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Quantum Wires and Quantum Dots

I‘rank Stern
IBM Rescarch Division, T.J, Watson Rescurch Center
Yorktown leights, New York 10598, U.5.A.

Simple concepts and models for confined clectronic states in scmiconductors, and
some representative experimental results, are presented. This is an outline of lectures to
be presented 14-18 May in Trieste at the 1990 Spring College in Condenscd Matter, on

“Physics of low-dimensional scniconductor structures.”

1. DIMENSIONALITY

Physicists and mathematicians have long thought about the way motions and
relationships would change in systems with dimensionality different from that of the
threc-dimensional spuce we arc accustomed to. Over the past decades it has become
possible to fabricate structures that exhibit reduced dimensionality, and the subject of
the 1990 Spring College deals largely with systems that already exist. Reduced dimen-
sionality can arise in many diffcrent ways, depending on the physical processes being
considered, and usually involves a sample or a physically defined region within a samplc
with one or more dimensions small compared 1o an appropriate physical scale length.

Ffor transport processes, 1wo important scale lengths are the mean [ree path, con-
trolled by carrier scattering and the phase breaking length--which is often equal to the
inclastic scattcring length. At high temperatures, where phonon scattering dominates,
both of these lengths are determined by the phonon scattering rate. At high carrier
densities, carricr-carricr scattering may control the inclastic scattering or phase-breaking
length, but docs not--to lowest order--affect the transport mean free path because scat-
tering among carricrs in a simplc band docs not change the current.

At lower tempceratures many transport processes depend on the inclastic scaltering
length, L, = {2dl)‘ri“)”2, which is an avcrage distance carriers dilTuse between inclastic
collisions in 4 dimensions. The dilfusion constant D is usually controlled by clastic
scattering processes like impurity scaticring, and is approximately independent of tem-
perature, while the inclastic scattering time is temperature dependent. At sufliciently
low temperatures the inclastic scattering length can be of order 1 to)0 g, placing many
samples in the low-disnensionality regime for transport. Corrections to transport prop-
criics at low temperatures oceur lor all dimensionalitics, but are more casily observed in

lower dimenstonal systems. This subject, often called weak localization, had u rapid
developiment beginning about ten years aga and has led to a large fiterature dealing with
low-dimensional aspects. 1t is covered in other lectures at this Spring College.

The characteristic length we are concerned with here is the Fermi wavelength,
hfpy, where h is Planck’s constant and py. is the carrier momentum at the Fermi surface.
A more uselul characteristic length is h/pg, which is somctimes--but loosely--also called
the Fermi wavelength. When a sample dimension becomes comparable to this distance,
the motion in that direction becomes quantized, resulting in changes in the encrgy
spectyum and in the dynamical propertics of the system. When only one dimension of
the sample is small compared to this distance we speak of a system that is (dynamically)
two-dimensional. Many properties of such systems are described in the article by Ando
et al.") and are discussed in many of the lectures in this Spring College. I'he present
discussion deals mainly with systems that are constrained in two or three dimensions,
and are thercfore dynamically one- or zero-dimensional, but we occasionally refer to
results for the better-known two-dimensional systems for comparison. A dynamically
one-dimmensional system is often called a quantum wire, and a dynamically zero-dimen-
sional system is often called a quantum dot or quantum box.

These lectures will cover some simple ideas, and examples of experimental results,
lor confined electron systems in semiconductors. The field, though still young, already
has a large literature and many important results will be omitted. In some cases [ cite
one or two recent papers rather than the original work, because it is easier to lollow a
publication chain back in time than to start from the carly papers and try to (ind later
ones.

2. STRUCTURES AND FABRICATION

A brief summary of some of the structures that have been made or proposed for
confining carriers to wire-like and dot-like configurations will be given herc, and fabri-
cation methods will be alluded to briefly. These subjects are covered in detail in other
lectures. We can divide the confinement mechanisms into several categories, although
actua} structures usually involve more than one mechanism.

Compositional conlinement arises from the barrier to carrier motion imposed by a
change--¢ither abrupt or graded--in chemical compesition. One exampie is the barrier,
about 3 eV, for electrons at the interface between Si and Si0;. Another is the con-
duction band offset at the interface between GaAs and Al,Ga, _ As. The conduction
band offset is about 0.2 eV il the AlAs fraction x is 0.3, which is in the direct-gap com-
position range for the alloy.

Lilectrostatic confinement was one of the first means used to create 4 truc quan-
tum-confined two-dimensional system, the inversion layer of a metal-oxide-silicon field-



eflcet transistor structure. The clectric field attracts the carriers toward the gate, but
the clectrastatic potential together with the barrier at the interface creates a potential
well whose effcctive width can be of order a few nm. Some of the cxtensive literature
of this system is covercd in Rel. 1. Several ingenious variations of this basic structure,
imvolving narrow gates, split gales, grating gates, and other variants, have been used to
shape the electrostatic confining potential which, when combined with one or more
barricrs due to compositional conlinement, leads to an cffectively one- or zero-dimen-
sional system

Geometrical confinement is the simplest mechanism to consider, although not
necessarily the casiest to realize. One or more sample dimensions are made suitably
small either by an appropriate growth technigue or, more commonly, by removing
material from a larger sample, for example by etching, Posts of material with diamcter
ol order 100 nm or less have been prepared from a GaAs-based heterostructure, and the
combination of compeositional and geometrical confinement has becn used to fabricate
structures for optical studics, including lasers, and for tunneling experiments.

Some physical or chemical processes, such as reactive ion etching or bombardment
by particlc beams, lead to changes in the surface or bulk propertics of the material that
have becir used to confine carricrs. While the cffectiveness of this method has been
demonstrated, there is little detailed understanding of the way the confinement induced
by these processes should be modeled. This is an arca that needs additional work before
quantitative models can be formulated [or such structures.

Selective growth on a terraced semiconductor surface, as obtained or example by
using a surface slightly tilted from a high-symmetry direction like (001), can lead to a
wirc-like structure whose width can be controlled by the growth conditions and the ter-
race width and whose thickness can be as smul as a monelayer, Sclective growth can
also be used on the etched or cleaved surlace of a superlattice or other compositionally
2

An ingenious method of confinement using localized strains to confine excitons
(3.4)

modulated structure to yield confinement to a wire, as suggested by Sakaki.

has been explored by Kash and coworkers for quantum dots and quantum wires.
Many ol the mcthods we have described can be used to fabricate wires or dots, or
arrays of wires or dots that may or may not interact with each other. Alternatively they
can be used to add spatial modulation, as for example to introduce linear or rectangular
grating modulations onte & two-dimensional cleetron system. Such systems form a
transition between one dimensionality and another. ‘They have been widely studied
experimentally, for example by groups in Ilamburg(s) and at MIT,"*" and

thcnrcticaliy.‘g i

3. ELECTRONIC STATES

The increasingly versatile fabrication methods being devised make it possible ta
create structures with a wide range of confining mechanisms and geometries. [n this
section [ shall describe some geometries that vary from textbook simplicity to more
realistic cases, and discuss the clectronic states in those structurcs.

The simplest geometry for which explicit results can be ohtained casily is a rectan-
gular geometry with a flat potential inside (taken to be zere) and infinitely high, math-
cmatically sharp walls. llere, and throughout most of this chapter, we use the eflective
mass approximation and assume that the respective effective masses for motion in the
kyo ky, and k, dircctions are m,, m, and m,. The wave [unctions are approximated as
products of Bloch lunctions, taken near the relevant band edge, and envelope functions
which arc presumed to be slowly varying on an atomic scale although that approxi-
mation is severely tested at times. For most purposes the underlying Bloch lunction is
omitted but it must be included for some purposes, such as the calculation of optical
absorption. In this effective mass approximation the envelope wave function ol a state
with quantum numbers { and j and wave vector k, in a rectangular wire of dimensions
a and b is taken to be

Lija, ™ @fat"1? sin(niyla) sin(mjz/#) =¥, =123, ... ()

Motion along the wire is taken to be [ree-electron-like, leading to subbands of states

with energics
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The subband energics for &, == 0 are nondegencrate {not including spin) in general,
but for a square wire with @ = & the states ij and j,7 will be degenerate when i # 4. The
density of states per unit energy lor the one-dimensional subband with quantim num-

bers i and j in a wire of length L is

p(E) = 22 (L{2r)dk fdE = (L{a) i}y e — £ 72, @

where the first factor 2 arises because there arc states with both positive and negative
values of &, and the second factor 2 is the spin degeneracy. The inverse square root
behavior is to he contrasted with the two-dimensional resuft that the density of states is
a constant above the band cdge and the three-dimensional result that the density off

states varics as the syuare root of the encrgy measurcd from the band edge.



Somewhat surprisingly, a closed-form solution lor the wave functions and energy
levels of a rectangulur wire with a [inite barrier 15 not availuble. We shall consider a
treatment o1 such i case below.

[l the simple rectangular wirg is truncated to become a rectangular paraliclepiped,
then the envelope wave function will have sinusoidal factors in all three space dimen-
sions, by obvious extension of Liq. (1), and the encrgy levels will be discrete.

Another sitple case is a wire with a circular cross section. The Schradinger

equittion in polar coordinates takes the form

R R N I T )
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where we have assumed free-carrier motion in the x dircction, taken the mass in the y-z
plane to be isotropic, and used # = (y2 + 22)”2. L[ the potential inside the wire is zero
and the barvier at radial distance Ry irom the center is infinite, then the envelope func-

tions are

-~ -1 : : i ik
Lp, = (1) Ry LI aRIRM 4 Ur ) 1 € Pk, =012, (9
where J,; is the Bessel function of order { and ji , is its nth zero. The energy levels are

T L
Ep (k) = e (6)
At TR 2m

‘I'he subbands with angular momentum / are nondegenerate if [ =0 and are doubly

degenerate lor nonzero values of L

It is instructive to compare the integrated density of states for a square wire and a
circular wire of the same cross-scctional arca al= nRg. The results are shown in
Fig. 1, and demaonstrate, as expected, that the asymptotic density ol states at large
quantum numbers depends mainly on the area and only weakly on the geometry. Per-
haps less well known is the effect of the boundary conditions, which should not aflect
the asymptotic density of states for a sulliciently large system. T'o illustrate that effect,
Fig. 1 also shows the cumulative number of subbands and the integrated density of
states for the same square and circular wires if the boundary condition on the cnvelope
wave function were the vanishing ol its normal derivalive, rather ihan of its value, The
envclope wave tunctions arc then sinple variants of these given in Egs. (1} and (5).
Note that the lowest envelope wave function for both geometrics is then sisnply a ¢on-
stant, and the associated subband starts at zero encrgy. The results [or these two
extreme limits of physically realistic boundary conditions are instructive. I'or large
quantum numbers the ratios ol the results to the corresponding asymptotic values,

which are shown as dashed lines in Iig. 1, approach unity, but the magnitude of the
differences continues to increase.

I.cvel broadening and thermal smearing must be smatl enough compared Lo the
cnergy dillerences between subbands to make it possible to observe the encrgy level
structure associated with the confinement, so small dimensions, which maximize the
cnergy scale, and fow temperatures, which minimize both thermal smearing and level
broadening, arc normally required.

1n most realizations of wire and dot structures the barrier at the boundaries should
be treated as finite, and the approximation that the envelope wave function vanishes at
the boundary is likely to fail. That is the case, for example, when the confining poten-
tial is provided by a band offset as in & GaAs-{Al,Ga)As hetcrostructure. In such cascs
a more general Schradinger equation must be solved. The general question of boundary
conditions at a heterointerface is described by other lecturers, and the discussion here
deals only with the simplest case, as in heterojunctions with x < 0.4, for which both
materials have their conduction band minimum at the center of the Brillouin zone. In
that case the boundary condition to be used, chosen Lo preserve current as calculated

from the envelope function, istth

mit =mi (7

where m; and m, are the respective effective masses and the prime denotes the deriva-
tive in the direction normal to the interface. The envelope function and its derivatives
in the interface plane are continuous.

For the circular wire, explicit solutions involving Bessel and Neumann functions
can be written down for the finite barrier case. The eigenvalues are found from the sol-
utions of a transcendental equation for the matching at the boundary, using Eq. (7).

In addition to the discrete solutions, which vanish at infinity, there is also a continuum
of solutions with energies greater than the barrier height. The density of states in the
continuum has broad maxima corresponding to resonances or virtual states.

In addition to the simple potentials already described, there has been considerable
interest in parabolic potentials, which arise naturally in electrostatic confinement and
can be fabricated via compositional variations in quantum wells. The parabolic poten-
tial has a number of special properties, such as an energy spectrum with equally spaced
levels. Also, a lincar perturbation leaves the potential parabolic, with only a shift in the
position of the minimum. Some other properties of parabolic quantum wells will be
discussed later, including the energy spectrum in a magnetic field.

Once we leave simple models like these just described, calculation of the encrgy
leve! structure becomes more complicated. The problem can be divided into two parts:
8 description of the potential, and the calculation of the encrgy levels and other proper-



ties of the clectronic systemn, I the systein has carricrs present, these two probleins are
coupled and must be solved self-consistently.

In some cascs the potential is known, as for example in a structure that uscs
geometrical or compositional confinement. In other cases, particularly those involving
clectrostatic confinement, determination of the potential may require analytical or
numerical methods. An example of a numerical calculation is given below. Analytical
methods for describing a wire constrained by lateral diffusions were presented by
Shik.“z] a detailed analysis of wires near threshold has been given by I)avies,(”) and an
approximate treatment above threshold has been given by Shikin.!'¥

The Schradinger equation for carriers in a wire must be solved in two space
dimensions, with frec-carricr motion assumed in the third direction, lixact solutions can
be obtained for only a few cases, some of which have already been mentioned. 'Fo make
further progress, it is olten uscful to formulate the problem as a set of coupled one-di-
mensional cquations, as done for example by Brum and Bastard!'>'® in treating a ree-
tangular GaAs wire buried in Al Ga, _ As. Il the normalized z-dependent solutions
Xn{(z) For an inlinitely wide strip and the corresponding eigenvalues £, are known, then
the wave lunctions in the wire can he expanded in terms of a complete set of solutions:

C(p, _ L_”z cr‘krt Za’({’)(y) xn(z)' (8)

After the lree-clectron behavior in the x direction is separated out, the Schrédinger
cquation now hecomes a set of coupled cquations over index » (which could, in princi-
ple, include a continuum)

R ) , ; )
- _52_ +};m,,,,,(v) D) = [EY - B, 1), (9)

where the spatial variation of the effcctive mass has been dropped for simplicity. The
matrix element which enters in Lq. (9) is

AV l) = [ XAV 01 (10

where AViy,z) is the perturbing potential. If the lateral dimension of the wire is larger
than the thickness of the layer whose cigenstates arc used for the expansion above, only
a [ew coupled one-dimensional equations are needed to get accurate solutions. The case
constdered by Brum and antarcl,“S) in which carriers were supplied from a plane of
donors outside the wire, also required a selficonsistent treatment to determine the
charge in the wire and the potential.

Numerical sell-consistent caleulations for clectronic states in wires have been car-

(

. 117 - 1% ..
ricd out by Laox and Stern ! for electrons in silicon and by Laux cl Al and Kojima

et al "% for electrons in GaAs. Numerical aspects of such calculations arc discussed,
for example, by Laux™ and by Kerkhoven et al.?" Numerical simulations for wires in
GaAs show structure in good qualitative agreement with capacitance studics.!??
Iinergy levels in a wire formed in a double-gate metal-oxide-silicon structure, taken
form the work ol Laux and Slern,m) are shown in Fig. 2. The potential giving nisc to

these levels, shown in Fig. 3, is approximately parabotic for gate voltages helow thres-
hold, and then attains a flat bottom as electrons fill the well. As more and more elec-
trons arc added, the flat region widens. The flattening of the potential as carriers arc

added also occurs in parabolic quantum wells, a subject that has scen a spurt of

(23 =2% 1,y that case the underlying parabolic potential is usually realized by

activity.
suitably grading the composition in the well.

Most calculations for clectron states in wires have used the effective mass approx-
imation and the 1lartree approximation, in which each electron moves in the average
potential of all electrons. ‘That approximation ignores exchange and correlation eflects,
which lead to substantial changes in the energy levels in two-dimensional electron
systcms.(” Corresponding, and perhaps even larger, changes are expected in wires and
dots, although Laux et al."™ found that a local density treatment of exchange and cor-
relation effects led to relatively small changes in the encrgy spacings connected with
lateral quantization. The eflects of clectron-electron interaction in a dot with two clec-
trons have been investigated by Bryant,ﬂf’) and can be substantial.

There have been a number of calcutations for electronic states in quantum dots,
gencrally using model potentials, some of which are cited elsewhere in this chapter.
Here we want to menticn the self-consistent Hartree calculations by Kumar et a].,m)
which were motivated by the capacitance experiments of Smith et al.®® and Hansen et
a1 ‘They used GaAs-{Al,Ga)As heterostructure samples with a GaAs cap layer pat-
terned with electron beam lithography to form an array of mesas on a square lattice,
with a metallic gate deposited over the entire array. A negative voltage on the gate
depletes the charges from donors in the Al Ga, _ _As except under the middle of the
mesas, where there are isolated groups of electrons which constitute the quantum dots.
The capacitance and more particularly its derivative with respect to gate voltage show
oscillatory structure associated with quantization in the dots. 'The period of the strue-
ture increascs as the dot size decreases. Kumar et al'2”! have carried out numerical
self-consistent solutions of the Poisson and Schridinger equations (in the llartree
approximation)} for this structure both with and without a magnetic field. They find
that the cffective potential acting on electrons under a 300 nm square mesa has a nearly
circular shape and a Jdiamecter of about 100 nm. The lateral potential variation is
approximately parabolic when there are no electrons in the dot and fNattens out as clee-

trons are introduced, but not as much as lor the wires mentioncd above.



Most ol the discussion i the present chaprer deals with conduction band states.
For states in the valence bind i more elaborate freatment is usuaily required, because
of the degencracy at the top of the valence band in most of the semiconductors of
interest, with its accompanying nonparabalicity und anisotropy. Sce, lor example, the

(30h) L16)

papers by Citrin and Chang™" and by Bastard ¢t a

4. PHONONS

Where the conlinement of electrons to a wire or dot is of clectrostatic origin, there
is no signilicant change in the lattice lorces at the boundaries and therelore no signif-
icant change in the phonon spectrum. 1(, however, the confinement arises through a
heterostructure, then one may need to consider the dillerences in lattice [orces on
crossing the boundaries of the wire or dot. That subject has been studied extensively in
the case of quantum wells. {ne can use a continuum mode, as discussed for example
by Bahiker,m) or a microscopic model as discussed, for example, by Akera and
Ando 8% Significant changes in the phonen spectrum can arise when there is a large
acouslic mismatch at the interface, and this leads to changes in the detailed description
of phenomena such as particle capture into a quantum well via electron-phonon
interaction.® This subject has not yet been widely pursued for quantum wires or dots.

5. CIIARGES IN QUANTUM WIRES AND QUANTUM DOTS

Some experiments with quantum wires and guantum dots use samples as pure as
possible, but athers require the presence of carriers. 1n addition to doping with donor
or acceptor impurities within the region of interest, one can introduce carriers in scveral
other ways. Remote impurities, located for example within the barrier region of a het-
erostructure, can release carricrs which then appear in regions of lower potential encrgy-
Voltages applicd at external electrodes (or gates) can modify the charge in the region of
interest. Charge can also be induced dynamically, cither by thermionic injection over a
barrier or by tunncling injection through a sulliciently thin barrier.

Detailed discussion of charging effects depends on the specific geometry, and
would require more space than is available here. Several of the calculations noted
above include charging as an essential clement, We want to mention here only two
aspects of this problem. The first concerns the nature of the deep donor in
Al Ga|_As, also called the DX center.®* This center is a decp donor for x> 0.2 and
gives a resonant state in the cenduction band for smaller AlAs fractions, in addition to
the usual shallow hydrogenic state. When decp it has the unusual property that elec-
trons excited out of the deep level, optically or otherwise, are prevented from returning
to the lowest clectronic state by a barrier that is attributed to lattice reluxation. Tem-

peratures of order 150°K or higher, or electrons which attain sulTicient energy Lo sur-
mount the barriet, can restore the system to equilibrivm, but the metastable state can
be maintained indclinitely st low temperatures even after the exciting light is turned ofl,
This eflect generally Jeads to an increase in the carrier density and conductivity of the
channel--be it quantum well, heterojunction, or wire--and is called persistent photocon-
ductivity. Many experiments, especially on samples with very high mohbility, are carricd
out with some infrared illumination to induce this effect, and it is not always clear
whether reported results are obtained in the dark or involve such illumination. In
modeling heterostructures with deep donors, [ have found it useful to treat them as
conventional deep donors in dealing with experiments carricd out in the dark. Fora
system that has been saturated with light to ionize all the donors, the persistent photo-
conducting state is most easily simulated by replacing the donor degeneracy factor,
usuaily 2, by 0. I( not covered in earlier lectures, simple concepts of charge transfer in
heterojunctions in the dark® and in the persistent photoconducting state™® will be
reviewed.

One other aspect of charging in small systems should be mentioned, namely the
conscquences of the electrostatic energy of small structures for the charging process in
such devices. The energy of a capacitor is Q212C, where C is the capacitance and  is
the charge, and the energy change on adding one electron can be significant. The
capacitance of an isolated conducting sphere of radius R in a medium of permittivity ¢
is C=4aeR or about 1.4 x 107" F fora sphere of radius 0.1um in GaAs. The electro-
static energy to place the first electron charge on such a sphere is about 0.6 meV, and
increases as the charge on the sphere increases. Similar considerations apply to small
planar capacitor structures. These energics lead to deviations from simple chmic
behavior: the charging takes place in discrete steps, with no current flow until the voit-
age is large enough to overcome the charging energy. This phenomenon, known as the
Coulomb blockade, has been seen both in conventional junctions and in Josephsen
junctions. It has been known for many years and has a growing literature, of which
only one very recent example is cited *7

For quantum dots in semiconductors, the charging energy and the internal elec-
tronic encrgy presumably both enter in the experiments of llansen et al.,m) who found
structure in the capacitance when an array of dots is charged from a nearby electrode,
as illustrated in Fig. 4. The relation of their results to the Coulomb blockade was noted
by Silsbee and Ashoori. P8



6. DIELECTRIC RESPONSE, SCREENING, ANID PLASMONS

The hincar response ol a system to external clectric fields of wave vector ¢ and
radian frequency e is given by the dielectric constant x(g, @) = £(g, o1){rq, where r;; is the
permittivity of frce space. The diclectric constant is complex in general, and its imagi-
nary part corresponds to encrgy loss processes, When written in terms of a single wave
veetor, the diclectric response applies to a homogeneous medium, and it must therelore
be used cautiously in lower-dimensional systems. A more generally applicable response
Tunction is the polarizability, which gives the polarization P, generally a function of
position, induccd in the system of interest by an electric field. There have been many
studies of the diclcetric response of quasi-one-dimensienal systems, for example the
work of Fricsen and Bergcrsenpq)

The real part of the polarizability of a wire with only the lowest subband eccupicd
. (40
is

2 o 2
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where g is the wave veetor along the wire and &g is the Fermi wave vector. This leads
to an eflective permittivity in the wire ol

e(g. @) =, L1 + Verlghx(g, w) ], (12)

where ¢; is the permittivity of the medium in which the electrons move and Vg is an
cfTective Coulomb intcraction, which depends on the shape of the charge density in the
wire, For a wire of radius By with only one subband occupied, Gold and Gihazali*!
give at long wavclengths

Vg ~ — (X2, )In(grof2). (13)

The dispersion relation for plasmens, the collective longitudinal excitations that
correspond to vanishing of the dielectric constant, is approximately given, for a single

wire with only the lowest subband occupied, by(u‘“’

(g} ~ (e 2rome ;) g TinggRy1) 1. (14)

For arrays o wires it is nccessary to consider the mutual interaction of the wircs
with cach other. ‘I'he resonant frequency has been shown to be equal to the harmonic
oscillator frequency if the bare potential in which the electrons move is parahoiic.(u‘“]
A similar result obtains for dots!* if the bare potential is parabolic, as is approximately

the case for electrostatic confinement (or both wire and dots.

N

The boundarics of a wire or disk fead to a new sct of modes which have heen stu-
died in the presence of a magnetic ficld and are called called cdge magnetoplasmons.

(45,46} (@Tam) ¢

They have been observed in (GaAs and for electrons on fiquid helium.
of the related theoretical work is cited in Ref. 46,

Many bulk materials have highly anisotropic conductivity and can be treated for
some purposes as three-dimensional arrays of wires. Such systems, often called one-di-
mensional systems, have some overlap in underlying physics with the systems being
considered here, but have historically been considered by a different group of workers.
There is remarkably little overtap in the literature of these two fields. | will not try Lo

bridge that gap here.

7. TRANSPORT PROPERTIES

Since many of the aspects of transport involving law-dimensional structures are
covered in other lectures at the Spring College, this section is limited to a lew specific
aspects.

Quantum corrections to transport, such as thosc that lead to logarithmic cor-
rections in the weak localization regime, become increasingly important for one-dimen-
sional transport. It is now well known that at absolute zcro all states in a
twodimensional system are (weakly) localized even for arbitrarily weak disorder, and
that in one dimension all states are strongly localized, i.e. the states decay cxponen-
tially. Thus the conduction can have a weak-localization regime, an activated or varia-
ble-range hopping regime, and in some cases a direct tunneling regime. There arc many
interesting experimental and theoretical results related to localization in low-dimen-
sional systems, some of which-may be discussed in other lectures. A particularly inter-
esting question is the transition from weak to strong localization in two-dimensional
electron systems. That question has been extensively studied in silicon inversion

layers,“) and there have been some recent cxperimenla]“q) and theoretical®™!)

pancrs
dealing with the onset of localization in GaAs heterojunctions.

At sufficiently high temperatures the quantum corrections to transport become
smaller, and a Boltzmann-like treatment may be applied. Tn this regime the main scat-
tering mechanisms that limit transport in wires are basically the same as for two-di-
mensional systems, and include Coulamb scattering, interface roughness scattering, and
phonon scattering. Some simple concepts bearing on low-temperature transport in
two-dimensional clectron systems will be reviewed in the present lectures, including
Conlomb scattcring“‘sz) and the temperature dependence of mobility induced by the

e (5554}
temperature dependence of screening

{35}

and by thermal averaging over the Fermi

distribution.



One nematical difference between one-dimensional transport and transport in
higher dimensions is that the scattering within a single onc-dimensional subband can be
only forward or backward. For clastic scattering, caly the backward mode changes the
current. For a given value of the wave vector kg at the Fermi surfuce, this can mean a
significant reduction in the cross section, because the only relevant wave vector transler
is 2ky, rather than a continuous range of possible wave vector transfers in two or three
Jdimensions. Since the scattering cross section for Coulomb scattering decreases rapidly
with increasing momentum transfer, this might be expected to lead to a significant
reduction in scattering rate--and 4 concomitant increasc in mobility--in one-dimensional
systems, as pointed out by Sakaki.? Lxperimental support for this conclusion is not
at hand, but quantitative tests can be expected as better structures are made and stu-
died.

In quantum wires whose sides are determined by electrostatic confinement, there
is reason (o believe that edge roughness will not be as severe as might be expected [rom
the somewhat ragged cdges oficn found in the gates that provide the clectrostatic con-
fincment. Kumar et al. %8 (howed that in typical heterostructures the higher Fouricr
components ol the roughness of a gate edge are significantly attenuated because of the
spatial scparation between the surface where the gate is Jocated and the buried interlace
where the clectrons of interest are found. Evidence that boundary scaltering in narrow
channels is largely specular had already been presented by van Houtea et al 57

Many authors have given Boltzmann-like treatments of transport in semiconduc-
tor wires, including for example Lee and Spcclor.(ss' Riddoch and Ridley,(sg)
Fishman,(m'b” Weng and I_cburlon,(ﬁz’ Das Sarma and Xie,("” and Golid and
Ghazali¥*" Detailed comparisons of theory and experiment are nat yet at hand.

In most realistic quasi-onc-dimensional situations, more than one subband will
have carricrs in it and scattering between subbands must be included. Intersubband
scatlering processes must he treated in a consistent way, which leads to some nontrivial
couplings that arc sometuncs ignored. The Formal treatment for such processes has
been given in a two-dimensional context by Siggia and Kwok. &4

An isolated quantum dot cannot show conventional transport, because it has no
contacts. ‘T'here are nevertheless very interesting cflects involving dot-like structures
coupled to cach cther or to quantum wires. Some of these eflects may be covered in
other lectures at the Spring College. Recd et al*® have reported structure in the cur-
rent through semiconductor pillars with tunneling through a quantum dot, and have
attributed the structure to resonances with encegy levels in the dot. 'The intcraction in

arrays of dots weakly coupled to cach other has also been studied. (047

N

8. BOUND STATES

As the dimensionality of a system decreascs, the binding energy ol clectrons to
impurities and the analogous exciton binding energy increase. IFor short-range poten-
tials, it is known that in three dimensions there is a minimum strength required before
an attractive potential has a bound state. In two dimensions an arbitrarily weak
potential has a bound state, although the binding cnergy is extremely small for a weak
potential. Bound states in wires and dots have been examined by a number of
authors,‘“'ﬁs'ﬁg) who show that increasing confinement increases the binding.

One of the best-known resuits is that the binding energy of an electron of eflective
mass m to a Coulomb center of charge ¢ in two dimensions is four times as large as the
corresponding three-dimensional result, given by the effective Rydberg, me4/32n2c2h2.
Herc m is the effective mass, ¢ is the permittivity of the medium in which the electron
planc is embedded, and we assume that the attractive center is also located in the plane.
For electrons confined to a wire or dot of small radius, the binding energy diverges log-
arithmically or as the inverse of the radius, respectively.

The same considerations that enhance binding to a fixed attractive center also
enhance the attraction between an electron and a hole, as studied for example by
Keldyshm' in a quasi-two-dimensional context. Excitonic effects are central to the
understanding of optical properties of wires and dots.

9. OPTICAL PROPLERTIES

We have already seen that localization effects and energies of binding to attractive
potentials become stronger as the dimensionality decreases. Similarly, the excitonic
effects Icad to a strong enhancement of the oscillator strength near the absorption edge
as the dimensionality decreases. This enhancement of optical effects has a number of
important consequences, some of which will be briefly noted here.

The properties of semiconductor microcrystals in glassy matrices have been
actively studied both theoretically(") and expcrimcmally.m) Excitonic effects arc very
important but can be quenched as the dot size becomes comparable to the exciton
radius, when confinement effects inhibit the ability of the electrons and hole to take lull
advantage of the Coulomb attraction. An interesting regime is one in which confine-
ment cflccts are strong for the light-mass electron but not yet substantial for the
holc,m) leading to a situation reminiscent of the Born-Oppenbeimer regime for mole-
cules. Excitons in disk-shaped zero-dimensional structures have becn studied theore-
tically by Bryant."‘}



‘Fhere has been recent interest in bicxcitons, a stable conliguration of two clec-
trons and two holes, in low-dimensional systems. We cite only one recent paper
reporting an experimental ohscrvation and its relation to theory.“s)

The enhancement of oscillator strength and of excitonic effects in low-dimensional
systems makes cxcitonic effects easier to observe at room temperaturc even in materials
like GGaAs, wherc they can only be seen well at low temperatures in the bulk. This
enhancement also strengthens lasing action, and has led to a significant eflort to make
and to study quasi-onc-dimensional lasers, as noted briefly below.

The changes in the encrgy spectrum as carriers in a quantum well are further con-
fined to quantum wires and quantum dots lead to observahle changes in optical spectra,
and these have been studied for some time.  For recent accounts, sce for example Rels,
3 and 76-78.

10. MAGNETIC FIELD EFFECTS

A magnetic field in a bulk semiconductor leads to quantization of the motion per-
pendicular to the field into Landau levels, whase energy spacing is the cyclotron energy

E, = hay, = ehBim, (15)

where B is the magnetic induction (looscly called the magnetic field hereafter) and m is
the effective mass. There is a free-electron continuum for motion along the feld, so
each Landau level is the bottom of a onc-dimensional band with the inverse-square-root
singularity in density of states noted earlier. In two-dimensional systems this degree of
freedom is also quantized, and the density of states becomes a serics of peaks. Somc of
the very rich physics of such systems has been reviewed !" and other aspects will he
discussed in lecturcs at this Spring College. If the dimensionality is reduced lurther, the
situation beconmes more complicated, because the cyclotron motion is basically two-di-
mensional. Nevertheless there are substantial changes in the electronic structure when
a magnetic ficld is applied, depending on the particular structure.

There is one case lor which explicit solutions are available. It is the case of a cir-
cular disk with a parabolic potential, for which the potential energy in Fq. (4} is
F(R) = (ku)Rz. The solutions were obtained in 1930 by Darwin."™ we quotc only the
cigenvalues,

Epw =20+ [+ Dh(od + D) + 1 hay, {16)

where ay, = (k;‘m)"'z is the harmonic oscillator radian frequency and o, = w /2
= eBf2Zm is the Larmor radian (requency.

Optical propertics of quantum dots in a magnetic field have been studied by

(76 -

several groups. 8 The results are qualitatively consistent with the behavior to be

expected [rom the energy level scheme found by l)arwin,m)

as might be expected since
the samples involved in those experiments used clectrostatic conlinement, which gives
rise 10 a ncarly parabolic lateral potential. Recent theories show that the optical
response in such cases is at the oscillator [requency of the bare potential, and is unaf-
lected by electron-clectron interaction (244344)

If the carrier density in a wire or dot is fixed, then the change in energy level
structure in a magnetic field leads to magnetic depopulation of levels, as studied exten-
sively by Berggren and coworkers,®" and by others.®"}

Magnetotransport effects in two-dimensional structures include weak localization
ellects, with their rich literature. For wires, there is now a remarkable set ol cxper-
imental results that show that the actual contact configuration is important, rather than
simply the dimensionality. These aspects are discussed in other lectures of this Spring
College.

Omitted {rom this discussion is the subject of magnetization, which was the locus
of the original Landau paper{u)
Darwin!™®

and which has been treated by many authors, including
and Sivan and lmry.m) We shall not pursue that topic here.

11. PROSPECTS FOR DEVICE APPLICATIONS

The trend of semiconductor device technology has been to work for ever smaller
devices, in the interest of increased speed and lower overall cost. Commercial devices
are stilt large on the distance scale envisioned here, and are not likely to reach the scale
for which lateral quantum confinement effects become important for some time. There
are several physical limitations that may slow the trend toward miniaturization before
the quantum range is reached. One is the presence of the potential fluctuations®* and

@5} in characteristics from device to device that arc expected to

the statistical variations
be increasingly signilicant as devices get smaller. Another is the reduced current carry-
ing capacity of small devices. On the other hand, certain novel properties, such as the
ability to influence the properties of a pair of contacts [rom a remote location, as has
been demonstrated in the ballistic range ol dimensions, may lead to new classcs of
devices and applications.

Perhaps the applications most likely to be realized quickly are those involving
optical properties, and this dircction has been actively pursucd. Optical nonlinearities,

(86) and

important for many applications, have been analyzed for example by Ilanamura,
some of the experimental and theoretical work has been summarized in the book edited
by Haug and ﬂényai.‘sn Semiconductor lasers lend themselves well to miniaturization.
Quantum wire lasers have been reported, for example, by Kapon et al.®® The inte-

gration of such devices with electrical devices is another area being actively pursuc.).
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FIGURI CAPTIONS

Fig. 1. {a) Cumulative number of subbands with normalized energy less than £in a
square wire ol arca a? {lull curve) and in a circular wire with the same arca (dotted
curve). The cnergy unit is rrzhz{Zmaz, which cquals 0.54 meV when a= 100 nm and

m =407 my,;. The lower pair of curves corresponds to vanishing of the envelope wave
function at the houndary, while the upper pair corresponds to vanishing of its deriva-
tive. The asymptotic result for a very large system, equal to nk/4 in these units, is given
by the dashed line. (b) Integrated number of states per unit length {arbitrary units) with
normalized energy less than I3 for the square and circular wires. The curves have the
same significance as in {a), and the asymptotic value, shown dashed, is :rEmf(x. Spin
degencracy is not included in this figure,

Fig. 2. Energy levels for the first five lateral modes versus density of channcl electrons
for clectrons in a two-gate metal-oxide-silicon structure with an 80 nm slit in the gate
closest to the silicon. The states are labeled by integers giving the number of nodes in
the directions perpendicular and parallel to the interface, respectively. The dot-dash
curve gives the IF'ermi level position. All energies are measured from the conduction
band cdge at the 5i-Si0), interface under the center of the slit. (ARer Laux and Stern,
Ref. 17}

Fig. 3. lLateral potential profiles at three distances from the Si-Si0; interlzce (at z = 0)
for the structure whose encrgy levels are shown in Fig, 2. The curves correspond to a
channel density of 2 x 10° cmﬁl, close to the point where the sccond subband is begin-
ning to be occupicd. z,, is the average distance of the channel clectrons from the
5i-8i0, interface. Note the [lattening of the bottom of the potential, which is approxi-
mately parabolic in the absence of charge in the channel. {After Laux and Stern,

Ref. 17)

Ilig. 4. Derivative of capacitance with respect 1o gate voltage lor an array of quantum
dots in (GaAs. The dots arc defined by 300 nm squarc mesas in the GaAs cap of a
GaAs heterostructure. (After Ilansen et al,, Ref. 29)
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