive to the edges (see section (V.4.a) for the related "edge
interacting” Bloch oscillators). For field stengths near va there exists a

second kind of departures from the Oth order of approximation. They are
the field-induced resonant tunnelling effects taking place between the
different levels of the two ladders which, in the limit of a strong
Wannier-Stark |ocalization, would coincide with the isolated well
eigenstates. These effects are the more pronounced when u-v is the
smaller (1), which happens when Fu pt1 is equal to 80kV/cm. For F »

80kV/cm edge and anticrossing effects become negligible and the regime
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of linearly varying levels should, apart from the intra-well Stark effect,
be recovered.

When dealing with the Wannier-Stark ladders in the valence band of
superlattices, one faces a more difficult numerical problem than met for
the conduction ladders. In the latter case we were able, by implicitly
neglecting non parabolicity effects, to decouple the z and x,y motions and,
thus, to deal only with a one dimensional Schrodinger equation. We have
seen in section IV that such a decoupling is impossible for the valence
subbands except if the in-plane wavevector k vanishes. One has therefore

to recourse to numerical diagonalization of the valence hamiltonian in
finite structures to find the in-plane dispersion relations of the valence
Wannier-Stark ladders®®. The fact that there exist two categories of hole
levels at k,; =0 (heavy and light holes), which in the diagonal

approximation of the Luttinger hamiltonian display different in-plane
effective masses (mass reversal effect), implies that in addition to the
regular multiband anticrossing effects taking place at k=0 (similar to

those discussed above for electrons) one has also to expect that there will
exist anticrossings occuring at k;#0 which are a consequence of the off

diagonal terms of the Luttinger matrix. Despite this very complex
situation, the notion of the Wannier-Stark ladder is still relevant for the
valence subbands, at least with the generalized meaning specified above
for electrons. In fact, let us consider the valence hamiltonian of a biased
superiattice and assume again that one can restrict our considerations to
the J=3/2 topmost quadruplet. The hamiltonian is now a 4x4 matrix and its
eigenstates wy(r) are 4x1 spinors:

{T+1(V(z)+eFz ) } y(r) =€ y(r) | (V-49)

where 1 is the 4x4 identity matrix and T the Luttinger kinetic energy
term (eq.(ll-24)). Since the potential energy depends only on z, y(r)
factorizes into

y(r) = Y (2) exp(ik .r; ) /NS (V-50)

From now on we drop the r| = (x,y) dependence and focus on Y, (2) which
is implicitly k ; -dependent since it is the solution of a k -dependent

hamiltonian.
Suppose that Yy (z) is an eigenstate of eq.(V-49) corresponding to

an energy €g. Thus, T4 Wi, (z) is alsc an eigenstate corresponding to
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€g-eFd. There is therefore a Wannier-Stark ladder but, like in the case of

conduction ladders with multi subband effects, this does not imply a
linear variation of the eigenenergies with F. Besides, the gg has not only
to be indexed by n, where n=1,2,....2N and N is the number of interacting
hole subbands, but also by k; since the hamiltonian changes with k, (and

not only by an additive constant). Thus, one can conclude that if one only
takes into account the bound hole states, the valence spectrum of a biased
infinite superiattice consists of an evenly spaced (by eFd) sequence of
groups of states, where each group of states countains twice the number
of bound hole states at k; =0. The extra factor of 2 comes from the strong

spin-orbit coupling. Only at k; =0 does one recover a twofold degeneracy cf

each state. As mentioned previously for electrons, the coupling of a ladder
attached to a bound state with the continuum states leads to a broadening
of the Wannier-Stark states. We shall again assume that this broadening is
negligible.

At k; =0 the situation is somewhat simpler. The decoupling

between the heavy and light hole states (my= £3/2; my= =£1/2

respectively) is exact. Also the +3/2 (+1/2) and -3/2 (-1/2) components
are uncoupled. Thus, the Wannier-Stark ladders split into two independent
categories and each category displays a twofold degeneracy. The situation
is much the same as discussed for the conduction states. Notice in
particular that there exist anticrossings between the heavy hole
Wannier-Stark states attached to different subbands or between the light
hole ones. On the other hand exact crossings take place between a heavy
hole and a light hole state. This is illustrated in fig.(63) where the field
dependence of the valence energy levels is shown for a (50A-40A-50A)
GaAs-Gag 7Alg 3As symmetrical double well. The primed and unprimed

levels respectively corresponds to states which are mostly localized on
the right hand side and left hand side wells. One notices that the dashed
lines (light hole levels) cross the solid lines (heavy hole levels) while
two states of the same category anticross (HH4 and HH'y do anticross at

F=0 but the anticrossing gap is very small). When k,;#0 the heavy and light
hole levels interact and if F=0 the twofold degeneracy for a given k, is

lifted. We therefore expect that all the crossings will be replaced by
anticrossings. This is illustrated in the lower panel of fig.(63) for
kl=2.5x1060m'1. Clearly the light hole branches now anticross the heavy

hole one and, in fact, the notion of light and heavy hole becomes irrelevant
when k; #0. As we shall see in section VI the band mixing effects are very

G
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important to understand both qualitatively and quantitatively the assisted
hole transfer in biased heterostructures.

In superlattices, one expects the numerical outcomes to agree with
the general property about the existence of an evenly spaced sequence of
groups of states. Since the numerical diagonalization can only deal with
finite superlattices, edge effects may perturb the even spacing. These
features are illustrated in figs.(64-66) where we show for F=40kV/cm the
in-plane dispersion relations of a 50A thick GaAs-Gag 7Alg gAs single

quantum well (fig.(64)), of a 3 periods (fig.(65)) and of a 5 periods
(fig.(66)) S50A-50A GaAs-Gap 7Alg 3As superlattice. At zero field each

isolated well supports two heavy hole states (HHq,HH»s) and one light hole
state (LHq). At k; #0 the levels are labeled according to their k; =0 nature

and to the well were they are principally localized. One clearly sees the
existence of an evenly spaced sequence (HHZ(”),LH1(”"‘1),HH1(”+2)) when

n, n+1, n+2 are such that they do not correspond to a terminating well of
the finite superlattice. Notice that the members of the group of states
generating the sequence change with F. [n particular, in the limit of a
large field the group should only contain levels which all are mainly
localized in the same well. In this limit the spectrum of the finite
superlattice is just a repetition on the energy scale of that of a biased
single well,

An example of the band mixing effects is shown in figs.(67a,b)
where the k; dependence of V<J,2> is shown for a single 50A thick GaAs -

Gag 7Alg 3As quantum well (fig.(67a)) and for the group of states
genereting a Wannier-Stark ladder in a 50A-50A GaAs-Gag 7Alg 3As
superlattice (fig.(67b)). If there were no band mixing effects \/<J22> would

either be equal to 3/2 (heavy hole state) or 1/2 (light hole state). The
departures from these two values arise from the off diagonal and k;

dependent terms of the Luttinger matrix. The comparison between
fig.(67a) and fig.(67b) allows one to specify if the band mixing is an
intra-well effect or arises from the interaction between the heavy and
light hole states mainly localized in different wells.
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FIGURE CAPTIONS

Fig.{45) : Two apprcximate ways to calculate the metastable states

cf a quantum well tilted by an electric field.

Fig.(46) : Semiclassical estimates of the escape time of an
electron (in the E, state) a light hole (LH1 state) and a heavy
hole (HH1 state}) out of gquantum wells (L = 30 A, 60 A, 90 A
tilted by an electric field. For the electron, light hole or heavy
hole the escape time at a given field increases monotonically with
L.

Fig, (47} : Calculated envelope functions for electrons (E1 state)
or heoles (HHl state} in a GaAs-Ga0 7A£° 3As quantum well

(L = 200 A) for several electric field strengths (in kV/cm).

Fig.{48}) : Calculated energy shifts of the conduction and valence

levels in a 100 A thick GaAs—Ga0 7A€0 3As guantum well versus the

electric field strengrh.

Fig.(49) : Electric field dependence of the fundamental optical
transitions in Gaas-Gal{af)hs quantum wells with different
thicknesses. Solid : 1line theory. Symbols : experiments. After

reference [127].

Fig. (50} : Calculated Stark shift of the fundamental opticail
transition (EI—HHI} in Ga(In)As-InP and Ga(n)As-A€(In)As quantun
wells with different thicknesses.

Fig. (51} : Calculated conduction eigenstates (solid lines) of a
biased 100 A-20 A-100 A GaAs—Ga0 7A£D 3As double gquantum well

versus the electric field strength. The dashed lines are the
strong field asymptotes of the decoupled E1 and E2 levels in each
isclated wells.

Fig.{52a) : Position dependence of the envelope function of the
first eigenstate in a 100 A-20 A-100 A GaAs—Ga0 7A£0 3As biased
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double gquantum wells at four different electric field strengths
F=0, 60 kV/cm, 90 kV/em, 120 kV/cm.

Fig.(52b) : Position dependence of the envelope function of the
second eigenstate in a 100 A-20 A-100 A GaAs—GaO.TAﬂo_gAs biased
double quantum wells at four different electric field strengths
F=0, 60 kV/cm, 90 kV/cm, 120 kV/cm.

Fig.(52c) : Position dependence of the envelope function of the
third eigenstate in a 100 A-20 A-100 A GaAs-Gaol7A£°'3As biased
double quantum wells at four different electric field strengths
F=0, 60 kV/cm, 80 kV/cm, 120 kV/cm.

Fig.(52d) : Position dependence of the envelope function of the
fourth eigenstate in a 100 A-20 A-100 A GaAs—Gao_7A£o.3As biased
double quantum wells at four different electric field strengths
F=0, 60 kV/cm, 90 kV/cm, 120 kV/cm.

Fig.(53) : Conduction band edge profile of a portion of a biased
superlattice. Each eigenstate is coupled to its nearest neighbour
(interaction strength A). The delocalization o¢f a particular
eigenstate centered at a given site (say 0} is over all the sites
whose shaded bands overlap that centered at the O'" site. The
eigenstate centered at the 0'" site will not extend to the site
n=4.

th

Fig. (H54) : Spatial localization of the v Wannier Stark state

around the v'! site for different reduced field strengths.

Fig.(55) : Comparison between the semiclassical (solid line) and
quantum (circles) probabilities of finding the electron in the '"

Wannier Stark state at a given site., £f=0.1.

Fig.(56) : Calculated band-to-band absorption 1lineshape of an
infinite superlattice (f=0) and of 41 periods superlattice (f=z0).
For f=4 the absorption edge practically reduces to twe small steps
{+ 1 oblique transitions) and a large one located at the edge of

the iseclated guantum well.




Fig.(57) : The critical field needed to achieve the conditicn f=4
(Fc, left scale! and the maximum blue shift of the E1 coenduction

states (E &Cl, right scale) are plotted versus the superlattice

period 4 in GaAs—Ga0 _AEG 3As superlattices with equal layer

thicknesses. The rectangle defines the area where FC< 10°V/cn and

1
- A > 10 meV.
2 c1

Fig. (58) : Same as fig. (57 but for Ga AL As-InF

0,47 0.5%3
superlattices.

Fig.(59) : Same as fig.({(57) but for Gao_471n0'53As—A£0_4BIn0'52As
superlattices.

Fig. {60} : Measured absorption lineshape versus photon energy at
two voltages in a 39 A-46 A Ga0 4_In0 53As—(Ga,A{f,Irz)As
superlattice (upper scale}. Abscrption difference versus phcoton

energy (lower scale). Adapted from reference [147].

Fig. ({61} : Electric field dependence of interband transitions
between Wannier Stark states in a 60 A period Gahs-Ga A€ A=

superlattice. After reference [152].

Fig. (62} : Calculated conduction eigenstates in a 11 wells
100 A-20 A GaAs—GaO.7A£0l3As superlattice versus electric field.
The numbers -%5,-4,... label the 11 El—originating guantum states
while the numbers -5',-4',... label the 11 Ez-originating ones.

The numbers also correspond to the wells where the eigenstates are

mainly localized in strong fields.

Fig.(63) : Calculated fielid dependence of the valence eigenstatecs
of a 50 A-40 A-50 A& GaAs—Ga0 TAEO aAs biased double guantum well.

k;=0 : upper pannel. k-i_=2.5>-<10“cm‘l : lower pannel.

Fig. (64} : Calculated in-plane dispersion relations of 50 A thick
GaAs-Ga0 TAzo 3As biased single quantum well. F=40 kV/cm.

Fig.({65) : Calculated in-plane dispersion relations of 3 wells
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50 A-50 A GaAs-Gao 7A£° 3As biased multiple quantur well.
F=40 kV/cm.

Fig.(66) : Calculated in-plane dispersion relations of 5 wells
50 A-50 A GaA's-Gao LAE As biased multiple guantum well.
F=40 kV/cm.

Fig.(67a) : The quantity I(Ji) is plotted versus k for the three
bound states of a biased GaAs-Ga TAeo 3As single quantum well.
L=50 A, F=40 kV/cm.

Fig.(67b) : The quantity I(Ji) is plotted versus k; for the three
central states out of the nine eigenstates of a three well
50 A-50 A GaAs—Gao TAEO 3As biased superlattice. F=40 kV/cm.
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