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Abstract

A review of the current understanding of the quantum Hall effect and fractional
guantum Hall effect is presented. :
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1 Introduction

The range of phenomena observed in electronic systems in magnetic fields is
large and spectacular. Perhaps most spectacular of all are the quantum Hall
effect, (QHE), and fractional quantum Hall Effect. These three lectures will be
concerned with the theoretical description of these phenomena. Many of the
aspects presented are treated in greater detail in the The Quantum Hall Effect
[1987].

The plateaux observed at low temperatures in the Hall resistance of semicon-
ductor heterostructures at multiples 1/i of hfe?, with i integer, fvon Klitzing

" et al 1980] and the related drastic reduction in the longitudinal resistance are

known as the quantum Hall effect. The QHE is a macroscopic quantum phe-
nomenon. The QHE can be understood in terms of the energy levels for a single



electron or quasiparticle in the presence of 2 maguetic field, host lattice and
etectric field and the interplay between them.

Plateanx are also observed in the Hall resistance of some semiconductor het-
erostructures at rational multiples m of hfe?, [Tsui et al 1982]. These and
the related anomalies in the longitudinal resistance are known as the fractional
quantum Hall effect. Again this is a macroscopic quantum phenomenum, but
unlike the QHE cannot be understood in terms of a modified one-electron pic-
ture.

The observation of the fractional quantum Hall effect implied an unsuspected
role for many-body effects and at first appeared mysterious. The initjal mystery
has now been more or less resolved, although the theory of the effect is certainly
not complete. The most widely accepted explanation invokes the existence of a
correlated incompressible ground state, which is preferentially stabilized close
to certain magnetic field strengths.

The quantum Hall Effect and the fractional quantum Hall effect are presented
in the next two sections. Standard resuits for a single electron in a magnetic
field are included as appendices.

2 The Quantum Hall Effect

The quantum Hall effect, QHE, discovered by von Klitzing et al [1980], is now
reasonably well understood as a macroscopic phenomenon. This section reviews
the basis for our understanding of the QHE.

2.1 The Measurement

Plateaux in the Hall resistance of suitably doped inversion layers and het-
erostructures are observed at low temperatures when plotted as a function ei-
ther of applied magnetic field or of particle density, Fig.1. At the same time
the longitudinal resistivity appears to vanish, dropping to values seven orders
of magnitude or more smaller than at magnetic fields at which there are no
plateaux.

The experiments are usually performed in a geometry similar to the one
shown in Fig. 2. T will use the orientation of the x, v and z axes shown in

Figure 2.

2.2 Interpretation of the Measurement

Not surprisingly the observation of plateaux in the Hall resistance of a system
in a magnetic field says something fundamental about that system. Quite what,
was first stated by Laughlin [1981].
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Figure 1: The Hall resistivity, p;,, and longitudinal resistivity, Pzx, Of &
5i-MOSFET, as a function of applied gate voltage V,- Vg controls the numher
density of clectrons in the quasi two-dimensional electron gas in the channel
region of the trausistor, [after von Klitzing 1982).



Hall Resistance
Ry= Wy/l- WE/M.j-p

Resistivity
P ” E/fj=V/IW/L

Figure 2: A standard sample configuration for the Hall measurement. [After
Stormer and Tsui 1983}

Laughlin deduced from the implications of a Gedankenexperiment, outlined
below, that the Hall response, oz, , of a system of charged particles must be
quantized in units of ¢ /h. if the Fermi energy lies in a mobility gap. Alterna-
tively onc may state that the observation of a quantized Hall resistance implies
the existence of a mobility gap. By itself the original argument of Laughlin
does not give the level quantization, i.e. it does not give the value of n where

Ozy = ne? fh. {1)

This quite general result coupled with hindsight explains why some approx-
imate treatments like that of Ando et al {1975] appeared to anticipate the
discovery of the Quantum Hall Effect. Irrespective of the details of any calcu-
lation or approximation scheme the response to crossed electric and magnetic
fields the Hall conductivity, 0y, can only take values consistent with equation 1
when the Fermi energy is in a mobility gap.

2.3 Laughlin’s Gedankenexperiment

Suppose a system of electrons is confined on the surface of a cylinder with a
constant magnetic field, B, perpendicular to the cylinder surface at all points,
Figure 3. Assume also that the total flux threading the ‘circuit’ of the cylinder
be ®,, but that none of the flux lines of &, come close to the surface of the

w
x
[w:]

$ 8+ A,

0)

®
19 /
Figure 3: Laughlin’s [1981] Gedankenexperiment. With the Fermi energy ina
mobility gap, the Voltage Vz induces a current I, to flow around the ring. By

considering the gauge change &, — &, + A®, one can deduce that V; 1, takes
only quantized values.

cylinder. Let the application of the transverse voltage, V;, induce a current to
flow round the ring as shown.

Imagine causing the flux, &:, to be changed adiabatically by an amount '
A®, = hfe. The change in @ implies a change in the vector potential for the
electrons on the cylinder. The change in vector potential,

. .
A—A-— -l(=A+Eve), (2)
e L e

corresponds to the gauge change (see Appendix 2, (g = —¢))
¥ — peap(—ib(z.)) = eap(-2rip - 3)

But the gauge change accompanying the change, ®; — &, + Ad,, does not
change the energy eigen values of Hy and so the physical properties of the system
must be the same after the gauge change as they were before. When the Fermi
energy of the system lies within a band of localized states the occupied bands
of delocalized states before the gauge change must be occupied afterwards. The
occupation numbers of the localized states certainly do not change. The only
possible change is in the occupation numbers of the edge states, i.e. particles
can be transferred from one edge to the other.

Suppose n particles with charge q are transferred from one edge to the other,



then the potential energy of the system is increased by AU,
AU = nqV;, (1)

as a result of the gauge change. As the change was effected adiabatically this
energy must compensate exactly the work done by the system, which by Fara-
day’s law is AW, with

dd h
AW = —fdtI,? =-1,-. (5)
So "
0= AU+ AW = nqV, — 1=,
or e
LiVe= -0 =nL. (6)

Equation 6 is Laughlin’s resuit. For electrons or holes, | g |= e, the Hall
response | 7, |= ne? /k, with n integer. This quantization of the Hall resistance
followed directly from the assumption that the Fermi energy was within some
mobility gap.

2.4 Aspects of a Microscopic Theory of the Quantum
Hall Effect

The motion of electrons or holes in the inversion layers or at the interface
in a semiconductor heterostructure is essentially two-dimensional because the
motion perpendicular to the interface is quantized into discrete levels. The
behaviour of the system is then determined by the motion in the plane of the
interface. One may write an effective Hamiltonian, Hp, describing the motion of
the particles in the plane of the interface with coordinates x and ¥, see Appendix
1.

The energy spectrum for these two-dimensional particles in a perpendicular
magnetic field, B, but in the absence of impurities or an electric field is just
that of the Landau levels:

1
En = hwc(n + 5) (7)
In each Landau level there are Po states per unit area with, (see Appendix
1),
e
=B-. 8
Po Iy (8)

If one were to plot the density of states in energy one would find a series of
delta functions at the energies ¢,,.

p(e)

n+S/? n+?7/2
e/hw,

n+1/2 n+3/2

Figure 4: Possible density of electronic states in a magnetic field of a quasi
two-dimensional electron gas containing impurities. The shaded regions indicate
bands of focalized states.

In the presence of an electric field, E, parallel say to the x-direction the
energies form bands centred on the energies ¢,,, (Appendix 4), with encrgies

Enk = € — kv, (9)

where v = eEly fhw,. The delta-functions in the density of states are replaced
by these bands.

If there are also impurities in the system these may give nise to energy shifts
for those cyclotron orbits which remain delocalized. They may also give rise
to some localized states centred on the individual scattering centres. These
localized states will have been split off from the continua of delocalized states.
The density of states could then be expected to look something like as shown
in Figure 4.

The localized states will not contribute to any net current in the system,
so that between the lower end of one continuum and the next there will be
a mobility gap. If the Fermi energy is in one of these mobility gaps then
Laughlin’s argument tells us that o, (= I,/V:), is ne’ /h. This is independent
of the number of localized states.

2.4.1 The Contribution of the Delocalized States

The contributions to the current from the individual delocalized states can be
calcuiated as follows. The argnment is adapted from Prange’s original argument



[Prange 1981, Joynt & Prange 1984, Brenig 1983).

For a system of electrous write the Hamiltonian Ho in the Landau gauge in-
cluding an additional gauge parameter, a, and an impurity scattering poteutial,
V.'!("v a8

2 2
+[p,+eBlx—a
Hﬂ(a) = Pe [Py 2m*( )] + CEZ + Vac(z"sy)' (10)

Equation 10 is as Equation 101 in Appendix 4 except for the parameter a.
A change in the parameter, a , corresponds to a simple gauge transformation,
(sce Appendix 2 and remember g=-¢),

a — a+Aa
A — A - BAay

$ - ezp(+=;—‘:5')¢, (11)

with 3’ = y/ls.
The eigen states of Ho(a) in the absence of V,. may be written as

. ' 2 yh-m3
G~ S H (2" k- p)e” T (12)

where ' = rfloy = yflov = eEl,fhwe, 7 = aflo, and H, are the Hermite
polynomials. The energies are

e = hue(n + %) — eElgk + eEa. (13)

These energies form quasi-continuous bands centred on the cyclotron energies
hwe(n + %) and bounded by

e < eak <%, (14)

where, if the system is assumed bounded at z = Xxq,

I

1
el hw (n+ E) —eEzx,
1
e® = hwin+ -2-) +eExy. (15)
Direct differentiation of equation 9 gives

OH, p,,+eB(z——a) s
du m* eB = Bjy,

(16)

an operator equation for the current jy.

Now the Feynman-Hellmann theorem states that for some eigen state of Ho{a)
characterized by quantum pumbers o and with energy €q,

dH, deq
< ale) | 2 | bala) >= 32 ()
This gives
o _ 1 Ha
= (18)

for the current carried by the state characterized by a.
For the eigen states of the Hamiltonian Hoe with V,. = 0, we have that the
states 9o = ¥uk. Inserting equation 13 into equation 17 gives

nk E
j;; =jy =e'§' (19)

Fach state makes the same contribution to the current.
The total current, jy, is the sum of the contributions from all occupied states.
In each Landau level there are N = -,5; states per unit area so that with exactly

1 Landau levels full

et

jy =nNj, =n<E, (20)
in agreement with equation 6.

For V,; # 0 one can treat the problem as one in scattering theory. The effect
of impurity scattering on the electronic states i is severely restricted in the
presence of the magnetic and electric fields as the states ¥, are non-degenerate.
The usual degeneracies associated with time reversal and rotational symmetnes
have been lifted. Reflection of a particle in state Yk is therefore impossible.

The only possibility for an electron in a delocalized state, with energy in one
of the continua of equation 14 is to be scattered into itself. Its asymptotic form
can therefore differ from its form in the absence of the scattering potential by
at most a phase factor. At energies outside of these continua there may be
localized states, cf. Fig. 4.

Suppose the system is bounded somewhere in the y-direction far from the
region in which V. is non-zero, say at y = £L. We may then write the asymp-
totic form for an eigen state, ¥4, including the effect of a possible gauge change
a — a+ Aa, (see eq. 11 ), a8

y - +L,
Va (r, E“) ~ ¢nk(r,5nk) ~ C.,,e“"“"’“?n‘w
y —-L,

Ya (ry€a) ~ e—iﬁ(‘“)%llnk(l',-‘:nk) ~ Cae"(ka —ut ﬁf#'—ﬂto)) (21)



for an energy £, = €, for some nk in the continua of equation 14. The phase
shifts, &(c, ), can be found by solving first for the Green's function of the system
without impurities and then for ¥4(r,e,) from Dyson’s equation, as outlined
in Appendix 4.

The phase shifts are related by Levinson's theorem [Levinson 1949] to the
number of bound states, Ny, split off from the quasi-continuum by the impurity
potential. They also determine the contribution to the current from the state
a as shown below.

Imposing some boundary condition at y = + L, allows one to label the states
a by the integer variable m,. For example one might choose periodic boundary
conditions:

Yal+L) = $a(-L), (22)

in which case

(ko — 0)2’2 +8(eo) = —22m, —~ Aa%. {23)
0 0

In the absence of impurities m,, takes N successive values, with N the number
of states in the Landau level. In the presence of impurities m, will cnly take
(N — N,) successive values where N, is the number of localized states split off
from the continuum.

It is also evident from equation 23 that a gauge change,

_ &ax
Aa—ﬂ.

takes the state labelled by m, to the state labelled by m, + 1.
Treating the differentials in equation 18 as finite differences we may write

(24)

o . De  Eaq1 ~€q
v T BAa~ Bha
— ka+l - ka
= B
_ Io —2x — 6(Ea+1) + 6(5.1)
- eEluﬂ BAa

6(5,:4.]) - 6(Ea)
—"*2";**——), (25)

= a4+

showing that the contribution to the current from statc a has an added con-
tribution determined by the phase shifts, 6(¢,), when compared to its value in
the absence of impurities, equation 19.

The total current if all the delocalized states in the Landau level are oceupied
is then given by:
— &
27

. o b .
Jy = (N = Ny)55 + g (26)

where 6™} are the values of 6 at the upper and lower edges of the band. The
first term is as in equation 20 but with the contributions from the N, localized
states subtracted. The second term is the extra contribution of the remaining
delocalized states in the presence of the impurities.

Using equation 23, and writing k* and &' for the momenta at the upper and
lower edges of the band, gives

(k- k'){iz+ & —8' = —2r(N — Ny). (27)
0

When compared to the equivalent equation for the system without impurities
this gives
5" — & = 27N, (28)

Equation 26 and equation 28 give as expected the result that the total current
is independent of N,. The loss of contributions to the current from the states
which become localized in the presence of impurities is exactly compensated by
the extra contributions from the delocalized states.

Since this result was first derived by Prange it has been extended and made
more rigorous. In particular Thouless et al {1982] have shown how to relate the
response da, to results in differential geometry. By placing the system on a
torus, (imposing periodic boundary conditions in both the x and y directions),
they were able to eliminate the rather vague account of the boundaries, which
was used here. On the torus the quantity corresponding to Ozy 15 a topological
mvariant independent of the number of localized states in the Landau level.
This connection has not surprisingly attracted interest from other branches of
physics,

Perhaps more interesting from the viewpoint of quantum transport in general
is to look more closely at the réle played by boundary states. This question has
been addressed by Halperin [1982] and is discussed in the next section.

2.5 Edge States
For the sake of simplicity assume the simple boundary conditions at the edges
T = tx0, [Halperin 1982):

Y(tae) = 0. (29)

For z close to ry the eigen states of Hy{a), equation 10, with no applied electric
field and V,. = 0 will now be of the form:

i ? x'ik-n!;’
e ~ € g (2 + k= g) 7 — zo)e” T (30)
where
zr=lhing—-ky=a—- ki (3
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Figure 5: Energy levels of a two-dimensional electron gas confined to a rib-
bon, bounded at £zq, as a function of the ‘cyclotron orbit centre’ coordinate,
zi = a — klo. [after Halperin 1982].

is the centre of the cyclotron orbit with ‘wavevector’ k. The other symbols are
as in equation 12. The function g, satisfies the same equation as the Hy in
equation 12 but subject to the added boundary condition equation 29. The
solutions for g, depend on how far the centre of the cyclotron orbit, i, is from
the boundary as well as on z — =)

For T — Zo <€ lp gn will be take its bulk form H.(z' — z}) with eigen value,
Enk = (B4 %)hw,;. As z; approaches g £q Will change as the boundary causes
g to involve admixtures of the various H, . Precisely at zx = o, only those
solutions of Ho(a)y = £ are possible which have (0,0} = 0. These are the
H,» with n’ = 2n + 1, so that

en(Zr = 2o} =(2n + %)ﬁwc (32)

For ;. 3 g, €k will vary as (2 — z0)%. Figure 5 shows how £, can be
expected to vary as a function of zj.

The variation of eqx With zx and therefore with the gauge parameter, a,
implies that these states carry non-zero current even in the absence of an applied

electric field, (see equation 18):

(33)

Multiplying by the density of states per unit area ,.% and integrating equa-
tion 33 from the edges at *z; into the bulk gives that for each Landau level,
m, there is a contribution to the current from the occupied edge states close to
—ZXp- ' e _

= +Z6En » (34)
and a contribution ~ §8E} from the states close to . 6EZ is the difference in
energy between the highest occupied state in the n'th level and the bulk energy
for the level at the two edges. If 8E} # §E, there will be a net current.

When a voltage is applied between the edges one expects that 8E} # 8E,
s0 that there is a contribution from the edge states to the total current. The
voltage dropped across the edge states, AV . as a proportion of the total applied
voltage, V, can be written approximately in terms of the effective capacitance
per unit length of the edge states, C. With the Fermi energy in the bulk of the
sample between the n’th and (n-1)’th Landau level, the net charge accumulated
per unit length in at the edges, o, will be given approximately by

e €AV
R — ————. 3
7% o hwn+ 1) (35)
The second term in equation 35 measures the proportion of states of the n'th
level whose occupation is changed by the voltage drop AV. Comparing this
with ¢ = CV gives

Av |

-~ ;"; e(n+1)C. (36)

For a disordered sample, { Vic # 0) in equation 10, the effect of any scattering

on edge states will be much as for bulk states. If localized states are formed close
to £ = 4o then the remaining delocalized edge states compensate exactly for
the lost contribution of the localized states, as shown explicitly for bulk states
in subsection 2.4.1. This case has been argued by Halperin (1982].

3 The Fractional Quantum Hall Effect

At low temperatures plateaux can be observed in the Hall resistivity, pgy.
of some GaAs — GaAl As;_. heterostructures [Tsui et al 1982). These
tend to be those suitably doped structures with very high electron mobilities
>~ 10%cm? [V sec. The plateaux are observed to occur at rational multiples, m,



of hfe?, with m ! non-integer. This phenomenon and related effects are known
as the fractional quantum Hall effect. Figure 6 shows some of the experimental
results of Chang et al [1984].

1f the quantum Hall effect can be thought of as the gquantized response of filled
bands of {delocalized) states of quasi two-dimensional electrons, the Landan
levels, the fractional quantum Hall effect appears to be the quantization of the
response of an apparently partially filled lowest Landau level. The plateaux are
found for magnetic fields close to those at which one would expect a {raction,
v, of the states in the lowest Landau level to be occupied. For these magnetic
fields the resitivity, pz,, is found to be

h
Pzy = et (37)

Plateaux have been observed for many rational », all with odd denominators.
The most pronounced and readily observed is at v = 1/3, followed in approxi-
mate order by 2/3, 2/5, 2/7, 3/5 ...[Chang et al 1984]. Plateaux have also been
observed at filling fractions 5/3, 4/3 and a few others with 1 < v < 2, and
‘forerunners’ of plateaux at 2 < » < 3 [Clark et al 1986].

At the high fields involved it was originally assumed that the electrons in
these systems are completely spiu polarized. On this basis one would expect
that the results for a spin-up v-partially filled zero’th Landau level, 0 < » < 1,
to be mirrored approximately by those for the corresponding spin-down (2 —»)-
partially filled zero'th Landau level, (1 < v < 2). The results for 2 < v < 3
would then correspond to a partially filled first Landau level.

Measurements of Clark et al [1989] have shown that there are states which
are not spin polarized. Systems switch from being totally polarized at some
filling fractions, for example v = % to a spin singlet configuration at v = % to
partially polarized at v = 11/7.

NOTE : In the following all quantities will be assumed to be in magnetic
units, see Appendix 1.

3.1 Interpretation of the Measurement: Many-Body
Gap and Fractional Charge

Faced with the observed quantization one's first reaction might be to invoke
Laughlin’s Gedankenexperiment.The observation of a quantization of the Hail
resistance would then imply the existence of a mobility gap in the excitation
spectrum as in the case of the quantum Hall effect. This gap would have
to be caused by the particle-particle interaction as the single-particle states,
the cyclotron orbits, are degenerate. With the Fermi energy in this gap the

v
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Figure 6: The Hall resistivity, p.,, and longitudinal resistivity, p.., of a
GaAs — Alg3Gag.7As heterojunction as a function of applied magnetic field
or filling fraction of the lowest Landau level, v. Plateaux observed in gy, and
minima in p,, indicate fractional quantized Hall states. [After Chang et al
1984.]



resistivity, p.y, 18 given (neglecting sigus) by equation 6

V. h
Pay =| T, I=I e |- (38)
Comparing with the observed value at say v=1 /3 gives
1
=== 39
ndl=3 (39)

n is the number of particles of charge q transferred in the Gedankenexperiment
between edge states when the flux threading the ring is changed by h/e.

Simple application of this result at v = 1/3 implies the existence of fraction-
ally charged particles with charge | g |= §. These particles might be expected to
behave like the electrons in the case of the normal quantum Hall effect. Impu-
ritics would be expected to localize these particles giving nse to a mobility gap
and so on. This appealing interpretation was developed originally by Laugh-
lin [1983], who identified possible forms for the ground state and excitation
wavefunctions, which do indeed describe fractionally charged objects.

The Gedankenexperiment presupposes that the bulk occupation numbers
cannot change when the gauge is changed. However if there are more than
one equivalent ground states it could be that the gauge change causes the elec-
trons in the bulk to be mapped not into the same ground state but into one of
the equivalent ground states. Indeed it turns out that at rational filling fraction,
v = p/t. and with the application of certain types of boundary condition there
is a t-fold centre of mass degeneracy of the ground state. Only changes of flux
by multiples of t-’ci map these systems into themselves again with a correspond-
ing change of one electron/hole in the occupation of the edge states. Relating
the measurement to this centre of mass degeneracy was suggested later by Niu
et al [1985] and Tao[1986].

The connection between ground state degeneracy and topological defects with
fractional quantum numbers have been discussed in this and other contexts by
Schrieffer {1985].

Either way both interpretations of the Gedankenexperiment imply the exis-
tence of an excitation gap. (In fact this result can also be deduced on quite
general thermodynamic grounds, [Halperin 1983].) We can also expect to find
locally well-defined excitations with apparent fractional charge.

3.2 Zeroes and Flux Quanta

All current theories associate the gaps in the excitation spectra implied by the
experiments with the density of ‘zeroes’ permitted in the N-particle wavefun-
tions, ¥(r;,...,TN), as a function of filling function of the lowest Landau level,
v.

To identify the réle of zeroes in the wavefunction suppose a system of electrons
is confined in two dimensions to some area {2, and a large magnetic field leads
to complete spin polarization of the electrons. At filling fraction, v, there are
then v electrons per cyclotron orbit. Equivalently one may say that there are
v electrons per flux quantum threading the area (2, (see appendix Al).

Now imagine performing the following Gedankenexperiment: take one of
the electrons, say the i'th ome, anticlockwise along the closed path, 3, &y,
which, assume, defines the perimeter of the system enclosing the area {3. Then
P(ry,...,rN) is transformed to ¥'(r), v BN )):

Ylre, rn) = P01, orw) = ([ T@DH(RL, o w), (40)
!

where the T(a;) are the magnetic translation operators defined in Appendix
3. Successive application of the combination rule for the T'(ay), equation 87 in
Appeundix 3, yields with q=-¢

¥ = e:"'ff %dﬁ = c_z"'%\b (41)

where &, (= Bf2), is the total flux threading the area {} and ¢y = h/e. But

L ]
— =Ny '=Nm. (42)
do
The phase of 3 therefore changes as a result of the Gedankenexperiment by
—9xm for each electron contained in the area Q, {m = v71).
The wavefunction of an electron in the lowest Landau level can be written in
the symmetric gauge, A = (y, —%,0)/2 (see Appendix 2), as

¥(r) ~ P(za)e*"';" , (43)

with P(z;) a polynomial in the variable
zZi=2zi+ i%y.- = z; — 1Yi. (44)

¥(r;) changes phase by —2x around a point at which P(z) has a simple zero,
and by —2xn around a point at which P(z) has a zero of order n. From
equation 42 we then see that for each electron within the area Q, the N-particle
wavefunction, %(ry, ..., Fx), must have Nm zeroes as a function of the position
coordinates, z;. This is equivalent to one zero per flux quantum, or m zeroes
per particle.

The Fractional Quantum Hall Effect is thought to result from the ‘binding’
of the zeroes in the wavefunction as a function of the coordinate, z;, to the



coordinates of each of the other electrons. This will only be possible at certain
odd integer m, (= v~!), if the wavefunction is to retain an analytic form and
describe fermions. The binding of m zeroes coincidentally to particle positions
will tend to minimize the interaction energy of two particles, as the probability
of particle i approaching particle j vanishes as

| $0ri,75) Profry —xrj 2 (45)

as | ¥ —r; [—= 0. If the zeroes were somehow bound close but not coincidentally
the probability of two particles approaching would also be small.

The system would then be expected to have a gap in the excitation spectrum
for v close to 1/m, because it would not be possible to vary the number of
electrons or flux quanta without adding or removing zeroes to the wavefunction.
Excitations involving the addition or removal of flux quanta from the system
would lead to excitations which would appear at least to carry fractional charge.
For, whereas in the ground state wavefunction m zeroes are associated with the
electron positions, an added or missing zero would be associated with 41 /m
electronic charges.

3.3 Laughlin’s Wavefunction

In 1983 Laughlin constructed his trial wavefunction:

N o)
¥ty n) = [z = 5)me™ T 2 (46)
<y
in which all the zeroes as a function of coordinate z; are clearly coincidental with
the position coordinates of the other electrons. YL is of the form of equation 43
for each z; and so describes electrons in the lowest Landau level. ¥ describes
a fluid as can be seen by writing | % [* as a classical distribution function:

[ [P~ e Y, (47)
with 8 = 2/m and

N N
V=mi3 —in |z~ j|+$§:|z, ). (48)
i<y {

V is the potential energy of the two-dimensional one component plasma,
2DOCP. This has particles of charge m interacting via a logarithmic interaction
in a neutralizing background with number density 1/(2xm). For 2m <~ 140
it is known that equation 47 describes a fluid [Caillol et al 1982]. This fluid
is incompressible as the length scale, [y, cannot change without introducing or

removing flux quanta. As stated above this would have to involve excitations
across a gap.,

Laughlin [1983] also suggested explicit forms for excitations he called quasi-
particles and quasiholes. Imagining removing and adding flux quanta from the
system at some point zy, (=z, 4 240). he suggested the wavefunctions

Vi = H(Zi—Zo)'ﬁL

v

H(2% ~ Zo)hu. (19)

£

[ ¥77° |? describes a classical system as before, but with an added particle with
charge 1 at zg. This will be screened by the charge m particles, so that in
the electron system there will be an absence of 1/m’th of an electron in the
neighborhood of zy, and hence a local excitation with effective charge +e/m.
Interpretation of | y;* 2 along these lines is also possible though not so
straightforward.

[ $7% |? together with | ¥z | and | #7% |2 have been extensively studied
by Monte Carlo simulation and hypernetted chain calculations for the corre-
sponding classical systems. All these studies show that the Laughlin picture is
at least consistent. There appears to be a well-defined thermodynamic limit for
the quasiparticle, quasihole and gap excitation energies, ¢*, ¢~ and €g. Per-
haps the most extensive studies to date have been made by Morf and Halperin
[1986], who find e* = 0265 and £~ = 0735

Their Monte Carlo simulations also showed that a ‘pairing’ ansatz for ¢~ :

N

l z: — zZytzy
"~ A 2 2 . 50
¥ (21 — 23)2 E (z1 = 25)(22 — zj)¢L (50)

gives at least as low an estimate for the quasiparticle excitation as Laughlin's
¥7°. Here A is the antisymmetrizing operator. Both wavefunctions describe an
excitation with a local accumulation of charge -e/m distributed on a ring about
zg for 97 * or about the origin for ¢, again consistent with the Laughlin’s
original interpretation [Morf and Halperin 1986).

The low-lying collective excitations at constant field and particle number
might be thought of as quasiexcitons. The quasiexciton dispersion, r(k),
would then be the energy-wavevector dependence of bound pairs of fraction-
ally charged quasiparticles and quasiholes,

In the spirit of Laughlin's theory Girvin, MacDonald and Platzmann (GMP)
[1986] have suggested using a Feynman-Bijl Ansatz to describe the quasiexci-
tons. They obtain an ¢(k), which is in agreement with results from the direct
diagonalization of the Hamiltonian for small systems.
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Figure 7: The dispersion relation, e(k), for excitations, (quasiexcitons), of the
two-dimenstional electron gas at constant magnetic field and particle number
for v = 1/3. The continuous line is the variational estimate of e(k) based on a
single-mode approximation. The points are results from exact calculations on a
system of six particles. [After Girvin et al 1986 and Haldane and Rezayi 1985

The Feynman-Bijl Ansatz assumes that the density operator p(k) only cou-
ples a single-mode to the homogeneous ground state, Pgs- SO

"’k = Pki’gu (51)

is an eigen state of the system with energy (k). The approximation 18 some-
times known as the Single-Mode Approximation or SMA. One may also think
of 9 as a trial wavefunction for the lowest-lying energy state with wavevector
k.

GMP make the further approxmations of treating ¥y as the exact ground
state and replacing py by its the projection onto the lowest Landau level, gx.
The variational estimate for e(k), (=< ¥y | H —€ga | ¥k > [ <y g >) 18
then a function of the static structure factor s(k). GMP took s(k) from results
obtained for the 2DOCP. Their results together with exact results for small
systems obtained by Haldane and Rezayi are shown in Figure 7.

3.4 Haldane's Argument

A slightly different justification of the Laughlin picture has been given by Hal-
dane and Rezayi [1985]) and others. They pointed out that 9 is in fact the
exact ground-state wavefunction at v = 1/m for a system of particles interact-
ing through a kind of hard-core interaction.

One might then imagine a Gedankenexperiment in which the range of the
interaction was adiabatically changed from this hard-core interaction to the
interaction of the physical system. Provided no crossover occurred between
states of different symmetry the physical system would be qualitatively the
same as the system for which exact solutions are known. There would only be
some renormalization of parameters such as excitation energies. This would be
as in the Landau Fermi Liquid theory of interacting systems, where of course the
system whose solutions are known exactly is the one made up of non-interacting
particles.

Haldane and Rezayi simulated by direct numerical diagonalization of the
Hamiltonian for small systems the adiabatic variation of the interaction. They
defines the interaction:

V(a\) = VCoulamb + A(Vh'c' _ VCoulamb), (52)

and adiabatically varies . VCo41e™ describes a Coulomb interaction and V*
the hard-core interaction defined in Appendix 5. The ground state and excited
states of six particles on the surface of a sphere, labelled by total angular
momentum, are plotted as a function of A in Figure 8.

Figure 8 shows that at jeast for a system of only six particles there is no
crossover between states with different quantum pumbers for the range of in-
teractions likely in physical systems. It is also suggestive of an excitation gap
between the Laughlin-like ground state, (L=0), and the first excited states.

Other numerical studies of small systems at ¥ = 1/m have been reported by
many authors for various boundary conditions. All lend support to Laughlin’s
interpretation at v = 1/m: all show large overlaps between the exact ground
state with a Coulomb interaction and the Laughlin ground state and almost
equally large overlaps between the exact excitations and those suggested by
Laughlin. Table 1 shows as an example the results obtained by Fano et al
[1986] in & spherical geometry first introduced by Haldane.

3.5 Other Filling Fractions - the Hierarchy

‘Binding’ v~! zeroes directly to the particle positions, as in the Laughlin wave-
function, is only possible for v~ an odd integer. The theory needs generalizing
if it is to explain the observation of plateaux at v = 2/5, v = 2/7 and so on.
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Figure 8: The energies of the low-lying states of six electrons confined to the sur-
face of a sphere are plotted for the case v = 1/3 labelled according to their total
angular momentum. The inter-particle interaction is varied from hard-core, {
A =0). through Coulomb, ( A = 1), to longer-range interactions, (A >1). The
strength of the hard-core component V; is also shown, see Appendix A5 equa-
tion 116. Also shown is the overlap between the ground-state and the Laughlin
wavefunction 4,;. For the range of likely physical interactions the ground
state remains qualitatively the same as the Laughlin state. [After Haldane and
Rezayi 1985.]

N 3 4 ) 6 7 8 9
1/3 1 99804 .99906 .09644 09636 .99540 09400
1/5 1

98405  .99743 94865 97681

Table 1: Overlap between [ and exact ground state with a Coulomb interac-
tion, %, at v = 1/3 and » = 1/5. [After Fano et al 1986.]

A suggestion of Halperin [1983, 1984] and Haldane{1983] was to conmsider
the properties of the excitations from ;. If these were point charges, with
coordinates 5}, they would constitute a system similar to the original one of
electrons fholes, but with eflective charge q, = are/m and magnetic length
B = Bm. o, = %1 according to whether the cxcitations are quasiholes or
quasiparticles. One could therefore imagine a psendohamiltonian for these ex-
citations including some kind of repulsive interaction between them, and a
pseudowavefunction, ¢, written in the coordinates nl. The 72 would be the
zo of the Laughlin excitations or the ‘centre of mass’ coordinates of the pair
excitations equation 50.

Also if one imagined taking one of these particles around the perimeter of
the system enclosing flux @, the pseudowavefuntion would change to ¢}, (sce
equation 41 with g = ae/m )

¥ = ghe” T (53)

H no other excitation is enclosed & = mN, and d-;; = ;. If one other
excitation is enclosed ] = ;' % Arovas et al [1984] have argued by analogy
with electrons: When one electron encircles another the phase change is =27
corresponding te a phase change of —r for interchange of two particles. The
statistic for interchange of two fractionally charged excitations would then be:

ik 9d) = di(nh gl =, (54)

This resnlt can be incorporated into a trial ground state pseudowavefunction
for Ny particles:

Ny

$ilnl, i) = [[ (0l —ndymt Be X B (55)

a<h

Only even p, are consistent with equation 54.

The excitations from this pseudo-wavefunction, 1/;11"“, could be expected to
be described by operators similar to those in equation 49 operating on 3.
These excitations would form the particles of the second level of a hierarchy of
excitations, carrying charge

a1 — €
n+E mp 1’

gz ==t (56)

This follows by analogy with the Laughlin fluid at » = 1/in. The ratio of the
charge of the particles of ‘parent’ fluid to that of its excitations is equal to the
number of zeroes in the the wavefunction bound to the coordinates of the other
particles. This is just the exponent in equation 55.



This process leads one to the hypothesis of a hierarchy of Laughlin-like fluid
ground states at different filling fractions for the lowest Landau level. For a
Lierarchy of u levels this leads to a filling fraction, v(im;p1.p2, s Pas derived
in appendix 6

1
PR prap2. - Pn) = (57)
a
m+

@z

Pt

Qg

+
bz coit g
pst————

This interpretation implies a natural order in which the ground state fluids
would become apparent as the temperature is reduced. First one would expect
to see a “parent’ fluid at v = 1/m, or its hole counterpart at v = 1-1/m. These
would be followed by first level fluids at v = 2/6 (m = 3,0y = -1,p1 = 2),
v=2/T(m=3m=+Lp = 2), or v = 3/5 and v = §/T. Then second
level fluids at v = 3/7 (m = 3,0y = =1, pp = 2,00 = —1.p; = 2), and so on.
This natural order seems to agree quite well with the apparent ‘strength’ of the
experimeutally observed plateaux [Chang et al 1984].

Béran and Morf {1990] have shown that the hierarchical model can be used
to predict ground state energies and energy gaps for systems of electrons in
a magnetic field. This requires careful treatment of the effective interaction
between quasiparticies. They have also looked at hicrarchical states involving
spin reversed quasiparticles, see section 3.7.

3.6 Microscopic Trial Wavefunctions for the Hierarchy

The hierarchical picture is not on the same microscpic basis as the trial wave-
function, (MTW), ¢, for v = 1/m.

In an attempt to improve on the phenomenological nature of the hierarchical
fluid Morf et al [1986] suggested a family of MTWs, which work explicitly
with the electron coordinates, but which appear to incorporate the idea of the
hierarchy. Taking the ‘paired’ excitation, equation 50, as the basis for the
quasiparticle they suggested writing, with A the antisymmetrizing operator:

Yyr = Aép
4 4
= A(yL H(ZL’n — Zan-1)"" H(Zznzzu-x + Zapr 22 -1 = 22025 )'(H8)

nn’

Here Z,, ( = (z2n + 2z2n-1}/2 ), denotes the centre of mass coordinate of the
pair formed by particles 2n and 2u-1. To ensure that the wavefunction is an-
tisymmetric with respect to interchange of particles 2n and 2n-1 in the ‘pair’

v =2/5 v=2[1

N E@r)/N E@c)/N <vcl|¢r> E@r)/N E@c)/N <¥c | ¥r
4 -.426104 -.426104 1 -.386004 -.386012 999 939
6 - 427641 -.428517 08840 -.384527 -.384626 997163

8 -428 283  -.429 543 97712 -.383 671 -.383 811 .996293
10 -.428 939 -.430 258 .97154

12 -.429 327

oc  -.4310 -.4330

Table 2: Coulomb enetgy and overlap for the trial wavefunction, Pr, (equa-
tion 58), anud overlap with exact ground state with a Coulomb interaction, ¥c,
at v = 2/5 and v = 2/7. N is the particle number. Energies are measured in
units of €2/ely. [After Morf et al 1986.]

n, m-t must be odd, (m is the exponent in ¥r). Alsom —t > 1land s 20.
By evaluating the maximum power of z; for any i and dividing by N 7 can be
seen to be a trial wavefunction for a filling factor » = 1/(m + 3).

For t > 0 the partially antisymmetric part ¢ p can be thought of as a Laughlin
fiuid with N/2 quasiparticles nucleated at the coordinates Z,. These excitations
are essentially prevented from approaching each other by the term in the bracket
raised to the s’th power. For t < 0 the partially antisymmetric part ¢p might
be thought of as 3 with N/2 quasiholes at the coordinates Z,. although the
interpretation is not so clear in this case.

Morf et al [1986] have made extensive studies both by Monte Carlo and
CI type calculations of these wavefunctions. Fano et al [1986] have also made
similar studies. The results for the overlaps between the trial wavefunctions and
the exact wavefunction with the Coulomb interaction are presented in Table 2
for v = 2/5, (m = 2,8 = ¢t = 1), and v = 2/7, (m = 3,8 = L,t = -2},
Again the overlaps between the trial wavefunctions and the exact ground-state
wavefunction with a Coulomb interaction add further support to the picture of
a series of Laughlin-type fluids.

3.7 Spin Polarization

The measurements of Clark et al [1989) showed that not all fractional quantum
Hall states observed in GaAs-GaAlAs heterostructures are spin polarized.

Spin unpolarized and partially polarized states have also been found to min-
imize the ground state energy of systems of electrons in a2 magnetic field cor-
responding to some of the filling fractions at which such states are observed
experimentally. Such states are clearly Laughlin liquids in the sense that they
are incompressible.



Béran and Morf [1990] have recently shown that the gaps and ground state
cnergies can bhe accnrately predicted within the hierarchical scheme. This in-
volves taking as the parent fluid say the v = 1/3 Laughlin state and introducing
spin reversed quasiparticles. The interaction between excitations has to take
account of the charge distribution of a quasiparticle for large separations and
quantum corrections for small separations. The satisfying result is that one
needs only to account for two-quasiparticle interactions.

The plateau observed at filling fractions v = 5/2 [Clark et al 1986, Willett
et al 1987, Eisenstein et al 1988] is also thought to correspond to a spin-singlet
ground state. The understanding of this state is still incomplete,

3.8 Higher Landau Levels

It is no problem to write down the equivalent wavefunctions to 4 for higher
Landau levels. In the lowest Landau level the operators z; and —;:—._ have the
same matrix elements as the raising and lowering operators, Z} and Z defined
in Appendix A3. The obvicus gencralization of ¥, to the n'th Landau level is
[Haldane 1987)

vi =1z - zH™ | n05, (59)
i<y
where | n,0 > is the symmetric product of single particle states in the n'th
Landau level with L, =0
With =1 when any two particles i and J approach each other the norm of
the wavefunction | ¢} |? rises only as [d’Ambrumenil and Reynolds 1987)

2
|9k P ™2 (L), (60)
For both m=1 and m=3 | ¢} |? increases as 3.

For m=5 | ¢} | increases as rfj. YL is therefore the exact non-degenerate
ground state for a hard-core interaction at v = 1/m only for m = 5,7,...,
but not for m = 3, see MacDonald and Girvin [1986). One might therefore
expect to find an approximate analogy between states at filling fractions in the
first Landau level, 1/5 < v < 1/3, and states in the lowest Landau level at
1/3 < v < 1. This is supported by the numerical calculations of d’Ambrumenil
and Reynolds (1988] on small systems. As an example Figure 9 shows the
equivalent curve to Figure 7 for the first Landau level at filling fraction of the
first Landau level » = 1/5. As in the lowest Landau level there js a well-defined
excitation dispersion and gap.

Results of calculations for small systems have lead Haldane {1987} and d’Am-
brumenil and Reynolds [1987] to conclude that at a filling fraction of the n=1
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Figure 9: The excitation energies at v{' =5 for six and seven particles. The
energies are defined as the total energy difference between the lowest energy
state for the various L and the exact ground state. The solid line represents
the spectrum predicted by MacDonald and Girvin [1986] on the basis of the
Feynman-Bijl Ansatz. After '’ Ambrumenil and Reynelds [1988]

Landau level » = 1/3 the system is close to the borderline between having a
incompressible Laughlin-like fluid ground state and compressibility.

d’Ambrumenil and Reynolds [1988] also found evidence that there should be
a fractional quantized Hall state at a filling fraction of the n=1 Landau level
v = 2/7. This is again compatible with the premise that there should be at
least an approximate analogy between the states in the n=1 Landau level at
filling fractions 1/5 < v < 1/3 and those in the lowest, (r=0), Landau level at
filling fractions 1/3 < v < 1.

The observations of Clask et al [1986] are however still only on the way to
being understood.

3.9 Ring Exchange

An alternative approach to understanding the FQHE has been suggested by
Kivelson et al {1986}, (KKAS), which does not seek to describe the gystemns



with explicit wavefunctions.

KKAS found from an approximate expansion scheme for the free energy that
at certain rational flling fractions there were large contributions to the Free
cnergy from coherent exchanges of particles round large rings. These ring ex-
changes (CRE) add coherently when the ratio of particles to flux quanta is
rational with odd denominator, and preferentially stabilize the system at the
corresponding filling-fraction.

Initially their calculations seemed to imply that the ground state would have
to have the kind of long-range order generally associated with a solid. However
Baskaran [1986] later argued that CRE would stabilize any incompressible state,
including of course ¥p.

3.10 Summary

It is generally accepted that the the gap jimplied by the experiments for rational
filling factors is tied up with ‘binding’ of zeroes in the wavefunction to particle
positions, (sections 3.2 and 3.7). The evidence supports Laughlin's picture of
an incompressible fluid ground state at v = /3, (sections 3.3 and 3.4). The
hierarchy of states proposed to account for other filling-fractions is not on quite
such firm ground (section 3.5), but is at the very least plausible, especially in
view of the wmicroscopic trial wavefunctions (section 3.6). The recent studies of
Béran and Morf show that the hierarchical scheme can be adapted to account
for spin unpolarized states observed in experiments.

A Dictionary of Standard Results (more or
less)

A.1 Hamiltonian and Energy Spectrum

The Hamiltonian for a particle of charge g, with coordinates (z,y,z) and effec-
tive mass, m*, is given by
° 2m* 2m~’

(61)

where A is the vector potential and p the momentum. The Hamiltonian will
also include tems describing the particle-impurity interaction, H;, the particle-
lattice interaction, Hy_q, the lattice dynamics important in the magnetophonon
cffect, Hy . and the particle-particle interaction, Hy—p.

1t is usual to separate the Hamiltonian Hj into a part describing motion
paralle] to the magnetic field and a part describing motion perpendicular to the

magnetic field. Taking the magnetic field to be parallel to the z-direction Hg
separates and the eigen functions can be written as

¥ = y(z.y)d(2), (62)
with
Hy% = (B, + Ho)¥, (63)
where Hy operates on the x and y coordinates only. In a three-dimensional jel-
1.2
lium model ¢${z) would be just a plane wave with E, = A ki Inasemiconductor

2m*
heterostructure ¢(z) would be the envelope wavefunction of the subband.
It is often helpful to write Hp in so-called magnetic units. Introduce the
cyclotron frequency w, = eB/m* and the magnetic length ly, [§ = R/eB, where

¢ is the magnitude of the electron charge, and write

r _ T
xr = E,
v = £
lo
V' = LV,
’ A

Primed operators have been used to denote operators and variables in magnetic
units.

Then "
Ho = 22«7, (65)
with . |
x ==V -2a)=2x (66)
i € h

The components. 7,. of the conjugate momentum =, do not commute with
one another in the presence of a magnetic field:

[%a» 7] = ighe*PTBY. (67)
With B parallel to the 2-direction this reduces to the simple relation
[rz,7y] = ighB. (68)

The eigen functions of Hy which are known as the cyclotron orbits have the
well-known energy spectruni

B(n) = (n + 3)hws, C(69)



where n is kuown as the Landau leve! index. One may also show that the
density of states per unit area in each Landan level, pg. is given by

_ B 1 70)
= e i (
N4, the total number of states in each Landau level, is therefore
¢
=ggd = ——
Na=py hje’ (71)

where @ is the total flux threading the system of area A. Noting that h/e is
Just the magnetic flux quantum, we may say that each flux quantum threading
a system gives rise to one cyclotron orbit per Landau level.

A.2 Gauge Choice

The form of the eigen functions of Hy are dependent on the choice of gauge
for A. The two most popular choices are the Landauy gauge and the symmetric
gauge. In the Landau gauge an orthonormal basis can be easily constructed
which makes translational invariance parallel to some direction, the y-direction
say, explicit. In the symmetric gauge the construction of an orthonormal basis
of cigen-states of angular momentum js simple,

I the Landau gauge,

A = (0, Bz, 0y, (72)

onc may write the cyclotron orbits, ¥, as
Y =|nk >~ e"k"'H,,(:r:' - kg)e_(z‘_kgiz, (73)

where the H,, are the Hermite polynomials [Gradshteyn and Ryzhik, 1980] and
again primes denote the use of magnetic units.
In the symmetric gauge,

A = (—-B%,B%,O), (74)
_ - P9y -2 m r? e
Y = |nam>=A,.(z +e;y) e 3 Ln(—,z—)- (75)
+a), -
An = ({2 (76)

where % = 22 4 42 and the L7, are the Laguerre polynomials [Gradshteyn
and Ryzhik, 1980]. The | nm > are eigen states of the angular momentum L.
defined in Appendix A3, equation 91,

However there is no unique choice for the cyclotron orbits in any particular
gauge, nor is there any unique choice of gauge. All results for physical quantities
must always be derivable independent of gauge. However it is often possible to
exploit the freedom in the choice of gauge and basis to derive certain results
more easily and so I note here the form of a gauge transformation:

Some observable, O, with matrix elements < Oy >, will transform to ¢
under the gauge transformation

¥ = ey, (77)

with
o = eif&(z.y)oe—ifﬂz,y)‘ (78)
which has the same matrix elements in the transformed basis, ¢, as O in the

original basis.
In particular the operator 7 becomes

h
71 =(7V —qAy), (79)

where

A, :A+EV9. (8(1)
€

As an example the transformation from the syminetric gauge to the Landau
gauge is as follows:

h T

Vo = A;,mda.m—Asy,.,m,,m-c:(Bg,B?m. (81)
B xy =y
—_— e~y 2
efh 2 2 (82)

So an eigen function of angular momentum, | nm >, in the symmetric gauge,
becomes after the gauge transformation

7] 7 T ="'
| 7 >= Anm(@’ + 0y Ve L7, ()it (83)
which is an eigen state of Hy in the Landau gauge as may easily be checked by

acting on the state | atn > with H, explicitly.

A.3 Conserved Momenta, Magnetic Translations and
Rotations
In the presence of a magnetic field the quantities m and J = r x 7 are not

conserved. However the conserved quantities corresponding to momentum and
angular momentum are easily constructed.



The time-dependence of 7 in a magnetic field is

dx dr
ik iFTRe B). (84)

In a constant magnetic field we may define the conserved quantity
xB = x-qrxB. (85)

The ©8 can then be used to define magnetic translation operators, T(a), with,
{Brown 1968],

T(a) = e_"l";*al (86)

which commute with the Hamiltonian. In the absence of a magnetic field T(a)
reduces to the standard translation operator.

However for two non-parallel vectors a,b magnetic translation operators T'(a)
and T(b) only commute up to a phase factor:

B

xB.a

Syezp(~i—3—)

T(a)T(b) exp(—1

_.'xn.(a-i-b) gB.(a xb)
exp( — )ezp(t——-—-%

)

)
B.(axb)
240

)- (87}

= T{a+ b)e:l:p(:'21rg—
-
b0

The phase factor. ®/¢q, is just the flux in units of ¢o = h/e threading the
triangle formed by the vectors a, b, and -(a+b).
The angular momentum J,

= T(a+ b)ezp(iZw%

J=rxx=hx=, (88)

is also time-dependent. One finds

dJ dx dr
T - Ty x®
dr dr
= Q((I‘-B)a-t'—B(r-E))- {89)

For particles confined to a planerz=¢, ¢ constant, and with B parallel to
the z-direction, we may take c=0, and define a conserved quantity L., given by

9 r
L.= -c-(r x )y + eBE- + nh, (90)

wlich in nmagnetic units is

q, 7 ' 2
L;=h(;(l‘ X‘I’)z+—2—+ﬂ). (91)
Characterization of eigen states of Hp by angular momentum is useful when
discussing the fractional quantum Hall effect. n is the Landau level index. Its
inclusion in the definition of L, is to ensure that L, is positive. Operating with
L, on equation 76 shows that the | nm > are indeed eigen states of L.

One may also define the so-called gniding centre coordinate, R with compo-
nents (X,Y),

2
R:r—gi'lsx x (92)
eh

which classically is just the centre of the cyclotron motion in the plane perpen-
dicular to the magnetic field. In the absence of any electric fields the quantity
R is a constant of the motion. In a constant magnetic field the components of
R. R,. have the following commutation relations:

[Ra» Ro} = —itﬁ%e"ﬂm*, (93)

or with the magnetic field parallel to the z-direction

(X,Y]= —;‘%13 LY

4B (94)

As the magnetic field is made stronger it becomes an increasingly accurate
approximation to treat the quantities R as classical variables. for the commu-
tator, [X,Y], tends to zero as B is increased. This has been the basis for an
intuitively appealing description of the role of localized states in the quantum
Hall effect [see Halperin 1986].

In magnetic units, X’ = X/b.Y' =Y/lo. equation 94 becomes
XY= -ig. (95)
For the case of motion in the plane z.r = 0 one may also write

eBr?
2

h
+ 3 x m), +nh) = DRZ - 7 (96)
e 2 2

L, ={

which in magnetic units can be written as

L., R7?-1

—h" 3 (97)



One may use the components X’ and Y’ to form operators Z*,
X' +i2y"
==

z* (98)

and then

[L:,2%) = £4L,. (99)
The operators Z* are raising and lowering operators for the eigen states of the
angular momentum L, defined in equation 91 and equation 97.

A.4 The Single-Particle Green’s Function

In the presence of an electric field the single-particle Green's function for elec-
trons confined to two dimensions, Go(ry,r2,¢), has simple asymptotic forms for
[ r1 =72 |3 Iy, [Joynt and Prange 1984].

Assume that the electric field is applied parallel to the x-direction, then in
the Landau gauge H, is given for electrons (g =-e) by

Ho = pi + (py + eBz)® +

Y eFz, {(100)
which in magnetic units has the simple form:
& 19
H, =f|.wc(—ﬁ+(‘z.—5??+.’1:’)z+2vm') (101)
with v = eEly fhu,.
Hy has eigen states, i, with
‘d’nk = 1‘11:,k‘:-";(k#”)y'Ift’ﬂ,(:*':f + k)C_l#J_w
Ank = (2"alym) T, (102)

where H,, is the n’th Hermite polynomial [Gradshteyn and Ryzhik 1980]. The
Ynk can be normalized for a system of length L', (= L/ly), in the y-direction.
The eigen energies, £z, measured from "—‘z"ﬁ(l + v?) are

eak =(n — kv) AW (103)

k is a continuous real variable and n takes the values 0,1..... Imagining that
the system is bounded at z = %, the energies £nk, form bands bounded by
e* and &' with

e =n 4+ vz

E‘ =n—vIg

(104)

The Green's function, Gy(r} .11, €), with primes denoting maguetic units. is
given by:

o [k P (r)) ¥, (x})
G r‘ l‘ — haidd P nk\*1 , 105
TN ;fh TarslVn ) (105)

which can be written as

f r — X ot -—n
Go(ry,ry,e) = mzz (nh)

- /dk Hoi(2h + k) Hor(z) + k)= e+

= E— Enpgk + 10
(106}
With ZTI' + xr (T’ - Tr )2
X = eap(=ifo+ —5-2)(; —yp) - 2 (107)
and
a=z) + 2y — iy, - yp). (108)

If ¢ lies in one of the bands m - kv this integral can be evaluated by integrating
round the contour with the real axis as one edge and as the other the line Jmk =
(2 ~ %1)/2. The contributions from off the real axis and all contributions with
n # m contribute only exponentially small terms in the limit |1 — v |— oo,
| ) —z5 [— oc. The asymptotic form for G is determined by the pole at & = &,
where € = m ~ kvg. With the electric field parallel o the positive x-direction
as in equation 101, this only contributes for y; < y; so that using # to denote
the Heaviside function:

hm|ry—r]| — oo
ot — — ’ ! i 3 ' 3
Go(l‘z.l‘l.f) = ——m1:\/172”‘1n!9(y‘ - yz)Hm(-’:z + "'O)Hm(:rl + "’0)

_{m ko) (x) + kp)?

exp( 5 2 + (ke — v){zy — 1 )1100)
Comparing with equation 102 shows that Gy is of the form
Golry, vy, €} ~ iB(y] ~ ¥ Wnko (K ), (r)). (110)

The factoring of Gy in equation 110 implies that only ‘forward scattering’
of a particle in state, ¥,x,, i8 possible for electrons with energies ¢ within one
of the energy continua {equation 104). If the system included impurities close
say to the origin one could insert Gy into Dyson’s equation and solve for the
asymptotic form for +, the eigen state of the perturbed system. Again with an
electric field parallel to the positive x direction one would find:

y, ) 0- V’(l"df =m— 'Ukﬂ) ~ 11[’7Hku(r')'
¥ €0, (e =1 —vky) ~ Yok (P e~ 10E) (111)

The impurity potential simply gives rise to the additional phase shift, é(¢}.



A.5 Exactness of Laughlin’s Wavefunction

The sense in which the Laughlin’s wavefuution, ¥ (equation 46), is exact is
as follows [Haldane 1983). Any inter-particle interaction of the form v;; = v(|
r; —r; |) couserves the relative angular momentum of the particles jand j, LY,
(see appendix A.3). The interaction in the lowest Landau level may therefore
be writien as

v;= 3y VmPu(ij). (112)

m=1,3,...

P,.(1,7) projects out from some wavefunction, ¥{r1,...,rn), those components
with relative angular momentum m for particles i and j.

For any pair i and j the two particle wavefunction ¢(r;,r;) can be written as
products of eigen states of relative and centre of mass angular momenta, with
quantum numbers M and m, as:

r;+r;

Ylrir) ~ yu( = wm("‘;;") (113)

In the lowest Landau level and in the symmetric gauge ¥ takes the simple
form, (as shown in appendix A.2, equation 75):

Y= 7) ~ e B, (114)

where z; = x; +idy;. Clearly Laughlin’s wavefunction, ¥, can be written for
any particles i and j as:

VL~ (2 — 7)™ e T A Pz, 25), (115)

with P(z;, z;) some polynomial.
At v = 1/m 3y is the only wavefunction that contains no relative angular

momentum component less than m. If one were to define a hard-core interaction
Vh.c:

V,ﬁ'c‘ =1,m < n,
V,t"" =0,m2>n, (116)

then, at ¥ = 1/n, ¥y would be the exact non-degenerate ground state.

A.6 The Hierarchy

The following is based on the works of Haldane [1983] and Halperin [1984].
Suppose a Lierarchical fluid with n levels describes the ground state at some

filling factor, ¥(m;p1,pz.---,Pn), of the lowest Landau level. The N; quasi-

particles/holes at the i’th level with charge ajq;, where a = 1 according to

whether the excitations are hole-like or particle-like, and coordinates 7., would
have a Laughlin-like ground state:

N, . i2
- . L m . % Ingl
Py~ Il(n.‘;—n?,)p'w""‘“'e"zc o, (117)

a<h

The exponent p,-+a,-;_9:'—l with p; an even integer, ensures a consistent statistic
for interchange of two excitations: Applying the same argument as the one lead-
ing up to equation 54 shows that the change in phase when one quasiexcitation
is taken round another, is A¢, with

i

A
A¢ = 27ra.~q,-% = 21ra;q—__-1-. (118)

A®, (= hfgi—1 ), is the flux change to nucleate an excitation at level i. This
is only consistent with a statistic for interchange of two quasiexcitations with
coordinates, 7, and n}:
- . . am . L ._ﬁ__
Gilmhmi) = il mp)e = (119)
which is clearly satisfied by the particles described by ¥; in equation 117.
The excitations from ; form the particles of the (i+1)'th level. These carry

charge
gi

giey = o _ 120
@iy1Qis1 '“p.' +0iﬁ’: ( )
and have a magnetic length, 2., given by
2 :
g, = =gl (121)

Qi+1 * i1 ’

These ratios are determined by the exponent of the term (nt — %}) in the
Laughlin-like ground state proposed in equation 117.
Writing that

Nt' = V(Pl'api-i-la"'spﬂ)Ni—lv {122]

we may use the condition that the fluid wavefunction describes particles uni-
formly distributed over the area of the system, A, to derive a recursion relation
between the v(p;,piti.... Pn). The area, A;. of a system described by ¢, is
related to the number of zeroes in ¥, via

A= Bpi + a:.-a-f"'—1 4 a1 ¥Dis1re - Pu )N (123)
.



and the area A;_; is related to the number of zeroes in ¥, via

Aiy = B i(ict + @it B2 4 agu(piy. - o pa))Nicy (124)

i-2
Requiring that A; = A;_; and substituting for N;/N;_,, (= v{pi,...,ps)
B (= qi-1/gi ), and pioy + ai- 11—- (= 3‘—“— Y, ytelds the required
rela.tlon. 1

v(piy-.., = . 125
@ Pn) Pi + @1 (Pigr, - - Pn) (125)

It is straightforward to show that equation 125 has the solution for

v{m;pr.pz,...,pn) given by equation 57.
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