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INTRODUCTION

In this paper, we are concerncd with coherent quantum mechanical clectron
transport in disordercd normal metal structures and the role of inclastic events in
bringing about clectrical resistance. The wave nature of electrons plays an important
role whether we study transport through a periodic lattice, which is governed by Bloch
electrons, or whether we consider transport in disordered systems where we deal with
localized wave Tunctions. However, a striking manifestation of coherent transport can
be cxpected when we form the conductor into a Joop (or other multiply connected
geometry) and study the sensitivity of the conductor to the Aux through the hole. In the
absence of inclaslic scattering evenis, such a loop exhibits coherent transport phenom-
cna that we tend to associate only with superconductors. The key phenomena (on
which we expand in this paper) is that such structures support circulating, persistent
currents.™ It is of interest, then, 10 undersiand the effect of inelastic relaxation on
these coherent transport phenomena and to study the transition from coberent to lossy
and resistive behavior. )

The study of elcctron transport is a central topic of solid-state physics. Much of this
discussion has been carricd out within the general framework of the linear response
theory as advanced by Kubo® and Greenwood.* In this approach, transport coefficicnts
zic cxpressed in terms of time-dependent equilibrium correlation functions. We,
however, pursuc a diffcrent approach (one that has been put forward by Landauer®)
that expresses transport coefficients in terms of stationary scatlering properties of the
sample. We start this paper with a briel discussion of Landauer’s approach to
resistance, and discuss the connection between inelastic events and resistance. This is
followed by a discussion of the normal metal structures shown in FIGURE 1. We first
treat a closed loop without inelastic cvents (FIGURE 1a), bul with disorder, and then
point out the existence of persistent currents.' The onset of resistance in sucha loop™?
will be discussed using the model’ of FIGURE 1b. The geometry of FIGURE L¢ allows the
study of the Aharonov-Bohm effect in normal metal loops. Reference 8, using weak
localization theory, predicicd Aharonov-Bohm resistance oscillations with period,
hc/2e, and higher harmonics. Oscillations with this period have been seen in a number
of ingenious cxperiments.®® On the other hand, references 11-13, invoking the
1.andauer formula, predicted resistance oscillations with a fundamental period, hefe.
These predictions arc not contradiclory, but apply to physically distinct situations.
Experiments have now demonstrated oscillations with period, Ac/e, in a striking and
clear fashion in single normal metal loops,''"* in semiconductors,” and in short series
of loops.” For an extended discussion of the experiments of references 14 and 15, we
refer the reader to reference 19.

BUTTIKER: FLUX-SENSITIVE EFFECTS IN NORMAL METAL LOOPS l95

RESISTANCE AND IRREVERSIBILITY

Landauer studied the resistance of an obstacie in an otherwise perfect wire.’*® The

perfect wire connccls 10 reservoirs, as shown in FiGURE 2. A complete spatial
SEPAVRHION bcwedh wiRsile AeRTIoriag AN Inslasiiv scailering is sssumod. Scattering at
the obstacle is clastic; inclastic processes occur only in the reservoirs. The reservoirs
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FIGURE 1. Normal metal loops penetrated by a flux, . (a) Closed loop; (b) boop connected 10 a

single lead and (c) 10 two leads. The rescrvoins act as & source and a sink of carriers and of
cnergy.

have .the property that they absorb all carriers traveling toward them and that they
reemit carriers with a phase and energy that is unrelated 1o that of the absorbed
carriers. A‘currem is imposed if the reservoirs have differing chemical potentials. The
resistance is determined by studying the currents and the densitics associated with the
wave functions at the Fermi energy. In a one-dimensional wire, the obstacle is
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characterized by the transmission probability, T(E), I'o:mcarricrs to traverse the
sample. For zero temperature, Landauer linds a resistance,™

2eh\ (1 - T(ER) "
NV TE) )

where E, is the Fermi energy. Equation 1 can also be applied to calculate the resistance
of a series of obstacles il the transmission through such a sequence is coherent and can
be characterized by a transmission probability.” This has bect_l used to find the
dependence of the conductance of a one-dimensional disordered wire on the length of
the wire,™ and has also been used to develop the modern scaling theory for
one-dimensional conductance.” )

Equation 1 depends only on the elastic, static scattering properties of the sample.
This might give the impression that it is the elastic scattering at the barrier that lea}ds
Lo resistance. However, reference 1 emphasizes that this is nol correct. The scatiering
at the barricr at the Fermi encrgy is described by four wave functions; in addition to the
two wave functions describing waves of unit amplitude incident on the sample from the

BATH BATH
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FIGURE 2. Barrier connected to ideal leads connected 1o reservoirs.

left or from the right, there are the complex conjugate (time-reversed) wave functions
that describe waves of intensities, Tand R = ) — T, incident from both reservoirs.
However, these later iwo wave functlions, which require coherent incident streams from
both rescrvoirs, arc not realized in the arrangement of FIGURE 2 becausc the reservoirs
cause phase randomization. [t is the elimination of these two wave .fun‘clions that gives
risc lo a positive resistance. Thus, the phase-randomizing rescrvoirs in FIGURE 2 are
essential to obtain a positive resistance.!

it is worth noting that il the reservoirs, which we can picture as large blocks of
normal metal, are replaced by superconductors, then the resulling SNS-microbridge
exhibits no resistance if the inclastic scattering length is large compared to the length
of the metal wire.”¥

We should emphasize that the system discussed here has very particular properties
ot commuonly associated with discussions of resistance. The Joule heat due to l.hc
resistance (equation 1) is produced only in the reservoirs and not in Ihelsamplf. While
real sysicms do not, of course, exhibit the clear-cut separation of clastic and !nc!astfc
scatlering assumed here, the spatial separation of elastic scattering and inelastic
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relaxation is, nevertheless, a real physical feature of systems that exhibit an inelastic
scattering length thal is large comparced to the dimension of the obstacle.® It is_this
spatial separation that leads to an apparent deviation from the Onsager relations.” The
measurcments on Au loops and wires in references 14 and 15, as well as in carlier
cxperiments,™ indecd exhibit a pronounced asymmetry in the conductance if the
magnetic field is reversed.

THE CLOSED NORMAL METAL LOOP

The connection between resistance and irceversibility discussed above raises the
question asked in reference 11 What happens if we eliminate the reservoirs that
introduce irreversible effects into our system? We can eliminate the reservoirs by
forming the ideal wires that connect to the obstacle into a loop. To study transport, we
apply a magnetic Aux, . For simplicity, we assume thal the fux is entirely confined to
the hole of the loop (sec FIGURE 1a). This sysicm is now completely described by a
Hamiltonian with a vector potential, A, and a nonuniform potential, ¥(x), due to the
obstacle in the loop. Here, x is the coordinate along the loop. If we assume that the loop
is circuiar, then the component of the vector potcntial along x is related to the flux, &,
by A = /L, where L is the circumference of the loop. The motion of electrons in the
loop is, thercfore, governed by the Hamiltonian,

1
H = o=[p - (e¥/cL)]’ + ¥(x). @

As pointed oul in reference 1, clectrons circuiting the toop in the presence of a flux, &,
behave like electrons traversing an infinite periodic structure with a potential,
¥(x+ L} - ¥(x); that is, a lattice with a unit cell equal to the circumference of the
loop. The electronic states of such a lattice are Bloch functions, ¢,, = e™u,,(x),
Hoalx + L) = uy(x), with energy, E (k). The Schrisdinger equation of the periodic
lattice can be mapped onto equation 2, and this yields k = — k,&/®,, where k, = 22 L
is the width of the Brillovin zone of the periodic lattice and &, = hc/e is the
single-charge flux quantum. The eigenfunctions of equation 2 arc the u,,(x) with k
determined by the Aux. The energy spectrum of equation 2 (shown in FiGurr 3) is
given by the bands, E,(k). The cigenstates of the normal metal loop are thus given by a
ladder of Bloch states with k selected by the flux. We have, at most, one clectron per
band (iwo if we take spin into account). The mapping discussed above now allows us to
apply the usual solid-state schemes to calculate the quantities that we are interested in.
Consider first a constant flux, ¢. The curreat in the loop is given by

e X )
I(k) = -ZE:U.("). 3)
F 3]

where a [abels all occupied states up to the Fermi cnergy. The velocities in successive
bands alternatc, but, typically, higher lying bands have a larger velocity. Thus,
typically, the current in equation 3 is determined by the highest occupied state. From
this, we obtain a persisient current that is a periodic function of k and therefore of the
flux, with a period, #,. The current vanishes at the center of the Brillovin zone (k - 0}
and at the boundary of the Briltovin zone (k = + &, /2).
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For weak disorder along the loop, the bands, E,{k), closcly follow a free electron
spectrum, £ = k. In this case, the persistent current given by equation 3 has a
magnitude, I = ev /L. For a metal with a lattice constant of @ = 2 + 10~* ¢m forming a
loop consisting of 10* atoms, this yields a current, I = 10-" A. With increasing disorder
in the loop, the bands, E,(k), become Rulter, and the velocities in equation 3 become
smaller. Consequently, with increasing disorder, the persistent current decreases,

Neuxt, consider a flux that increases lincarly in time, @ = —cFt, where Fis the ficld
induced in the loop. Using Bloch's law, Adk/dt = —eF, yicids a latlice vector that
increascs lincarly with time, k = —wt/L. Here, w = elJfh (with U = FL) is a
Joscphson frequency with a single charge. Duc 1o the induced electric field, F, the
carriers in the loop are pushed in synchronism through the Brillouin zone. If k varics
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slowly enough, the gaps in FIGURE 3 confine the carriers to the bands, and Zener
tunncling can be neglected. In the presence of a linearly incrcasing Aux, we have,
therefore, an oscillatory, Josephson-like current that is periodic in time with a period,
2x /w. The time-averaged Josephson current, f(k,wf), vanishes because f dkv, (k) - 0
when integrated over the whole Brillouin zone. Therefore, there is no Joule heat
associated with this current. Bloch’ shows that persistent currents and Josephson
currents always occur together; we cannot have one without the other.

We have neglected Lransitions into higher lying unoccupied states. This requires
that the encrgy, Aw, is small compared to the gaps in Figure 3. For a loop of 10 atoms,
the gaps arc of the order of £,/N ~ 107* eV for £, ~ | ¢V, which correspand to
frequencics of the order of 10" Hz. Even for frequencies that are high enough 10 induce
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transitions 10 higher unoccupied states, we expect this Hamiltonian system to exhib
complcte phase coherence and to be compictely reversible.” This system stores encrg
and has no mechanism 1o dissipate it. -

Subsequently, we illustrale ous results for the example of a loop with a single poir
scalterer characterized by sm enetigy-indepentent iransmisiion prabability, 7 FiGiUs
3 shows the energy specirum for such a loop with T = 0.1. The energy levels™ arc give
by E, = Eglé} + 2(—1)'9.VT cos(2x#/®,)], where £, ~ A}/2mL? and ¢, -
(2n — 1)(x/2).

ONSET OF RESISTANCE

The cffect of inclastic events on the coherent phenomena discussed in the previon
section has been the subject of two recent publications. Landauer and Battiker® hav
considered a closed loop in which the electronic degrees of freedom are weakly couple:

(0 nonclectronic degrees of freodom. This work has been reviewed and exiended i
reference 2. Here, we cxpand on a model introduced in reference 7. Reference '
considered the mormal metal structure shown in FIGURE 1b. A current lead i *
connected 1o the loop and permits exchange of carriers between the Joop and th
reservoir, In contrast 1o the closed loop studied in reference 6, the number of carriers it
the loop of FiGunEe b is not & constant of motion. The model of reference 7 invokes thy
same spatial separation of clastic and inclastic scattering as we used in the discussion o
the resistance of an obstacle in a wire (sce FIGURE 2). Scattering in the loop and th
lead is clastic. Inclastic scattering occurs only in the reservoir. The reservoir continu.
ously injects carriers into the lead. These carriers travel towards the junction with the
lcad and the loop. At tbe junction, the carriers are cither reflected and travel back
the reservoir, or they enter the loop. Eventually, a carrier in the loop will escape into the
icad and reach the reservoir. In the reservoir, the carriers are scaitered inelastically
and reemitted into the lesd with a phase and encrgy that is unrelated 1o the value of
these quantities upon incidence. We have, thus, a model that describes an irreversiblc
system, yet all the calculations can still be done by solving an elastic scattering »
problem. A particular example of such a loop was trested in reference 7. Here, we go
on 1o give a simple discussion of the propertics of this system withoul repeating these
calculations.

We first describe the junction between the lead and the loop in more detail.”?

* Suppose a carvier circling in the loop and approaching the junction has a probability, ¢,

to cscape from the loop into the lead. A carrier approaching the junction from the lead

‘has then a probability, | — 2e, to be reflected at the junction and a probability, 2¢, 1o

enler the loop. In the casc, ¢ = 0, the Joop and the lead are disconnected. Carricrs can
neither enter nor cscape from the loop. The clectron levels in the loop, thercfore, are the
same a3 in the closed loop; that is, we have an energy spectrum as shown in Fioure 3. If
we allow ¢ to be nonzero, but small, the loop and the lead arc only weakly coupled. The
effect of weak coupling is to brosden the encrgy levels. The electron states in the loop
acquire a finite lifetime. The level broadening is determined by the rate of escapcofla
carrier from the loop into the lead, and is proportional 1o an sttempt frequency times
the probability, ¢, to tunnel from the loop into the bead. Thus, cach state, £, in the loop

is characterized by a lifetime, 7., that is proportional to ¢,
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Let us assume a temperature such that kT exceeds the width of the levels, A /r,. -

Because Lhe reservoir injects carriers into the lead according o the Fermi distribution,
the levels in the loop are, in equilibrium, occupied with a probability, f, = f1E.(k}]. (If
kT is smaller than the width of the energy level, we cannot characterize the occupation

of the state by a single occupation probability, but have 1o take into account the -

variation of the occupation probability within a single broadened encrgy level.”)
Suppose that the system has, through the action of some force, been driven away from
equilibrium. Il the actual occupation probability, p,, is less than the equilibrium
occupation probability, £,, then carriers from the lead penctrating into the loop will
drive the occupation probability toward the equilibrium value. If the occupation

probability exceeds f,, then carriers leak out of the state into the lead and into the,

reservoir. Thus, the temporal change of the acluai occupation probability, p,, is
proportional to the jmbalance between the actual occupation probability and the
equilibrium occupation probability. The rate of change is determined by the lifetime of
the state. Therefore, the time dependence of the occupation probabilities in this system
is simply

|
dp,/01 = — —(p. - L) @
The circulating current in the loep is now given by
e
fe-7 2o (5)

For a time-independent flux, p, = £, and equation 5 gives the temperaturc-dependent
persistent current of the weakly coupled loop. For the model discussed in reference 7,
we found that this current decreases monotonically with increasing temperature and
that the fundamental period remains &,.

Consider next the case where the flux increases linearly in time, d&/fdt = ~cU.
According to Bloch’s law, k ~ —wi/L, where w = eUfh. Now, the equilibrium
occupation probabilities are time-dependent, f,(1) = f(£,[k(f)]). and through equa-
tion 4, they give risc to lime-dependent occupation probabilities, p,. For simplicity, we
take from now on the lifetime, r,, to be independent of flux and, thus, independent of
time. We can then proceed as in reference 6 and expand E, and f, in Fourier serics:

E (k) - i A, COS Mt (6)
~m=-0

S0 = Y g €08 mat. M
n-0

Substituting £, into equation 4, we solve for p, (7). Using this result to evaluate equation
5. and taking into account that v, = A~'dE, /dk, yields a time-averaged current,

(1) = (e2/L7) 3_ (r,/m)U. )

The bracket denotes a lime average over a period of 2x/w. Here, we have introduced
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the effective mass weighted by the actual distribution function,

1 | pdkd’E, L? mA_g..
m'Ef ®

[P T YR~ R e b

Note that the effective mass as defined in equation 9 dcpends on the temperature and is
a function of the induced voltage, U. Equation B is a dc current accompanying the
Josephson current. The dc current voltage characteristic is shown in FIGURE 4 {using
the spectrum shown in FIGURE 3). AL U = 0, for a constant Alux, we have a branch duc
to the persistent currents; that is, equation 5 with p_ ~ f,. We move up and down this
branch as a function of Rux, typically reaching the maximum current when ¢ = &,/4
and reaching the minimum when ¢ = —&,/4. Equation 8 gives the second branch
shown in FIGURE 4, which exists for nonzero voitage, U - hw/e. We have evaluated

FIGURE 4. The dc current voltage
characteristic of a normal metal loop '

with inelastic scatiering for the w g - T
model of FIGURE 15 and Lhe spec- T
trum shown in Fiourg )
(kT = 40E,). Current is in units of
eh/mlL?, and voltage is in units of -2
Aler.

-4

-4 -2 0 2 4
u ——

this branch for the loop of FIGURE 3 coupled with the junction invoked in references 7
and 12 1o an ideal lead. We find™ a lifetime, 7, = h /(¢Ey9,), where E, = A amL? and
@, = (21 ~ 1) (x/2). The Fermi energy has been taken halfway between the tenth and
cleventh encrgy level (for & = 0). The temperature is kT = 40E,, which is of the order
of the width of the energy bands adjacent 1o the Fermi energy. Equation 8 exhibits a
mazximum at a voltage, I/ = Aw/e= A fer, where 7 is a typical relaxation lime; in our
example, it is given by 1 « & /(10weE,),

The dc current {equation 8) vanishes for r = 0 and 7 = «, and peaks in between.
There are other related problems in which the low-frequency transport peaks at an
imermediate relaxation rate. Thermally activated escape from a metastable state is an
example.’® Another example comes from one-dimensional localization. In the absence
of inelastic scaticring, the carriers are confined 10 localized states. In the presence of
intense inclastic scattering, current flow is impeded by inclastic scattering. A
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maximuim current Row occurs for an intermediate scattering rate.*™? Furthermore, it
is worth pointing oul that transport in a single narrow conduction bund, such as in a
superlattice,” gives rise to a de current that depends on the vollage and the scattering
raic as a single term of equation 8. In this lalier case, electron-clectron interactions
render the branch of the de-characteristic, where df/dV is negative, unstable against
the formation of dipole domains.”

Of special interest is the slope of the dc current near the origin, which yiclds the dc
conductance of the loop,

G, = AN U = eI} hw = (/L) J_(r./m). (10)

The index, J, here emphasizes thai this conductance characlerizes 2 current accom-
panying Josephson oscillations. The cflective mass in cquation 10 is the zero frequency
limit of equation 9; that is, the effective mass that is obtained by replacing the actual
distribution function, p,, by the equilibrium distribution function, f,. Note that the
cflcctive mass, as defined in equation 9, is infinite if the level is completely filled
{f. = 1) or completely empty ( f, = 0). The conductance, G,, diverges as r, tends to
infinity, thus indicating that we are approaching a state without resistance. It should,
however, be emphasized that the range over which G,/ agrees well with equation 8
becomes smaller as the lifetime increases. For U > h fer, the cllective mass (equation
9) diverges as r tends Lo infinity. This implies that linear response is valid only for
vollages, U/ = hw/e, that arc smaller than A Jer.

It is interesting Lo compare this result with that of Greenwood (equation 30 of
reference 4). Greenwood is interesled in the resistance of a wire, not of a loop.
However, he imposes periodic boundary conditions and applies a linearly increasing
Aux. His system is equivalent to a loop. In the presence of a constant induced voltage,
he also finds a contribution to the current given by equation 5 (that is, an alternating
Josephson-like current), and names it a “ripple currem.” However, because he
considers only clectronic degrees of freedom, and because he lets the density matrix
evolve accordingly, the Joscphson current is zero when averaged over a period, 2w /w.
Despite the fact that no dissipative mechanism is invoked, he finds a conductance and,
thus, resistance. In Grecawood's calculation, the occupation probabilities change
because of field-induced transitions into higher levels. One might think that such
transitions (or, equivalently, Zener tunneling) provide a dissipative mechanism, and
this seems to be the view of Lensira and van Haeringen.” However, in a Hamiltonian
system, such transiticns are coherent and represent energy storage. By a suitable
procedure, the sysiem can be brought back into the original state as pointed out by
Landauer.® Our key point is that inelastic phase-randomizing events are nceded to
obtain resistance.

We can elucidate the physics [urther by considering the response of the Joop to an
oscillating flux superimposed on a static Aux, & = &, + &, cos §ir. We assume &, 1o be
small compared 1o the Rux quantum, $,. Such a Rux induces a time-dependent voltage,
and via Bloch's law, this gives rise to a lime-dependent k vector, where k w k, + k, cos
e, with k, = k&, /&, and &k, = kb, /. We now determine p, Lo first order in k, using
equation 4, and calculate the current to this order using equation 5. We then determine
the Joule heat, ({{1)U(1)}, averaged over a period, 2x/Q. Dividing this by the

e S,
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time-averaged induced vollage, {({/?), yiclds an ac conductance,

e? 1.0} df
a(ﬂ. lbl) - E ; 1 + r’ﬂ’ (— EE)

Again, we find that the zero-frequency conductance diverges as the lifetime of the
states tends (o infinity. FIGURE 5 shows the zero-frequency limit of equation 11 for the
spectrum of FIGURE 3 for two different temperatures. If the temperature is small

an
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FIGURE 8. Zero-frequency limit of the ac conductance (equation 11) for two different
temperaturcs, kT = 4E, and kT - 40E, Conductance is in units of #/Ae. The ¢ measures the
coupling strength between the loop and the Jead.

compared to the bandwidth of the energy levels adjacent to the Fermi energy, a
exhibits a doublc peak cither at the center of the Brillouin zone or at the boundary of
the Brillouin zone, depending on where the gap, E,,  (®) — E, ($), is minimal. As the
temperature rises and kT exceeds the width of the energy levels, the flux dependence is
determined by the square of the velocily in equation 11. The square of the velocity
exhibits a strong second harmonic, and as shown in FIGURE $, the periodicity of the ac
conductance changes from Ac/e 1o hc/2e as the temperature increases. This crossover
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is the main subject of a paper by Imry and Shiren.’ The main part of their
investigation is based on the Greenwood formuia. Dissipation is introduced into the
loop, using a scheme of Czycholl and Kramer,” which was also invoked by Thouless
and Kirkpatrick." Because the Greenwood result (equation 30 of reference 4) does not
comtain the current {equation 5), this appreach yiclds a result that is different from
equation | 1. In this approach, it is the ficld-induced transitions from one level, E,, to
another level, E,, that give risc to the absorption of power. Because such field-induced
transitions do not take place until the applied field is almost in resonance with the
energy difference, E, — E_, these transitions give only a small contribution to the
power absorplion at low frequencies that is proportional to 1/r. In conirast, the
contribution given by equation 11 due to motion along the bands is propertional to r.
Field-induced transitions™ between levels give rise to a conductance that peaks al & =
Gorat @ - /2, which is in contrast 10 our result®”’ that yields maxima away from the
center or the boundary of the “Brillouin zone.”

We can highlight the difference between the processes contained in the Greenwood
formula and that of equation 11 by considering the ac conductance as a function of
frequency for a fixed temperature and fux, &,. Field-induced transitions give rise to
peaks in the ac conductance at the frequencies, (E, — E, )/A, where n # m. Cenlered
at zero frequency, 1 = 0, there is an additional peak, given by equation 11, that is not
contained in the Greenwood formula. This zero-frequency peak is due (o the motion of
the carriers along the energy levels.

In the approach of reference 7, both the motion of the carriers along the bands, as
well as the ficld-induced transitions, are taken into account. The derivation of the
low-frequency result (equation 11) from the general result of reference 7 is the subject
of reference 36, We siress here the similarity of the results (equations 9-11) to those
obtained in references 2 and 6. However, the model in FIGURE 1b is an open system.
Both in the presence of a linearly increasing flux and in the presence of an oscillating
flux, we have an oscillating cuerent in the lead connecting the loop and the reservoir.’
In many ways, the open system is simpler than the closed loop. In the closed loop, it is
the total cnergy of a configuration that determines the probability of the system to be
in an ¢xcited state. (For a closed loop, these probabilities are not Fermi functions.**) In
the loop connected lo a reservoir (discussed here), we deal with single particle
cxcilations and, consequently, with Fermi occupation probabilities.

The low frequency limit of the ac conductance as given by equation 11 is not the
same as the de conductance accompanying the Josephson current (equation 10). This is
in contrast to what we are used to when considering the conductance of large systems
(i.e., systems with a densc level of energy states). As pointed out in reference 2,
however, the two are related. It turns out that the ac conductance integrated over the
whale **Brillonin zone™ is equal to the dc conductance (equation 10):

G, = (1/%,) _[;:!d@a('b, 0). (12)

This relation between the two conductances is valid even when we consider the flux
dependence of the lifetime. In this case, it is d/dk(r,0,) that has to be weighted with
the dustribution function, f,. Finally, we emphasize that the small signal conductance,
«, and G, bear no direct relationship to the recent experiments of references 9 and 14
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on cylinders and loops with two attached leads. The two-terminal conductance that is
relevant for these experiments is the subject of the next chapter.

AHARONOV-BOHM EFFECT

Consider now the loop shown in FiGure 1¢ that is connected 1o {wo current leads. If
the two reservoirs are at the same chemical potential and if the leads are weakly
coupled o the loop, then this structure behaves the same way as the loop with a single
lead.’ (Because carricrs in the loop now have two ports 1o escape from the loop, the
broadening of 1he energy levels is enhanced compared to the loop connected to a single
lead.} The interesting new features that can be studied in the geometry of FiGURE Ic
arise il we consider transport through the loop. If the leads coupled to the loop are
assumed 10 be perfect, we arc back to the situation considered in FIGURE 2; however,
instead of a barricr, the obstacle is now a loop penetraled by a flux. We can, therefore,
ask what the resistance of this obstacle is, invoking equation 1. To do so, we have to
determine the transmission probability for carricrs incident in one lead to traverse the
loop and exit through the other lead. Such a calculation for a onc-dimensional loop was
carried out by Gefen er al." Because of the enclosed flux and because the waves are
coherent through the loop despitc elastic scattering (disorder), the transmission
probabilily depends on the flux. Therefore, using equation 1, the resistance is a
function of the flux, $. Reference 11 finds that R(®) is periedic in the Aux with a
fundamental period, &,.

Reference 11 investigated the case of strong coupiing between the loop and the
leads. It is, however, instruclive to comsider the limit of weak coupling.'? Weak
coupling means that carriers in the loop have only a small probability to escape into the
leads. As indicated above, the density of states in the loop is then sharply peaked at or
near the encrgics of the closed loop. This has the consequence that the transmission
probability as a function of energy can be represented by a series of Breit-Wigner
resonances,'?

(h/21.y
{E - E.®) + (h/27,)""

where E (&) is the encrgy spectrum shown in FiGURE 3, and T, , is the value of the
transmission probability at resonance. To evaluate the resistance at zero temperature,
we have to take the transmission probability at the Fermi energy, E,. Then, only the
bands immediately adjacent to the Fermi energy matter. Suppose the Fermi energy is
between two bands, Nand N + 1. If the energy difference’ between these two bands is
minimal at ¢ ~ 0, the transmission probability, T, is maxil. %l for & — 0.and is minimal
aL ®,/2. If the encrgy difference between the two levels is maximal at # = 0, the
transmission probability is minimal at & = 0 and maximal at @, /2. 1f the Fermi energy
intersects an energy level, then the transmission probability is maximal at the flux,
+ &, for which E_(®,) = E,. In 1his case, the transmission probability reaches only a
local minimuem (or maximum) at ¢ — O and &, /2. .

To comparc the conductance of the loap of FIGURE I¢ with our results for the loop
connected to a single lead, we also consider the case where kT > A /. In this limit, we

T(E &) =) T, a3
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Note that the two-terminal conductance, G (equation 14), is inversely proportional to
the lifetime of the electron states of the loop. In contrast, the conductance of the de
current accompanying the Josephsen curreat, G, (equation 10), and the ac conduc-
tance, a (cquation 11), are proportional to r. The conductance of carriers through the
loop, G, is smailer when the leads are coupled 10 the loop mare weakly. On the other

1¢]

OL L
D —

FIGURE 6. Two-terminal conductance of a normal metal loop (se¢ FIGURE Lc) for two different
temperatures, kT = 4E, and kT = 40£,. Conductance is in units of e’¢/h.

hand, the conductance associated with the motion of the carriers around the loop is
berter when Lhe coupling of the loop to the lcads is weaker. The conductance, G,
(equation 14), is shown in FIGURE 6 for the samc loop (spectrum) as was used in
FIGURES 3-5. In the second expression of equation 6, we have also assumed that T,,,, is
independent of the fux and of order unity. For kT > h /7, G is sensitive 0 the Aux only
through the dependence of the occupation probabilitics on the encrgies, E,($). The
conductance thus becomes insensitive to the flux if k7 exceeds the width of the energy
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bands, E,(%). The tight-binding spectrum Lhat we have used here does not give risc to a
transition {rom a conductance that is periodic with Ac/e at low temperatures to a
conductance that is periodic with period, Ac/2e, a1 higher temperatures. Detailed
studies of the temperature dependence of the iwo-terminal conductance are given in
references 38 and 39,

Several papers®™* have treated ensemble averages of the two-terminal conduc-
lance and have shown that ensemble averaging leads to a conductance that is periodic
with Ac/2e. These resulls are relevant if we consider a one-dimensional array of loops
in series. We assume that the phase breaking length is of the order of a circumference
of a loop, but consecutive loops in Lhe array are [ar enough apart so that there is no
coherence beiween the loops. To find the total resistance of the array, we can then add
the resistances of the single loops. (Strictly speaking, this is not correct because we also
obltain a contribution to the total resistance due to the inclastic events that randomize
the phase between consecutive loops.**) The resistance of a single loop is characterized
by a transmission probability, T(E,, ®). As discussed above, the behavior of the
transmission probability depends on the location of the Fermi energy with respect to
the energy levels in the specific loop. The phase of the hc/e oscillations is either O or .
For some of the loops in the array, the Fermi energy, £,, lies within a band, and
T{E,. ®) rcachcs 2 maximum away from the symmetry points. En this case, the Fourier
transform of T{E,, #) has a substantial Ac/2¢ component. The phase of this hc/2e
oscillation is also not fixed, but, predominantly, it is such that the conductance is
minimal for zero Alux. Thus, if we add the single-loop resistances of an array consisting
of N loops, we find the following results: Because cach loop contributes an Ac/e
oscillation with a phasc that is cither zero or =, the amplitude of the resistance
oscillations with period, Ac/e, increases like VN. The flux-insensitive part of the
resistance and the contribution to the resistance with period, ke/2e, increase propor-
tional 10 N. Thus, the ratio of the kc/e amplitude and the total resistance decreases like
1/ VN for a large number of loops. Therefore, in a large array of loops, the he/e period
is averaged 1o zero, and only a periodicity of Ac/2e and higher harmonics can be seen.
The dependence on N of the Fouricr amplitudes of the resistance oscillations of a serics
of loops has also recently been observed.'

The predictions of Ac/e oscillations in references 11-13 and the prediction of hc/2e
oscillations in rcference 8 are thus both correct, but they apply 1o distinct physical
situations. Relerence 8 employed a formalism that took an ensemble average at the
outset.™ In contrast, references 1 and 1113 did not invoke ensemble averaging, but
studied the properties of a specific sample. Whether a single sample cfectively
incorporates averaging™" depends on the temperature and the size of the sample with
respect to the inelastic scattering length.

in this paper, we haie discussed persistent currents and Josephson-like currents in
the metal structures of k7,URE 1. Persistent currents survive even a limited amount of
inclastic events. In the presence of inelastic scattering, the time-dependent coherent
phenomena arc accompanied by resistive curreats. We have distinguished three
conductances (equations 10, 11, and 14) that are associated with current flow around
the Loop or theough the loop. The experimental success with the Aharonov-Bohm effect
in single loops raiscs the prospects that, in the future, other coherent phenomena in
such small sysiems (such as the persisteat currents and the low-frequency resistance
phenomena discussed in the bulk of this paper) will be observed.
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Symmetry
of electrical
conduction

by M. Bittiker

The resistance of a conductor measured in a
four-probe setup is invariant if the exchange of
the voitage and current sources is accompanied
by a magnetic field reversal. We present a
derivation of this theorem. The reciprocity of the
- resistances is linked directly to the microscopic
reciprocity of the S-matrix, which describes
reflection at the sample and transmission
through the sample. We demonsirate that this
symmetry holds for a conductor with an arbitrary
number of leads. Since leads act like inelastic
scatterers, consideration of a many-probe
conductor also implies that the reciprocity of
resistances is valid in the presence of inelastic
scattering. Various conductance formulae are
discussed in the light of the reciprocity theorem.
Finally, we discuss some implications of our
results for the nature of a voltage measurement
and point to the difference between chemical
potentials and the local electric potential.

1. Introduction

Symmetries are of paramount importance, since they force
certain constraints on the laws of physics. Once established,
symmetries can provide sample tests of experimental
accuracy and greatly reduce the amount of data which has to
be taken. In this paper we are concerned with the reciprocity

®Copyright 1988 by International Business Machines Corporation.
Copying in printed form for private use is permined without
payment of royalty provided that {1) each reproduction is done
without aheration and {2) the Journaf reference and IBM copyright
potice are included on the first page. The e and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission 1o republish any other
portion of this paper must be obtained from the Editor.
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theorem for electrical conductors. This theorem applies to
conductors which are connected to several contacts. ‘_u a
four-probe experimental setup, two of these contacts are
used to supply and draw current from the sample, and the
potential difference is measured between another pair of
probes. The reciprocity theorem, in the absence of a
magnetic field, states that the resistance measured in &
particular configuration of current and voltage leads is equal
to the resistance in the configuration where the current and
voltage leads have been exchanged,

g i .Qt...l. :v

mn,

Here the first pair of indices represents the contacts used 1o
supply and draw current, and the second pair of indices
represents the probes used to measure the potential
difference. Reciprocity of current sources and voltage sources
has jong been understood. Searle [1], in his 1911 anicie,
presents a derivation of Equation (1) which he attributes to
Heaviside. A more recent discussion is given by van der
Pauw [2].The reciprocity theorem is rarely mentioned in
modern textbooks, which instead emphasize the Onsager-
Casimir symmetry relations of the loca! conductivity tensor
[3,4),

o (H)= o, (~H). )

Here the indices refer to coordinates and not, as in Equation
(1), to the contacts. The extension of Equation (1) to the
case of a magnetic field, surprisingly, is of more recent
origin. In the presence of a magnetic field the exchange of
the current and voltage leads has to be accompanied by 8
reversal of the magnetic field,

hu.rcﬁv - _Qu-._unls. AWw

The reciprocity theorem, Equation (3), is related to the
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Onsager-Casimir symmetry relations, Equation {2); Spal [5]
and Sample et al. [6] give a derivation of Equation (3) which
rests on the validity of the local syinmetry relations,
Equation (2). Thus, by using Equation (2) one can arrive at
Equation (3). On the other hand, verification of Equation (3)
in a particular four-probe geometry does got imply the
validity of Equation (2). In fact, according to Casimir [4], a
whole senes of four-probe measurements with differing
geometrical arrangement of the contacts must yield
equivalent results for Equation (2) to be valid. It is clear,
therefore, that conductors might exist which do not obey the
local Onsager—Casimir symmetry relations, Equation (2), but
which nevertheless obey the global symmetry, Equation (3).
Hence, it is desirable 10 derive Equation (3) directly without
invoking Equation (2). A direct derivation of the reciprocity
theorem, Equation (3), was given by the author in [7} and is
reviewed and extended in this paper.

Our interest in these symmetries siems from a concern for
tlectron conduction in tiny disordered conductors. We refer
the reader to some review papers and papers with g large
number of citations on this topic {8-16]. Interesting effects
in such small conductors arise from the quantum-
mechanical nature of electron transport. If the wave-like
nature of the carriers plays a role, the relation between the
current and the electric field cannot be local. The symmetry
propertics of the magnetoresistance have been of interes: to
us for some time. Early experimemts [9, 17] in quest of A/e
oscillations in disordered normal loops {18-23] revealed a
magnetoresistance which was not symmetric with regard to

.+ feld reversal. In view of the prevailing (and mistaken)

expectation at that time that thesé experiments were
designed to measure a longitudinal conductance, this was
noticeable and triggered our attention. A possible
explanation of this asymmetry was offered by the
observation [24] that a conductance formula due to Azbel
[21, 25] is also not symmetric under field reversal. However,
as it turned out, the asymmetry given by this conductance
formula is, for metallic conductors in the diffusive regime,
too stnall 1o account for the experimentally observed effect.
Others argued that the asymmetry was not an intrinsic
property but could be due to magnetic impurities [26]. It
was in conjunction with an additional experiment, carried
out by Benoit et al. [27], specifically designed to clarify the
nature of the asymmetry, that we derived a resistance
formula [7] for quantum coherent electron transport which
also obeys the reciprocity symmetry given by Equation (3).
The resistances obtained in [7] are related 10 the
probabilities of carriers for transmission through the sample
and reflection at the sample. The possibility of refating the
resistance of a sample directly to transmission and reflection
probabilities was pointed out by Landaver [28, 29]. The
sample is viewed as a target at which carriers are reflected or
transmitted. In contrast to the Greenwood-Kubo
formulation, the resistance is related to static scattering

'
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properties of the sample. The point of view advanced in 28]
and [29] has received increasing attention since the
beginning of this decade [21, 24, 25, 30-35). However,
despite the fact that four-terminal conductors have been
studied [32], and other results {21, 25) have besn interpreted
as four-terminal resistances 34, 35), a resistance formula
with the symmetry of Equation (3) was lacking. The
derivation of Eguation (3) given in [7] assumed a disordered
sample which scatters carriers only elastically. Inelastic
scattering is assurned to be spatially separated [28, 29) from
the conductor, and occurs only in the reservoirs {see Figure
1, shown later). Instead of a uniform magnetic field which
penetrates the conductor and reaches the carriers, a field is
introduced via an Aharonov-Bohm flux through a hoie in
the conductor. The reciprocity theorem was derived by first
demonstrating the global Onsager-Casimir symmetry
relations for the conductances relating the currents in the
leads o the chemical potentials of the reservoirs. Reference
{7] relates the reciprocity relations of the resistances directly
to the reciprocity of the scattering matrix, the S-matrix,
describing transmission and reflection of carriers at the
sample. A basic feature of the resistance formizla derived in
{7] is the equivalent quantum-mechanical treatment of the
contacts which are used to carry current to and from the
sample and those which are used to measure voltages,
Previous works on conductance formulas have made a
number of either implicit or explicit assumptions on what
constitutes a voltage measurernent. Our work implies that
these assumptions have to be revised, and in Sections 3 and
5 we briefly return 1o this subject.

In submicron structures, at very low temperatures, the
magnetoresistance is sensitive to the specific configuration of
the impurities and inhomogeneities. Thus, the experiment of
Benoit et al. [27] must be regarded as a particularly sensitive
test of the symmetries predicted by Equation (3). Even in
larger samples the symmetries predicted by Equation (3)
have been tested only recently. In connection with the von
Klitzing effect, the reciprocity relations have been
experimentally confirmed by Sample et al, [6]). High-feld
magnetoresistance measurements on single-metal samples of
a shape with low symmetry have been carried out by
Socthout et al. [36], who find genenally good agreement with
Equation (3) except for small discrepancies which they
attribute to the possibility of structural changes induced by
Hall currents. In view of these experiments, it is clear that
the reciprocity theorem is a fundamental physical law,

In this paper we extend the derivation of Equation (3)
given in [7). We show that the validity of Equation (3) is
independent of the number of leads attached to the sample.
Since leads leading away from a conductor to a reservoir, in
which carriers suffer phase-randomizing events, act like
inelastic scatterers [37—40], this demonstrates that, as
expected, the symmetries of Equation (3) apply to
conductors which are large compared 1o an inelastic length.
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This then also removes the need to keep the reservoirs {the
measuring pads) close 1o the sample. Since the reciprocity
theorem is fundamental, it is worthwhile discussing the
symmetry of other expressions derived for the conductance.
We analyze the four-terminal interpretation of the Landauer
formula {28, 29}, which yields a resistance proportional to
R/(1 — R), and the many-channel generalization of this
expression {21, 25, 34] in the light of the reciprocity
theorem. We point 1o certain inferference terms which are
neglected in these conductance formulae.

Recent experiments by Benoit et al. [41) and Skocpol et
al. [42] further demonstrate that the probes are an integral
pan of the conductor. In these experiments the voltage
&mnanﬂwgggésgﬁ_gﬂa
than a phase-breaking length. To understand these
experiments, it is essential 10 take into account that carriers
can make large excursions into the voltage probe and
experience inelastic events in such a probe [40). A
diagrammatic discussion of these phenomena has been put
forth by Mackawa et al. [43], Kape et al. [44, 45], and
Hershfield and Ambegaokar [46). References [44] and [45]
investigate the connection of the results of [7], expressing
resistances in terms of transmission probabilities, with the
Greenwood-Kubo linear response formalism. An alternative
way to calcnlale transmission probabilities is by direct
computation [47, 48], and for multipont conductors this has
been achieved by Baranger et al. {49, 50]. We do not address
the statistical aspects of voltage fluctuations; instead, we
focus on the implications of [7] for the definition of
resistance and voltage measurement.

Before concluding this section we mention, for
completeness, a further generalization of the reciprocity
theorem. Deviations from Equation (3) can occur if the
sample admits a magnetic moment M. In such a case, as
pointed out by Strikhman and Thomas [51], the
conductivity tensor obeys a,,(H, M) = o, (~H, —M).
Correspondingly, the reciprocity theorem for a conductor
with a magnetization M can be stated as

ﬁis.tﬁ:- S - ‘E....«..Aul:o ISu A&v

i.e.. the exchange of leads must be accompanicd by a
reversal of the magnetic field M and the magnetization M.

2. Multiprobe conductance formula

Consider the conductor shown in Figure 1. A field
dependence is introduced by studying the response of the
conductor 10 an Aharonov-Bohm flux through the hole
[18-21). In a uniform magnetic field, there are, in addition
10 the resistance oscillations with fundamenta! period [18-
23] ¥, = hcfe, also aperiodic resistance variations as &
function of the magnetic feld [9, 17, 48]. While we focus on
Lhe Aharonov-Bohm oscillations, our conclusions apply
equally 10 the aperiodic resistance variations [40-46, 48-50].
In the presence of a uniform magnetic field, a two-
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Disordered wormal coaductor with four terminals connected via
perfect leads (unshaded) 1o four reservoirs af chemical potentials. i, .
iy, By, and p,. An Aharoncv-Bohm flux @ is applied through the
hole of the sanple. From (7], reprinted with permission.
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dimensional disordered conductor can be considered as a
network of microscopic loops of size @ with a flux & = Ha’
« &, = hcfe threading each loop. The leads in Figure'l are
connected 1o reservoirs which are at chemical potentials u,,
31 H3s #,, TESpectively, The reservoirs serve both as a source
and as a sink of carriers and of energy and have the
following properties: At zero temperature they feed the leads
with carviers up to the energy »,. Every carrier coming from
the lead and reaching the reservoir is absorbed by the
reservoir irmespective of the phase and energy of the incident
carrier. Technically, it is convenient 10 introduce a piece of
perfect wire (unshaded part of the leads in Figure 1), free of
elastic scattering, between the disordered terminals and the
reservoirs. First we assume that these perfect leads are strictly
one-dimensional quantum channels; i.¢., there are only two
states at the Fermi energy, one with positive velocity (taken
10 be the direction away from the reservoir) and one with
pegative velocity. The multichannel case is discussed later.
Scattering in the sample is elastic; inelastic events occur only
in the reservoirs. The elastic scattering properties of the
sample are described by an S-matrix, which relates the
amplitudes o), i = i, - - -, 4, of the outgoing currents to the
amplitudes a, of the ipcident currents,

F il ]

[
a I.M. s, .

Since current is conserved, the S-matrix is unpitary, §* =
5~'. Here * denotes Hermitian conjugation. Time reversal
implies S*(~—#) = §~'(#). Here the star denotes complex
conjugation. Hence, the S-matrix obeys the reciprocity
relations 5,(#) = 5,(—&). The transmission amplitude

5, (#) for a carrier incident in contact j to reach contact i in
the presence of a flux @ is the same as that of a carrier
incident in contact { to reach contact j if the flux has been
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reversed. Below we use the reciprocity of the S-matrix to
derive the reciprocity theorem for the electrical resistance.
We only invoke the probabilities T,=is, 1%, i#for
transmission of carriers incident in lead j 10 reach lead i and
the probabilities R, = | s, | for carriers incident in lead i to
be reflected into lead i. The reciprocity symmetry of the
S-matrix implies that

R($)=R,(=%), T,(¢)=T, (~9). )

We now use these probabilities to determine the currents
in the leads. Let the difference between the highest potential
and the lowest potential be 5o small that the energy
dependence of the transmission and reflection probabilities
in this range can be neglected. It is convenient to introduce a
fifth chemical potential 4, which is smaller than or equal to
the lowest of the four potentials u,. Below u, the states with
negative and positive velocity are filled, and zero nat current
flows in each of the leads. We only need to consider the
CNETRY TANGE Au, = u, — u, above u,. The reservoir | injects a
current ev, (dn, /dE)Ay, into the lead i. Here v, is the velocity
at the Fermi energy in lead /, and dn, /dE = 1/2xhy, is the
density of states for carriers with negative or with positive
velocity at the Fermi energy. Thus the current injected by
reservoir i is (efh)Ay,. Cousider the current i lead 1. A
current (e/AX1 ~ R, )Au, is reflected back to reservoir 1.
Carriers which are injected by reservoir 2 into fead 2 reduce
the current in lead | by —(e/h)T,,Au,. Similarly, from the
current fed into leads 3 and 4 we obtain in lead 1 a current
—{ethRT 3 Au, + T, A4,). Collecting these results and
applying similar considerations to determine the currents in
the other leads yields

~. HQ\ST_ lxh.v:_IM H\L. AS

i
Note that these currents are independent of the reference
potential u,, since the coeficients multiplying the potentials
add to zero. If we write Equation (6) in matrix form, both
the rows and the colums of this transmission/reflection
matrix add to zero (current conservation).

Let us generalize these results and assume that the perfect
leads have many states at the Fermi energy. In leads with a
Cross section we have to consider both the motion of carriers
across the lead and the motion along the lead. Motion in the
transverse direction is quantized and characterized by a set
of discrete energies, E,, n= 1,2,--- . To this energy we have
10 add the kinetic energy for motion along the direction of
the lead, A”k°/2m, such that E, = &'k /2m + E,. For each
energy £, which is smaller than E,, we obtain two states at
the Fermi energy (quantum channel), Each lead is thus
characterized by a number N, of quantum channels. The
scattering matrix now contains

(%)
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elements denoted by 5, . Such an clement.gives the
transmission amplitude for a carrier incident in chanpel n in
lead ; to reach channel m in lead i. The reciprocity of the
S-matrix is now stated as 5, ,_ (€)= 5, . (—#). The
probability for a carrier incident in channel n in lead i/ to be
reflected into the same lead into channel m is denoted by

R, pn™ 15, .. 1% and the probability for a carrier incident in
lead j in channe! n to be transmirted into lead { into channel
misT,  =|s, .| Following [21], we assume that the
reservoir feeds all chanaels equally up to the chemical
potential u,. Furthermore, as in [21], we assume that the
current injected into a channel is incoberent with the current
in other channpels. The current injected into each channet is
then {¢/A)Au, independent of the velocity and the nnnu.a of
states of this chanpel. The current in lead i due to carriers
injected in lead j is

I,=~(eth) £ T,,,Au,.

Therefore, if we introduce the traces
x: - M »&.Ie.. H.: - M N..\,..!..

which have the symmetry properties given in Equation (5),
we find for the currents flowing from the reservoirs toward
the conductor,

? Es?.- x...i-m ﬁL. 3
i
Here ¥, is the number of channels in Jead 7. Recently,
alternative derivations of Equation (7) have also been
obtained (43-45]. Equations (6) and (7) provide the starting
point for our subsequent discussion, giving the currents as
response to the chemical potential differences between the
reservoirs. Since the coefficients in Equation (7) obey
Equation (5), they have the symmetry typical for linear
response problems [4, 5. The transmission probabilities in
Equation (7) multiplied by &’k are the conductances which
would be measured if the curreats and potentials were
measured simultaneously at all the probes. That, however, is
oot what is typically done in the experiments.

To derive the experimentaily measured quantities, we
proceed as in £7]. First let us connect Equation (7) to the
(global) Onsager—Casimir symmetry relstions. Casimir [4]
considers & four-probe conductor (see Figure 1) where a
current [, is fed into lead | and is taken out in lead 3, and a
cuirent /, is fed into lead 2 and leaves the sample through
lead 4. Thus, we bave to solve Equation (7) with the
condition that I, = —/, and I, = —/,. The result of such a
calculation expresses the two currents as a function of
cifferences of voltages V.= y /e

~.“n.___:\_nu w\uvln_u:\ul.—\.v. 8

Li=—a,(V, = V) +ay(V, - V,). %)
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The conductance matrix e, is expressed in terms of
transmissina probabilities io Appendix A, The diagonal
elements are symmetric in the flux o, ($) = a, (=), ay,(P)
= a,,(~®), and the off-diagonal clements satisfy a,(#) =

a, (-2).

There afe two additional ways of feeding two currents into
the conducor of Figure 1. For each of these possibilities the
currents asd chemical potentials are as in Equations (8} and
(9), related by & conductance matrix 5, and v,;. The fand v
conductances bave the same symmetry as the &
conductances, but are geperally not equal 10 these. The a, 8,
and - coaductances obey the global Onsager-Casimir
symmetry selations referred to in the Introduction. These
global symmetries for the conductances are more ’
fundament] than the symmetry of the local conductivity
tensor, Equation (2). The global symmetries hold even in
situations where Equation (2) is not valid.

Now we can derive the resistance from Equations (8)
and (9). In s four-probe setup only two of the chemical
potentials are measured. Suppose the current fows from
Jead | 10 jead 3. The potentials measured are u, = eV and
u, = eV, uader the condition that the current in leads 2 and
4 is zero. Taking /, = 0 in Equation (9) yields V, = ¥V, =
(o fa WV, = V) and by using this in Equation (8) the
current /, can be expressed as a function of V, — V,. Thus,
in this configuration the measured resistance is

ay,

Risae= (V2= VI, = o= anen) (10)
Since a,, is in general not symmetric, the resistance #,, ,, is
also not symmetric. This resuit, however, is completely
compatible with the (global) Onsager-Casimir symmetry
relations. The point is that we are measufisg an off-diagonal
Onsager coefficient and not 2 diagonal element. It is ¥, and
v, which determine the voltage drop across the sample, and
not ¥, asd ¥,. Now we switch the current and the voltage
leads but keep the flux fixed. This means that I, in Equation
(7) is zero. This yields a resistance

_ﬁu;.:In.....kﬁ:nuulﬁ.unu_v. (i1)

The sum of these resistances, S, = (£,; 2, + #14,3)/2, I8
symmetric, due to the Opsager-Casimir relation a, (&) =

a,{—®).
For a given flux we find in general six resistances,
2= WEXT T = T TN, (12)

which differ in magnitude. D = (h/€’ Y (a, 05, — a3a3,)/S is
a subdeterminant of the matrix defined by Equation (.S
defined in Appendix A. Al subdeterminants D of this matrix
are equal and symmetric in the flux due to current
observation. D is independent of the indices mn, ki The
resistances given by Equation (12} obey £, .= -8 ™
-#,_ ., and, more fundamentally, the reciprocity relation
(3). The six resistances, which differ in magnitude, can be
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grouped into three pairs, each pair associated with one of the
possibilities for feeding twe currents into the four-probe
conductor as discussed above. Thus, in addition to $_ we
-_u.o have the combinations 5, = (£, 5; + £, ,}/2and S, =
(#,3.4 + 4y ,2)/2, which are symmetric in the flux. Taking
into account the symmetries of the transmission
probabilities, Equation (5), we can now extend a relation,
known in the classical case in the absence of a field [2], to
our phase-coherence problem in the presence of a flux, and
show that

S +8,+5,=0 (13)

The key result of this paper is Equation {12). An
interesting property of Equation (12} is that the resistance
measured in a four-probe setup is not necessarily positive.
Resistances which change sign as the sample is rotated in the
external magnetic field have indeed been measured by
Soethout et al. [36], and were understood 1o be a property of
a four-terminal measurement. Resistances which change sign
as the magnetic field is increased have been observed in
submicron structures by Timp et al. {52], but are interpreted
s a “dynamic” phenomepon. Negative resistances are
possibie in a four-terminal resistance measurement. The
resistance measured is not the total resistance of the sample,
which is, of course, positive. Indeed, the total joule heat W
produced by the conductor is

1 1
We- I Low =50 (T, + T, X~ u). (14)
i i)

To derive Equation (13) we have used Equation (7). Thus W
is positive and is determined by the part of the transmission
coefficients 7, which is symmetric with regard to flux
reversal.

3. Special limits of Equations (7) and (12)
In this section we discuss the application of the approach
outlined above 1o a number of special cases.

» Two-terminal conductance

Current conservation in a two-port conductor requires

N =R, +T,ad N, =R, + T,,, where N, and N, are the
pumbers of channels to the left and right. Using these
relations, we see that the symmetry of the reflection
coeflicients implies 7,,($) = 7, ,(-9) and 7,,($) =
T,,(—#). From this and Equation (5), we find that 7= T},
= T,,. The transmission coefficient of a two-port conductor
is thus symmetric,

T(®)=T(-%) (15)

Equation (6) or Equation (7) with f=],2and Te T, =
T,, yields a two-terminal conductance,

G= elf(x, — u)) = (¢'/M)T. (16)
Therefore, Equation (15) iroplies that the two-terminal

M. BUTTIKER
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i
Model of a long wire: The phase is randomized in the reservoirs
which are an inclastic length /, apart. From {38], reprinted with
permission.
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3
Three-probe conductor. The extra lead (- segment) connected to a
reservoir can be viewed as a model of an inelastic scatterer or,
alternatively, as a voltage probe. From [40], reprinted with
permission.

conductance is symmetric with regard 10 flux or magnetic
field reversal. All experiments known to us which are
genuine two-probe experiments obey this symmetry,

Equation (§6) was obtained in [30] in the limit of a large
number of channels. The connection of Equation (16) with
the Greenwood-Kubo formulation has been explored by
Fisher and Lee [33). This two-termina! formula has recently
been used to discuss conductance fluctuations [48, 53-55)
{variations of the conductance from sample to sample due to
the microscopic disorder configuration in macroscopically
identical conductors). On the basis of Equation (16), these
fluctuations have been found to be universal in the {metallic)
diffusive limit, i.e., 10 be independent of the degree of
disorder and only weakly dependent on the geometncal
shape of the conductor. The “universality” critically hinges
on the simple relation between transmission and

M BLTTIKER

conductance given by Equation (16), and breaks down if
more sophisticated expressions for the conductance (or
resistance) such as Equation (12) are invoked [40—46,
49-50].

To describe the conductance of 2 piece of wire much
longer than the phase-breaking length {,, with the help of
Equation (16), we imagine the wire divided into segments of
length /,. Inelastic scattering cannot be neglected and is
concentrated into reservoirs spaced a distance /, apart, as
shown in Figure 2. This procedure, of course, is an
approximation to reality, since inelastic scattering occurs
uniformly io the bulk  Reference [38] uses this approach to
show that the resistance of a one-dimensional conductor as a
function of jncreasing inclastic scattering passes through a
minimum. Furthermore, such a simple model allows an casy
prediction of the size of conductance fluctuations or voltage
fluctuations for voltage probes which are separated by a
distance that is large compared i0 the phase-breaking length
{12, 15). Figure 2 represents a physical picture only if the
portions of the conductor adjacent to the segment under
study do act like reservoirs. This is not obvious. In the
adjacent segments, in narrow wires, the current is, of course,
Dot zero as it is in a reservoir. For small currents, as long as
the currents and voltages are related linearly, that seems
unimportant. Other features, such as the amplitude of the
Abaronov-Bobm oscillations, depend on the fact that
inelastic scattering occurs continuously throughout the
conductor [56}, Therefore, there is a need for a conductance
formula which takes into account the fact that most carriers
traversing a segment of length 1, have suffered at least one
phase-randomizing event [38).

s The three-port conductor
A number of important insights can be gained by
considering a conductor with three probes [1, 38]. Tt is
considerably simpler to discuss such a conductor than the
four-probe conductor described in (7] and Section 2.
Consider the conductor shown in Figure 3, and let us focus
‘on the situation where probe 3 is used to measure the
chernical potential u,. From Equation (6) or Equation (7)
with j= 1, 2, 3, we find the chemical potential in Jead 3 by
taking J, = 0,
Ty n + Tyom

T,+T,, ~
Noie that for u, > u, the chemical potential u, is always
between the two chemical potentials which drive the current

through the conductor, u, 2 sy Z uy. Furthermore, 4,($) is
oeither symmetric nor antisymmetric with regard to flux

by = 17

-~ reversal. We can now use probe 3 to measure the potential

differences x, = x, and p, - u, and can calculate the
resistances

\_q.
Riais =, — p,)el = AleUulu. (18}
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with

D=T\ T+ 1, T+ T, T (20)

D is a subfeterminant of the matrix defined by Equation (6)
or Equatien {7), and is invanant under flux reversal. Thus
the 1wo resistances given by Equations (18) and (t9)are
determined by the symmetry of T,, and T,;; i.e., these
resistancesare neither symmetric por asymmetric under flux
reversal. However, the combined resistance (the two-
terminal resistance)

T, +T,
_ﬂr.ulﬂs_—ltuu\&hhﬁnﬁv u..U = 21y :

-4

is symmetsdc. Thus, with regard to the two-terminal
conductance, the fact that we have an additional lead docs
not change the symmeiry. That important feature of our
formulatios of resistances is taken up again in Section 4.
The twoterminal conductance in the presence of an
additional lead ¢ = (#,,,,)”" differs now from Equation (16);
_itis given by
2

¢= @S +T.), @2)

where the gastic transmission probability describing the
transmission of carriers which emanate from port | and end
up in port 2 without ever entering reservoir 3 is given by

T,=T,,. : (23)

The inelastic transmission probability T, describes carriers
which emanate from port 1, reach reservoir 3 (where their
energy and phase are randomized), and from reservoir 3, in
an additiomal step, reach reservoir 2. Comparing Eguation
(22) with Equation (21) yiclds
N.uu N-uu
ul.: + N.uu.
Thus. the additiona! lead connected to an electron reservoir
acts like an inelastic scatterer. Equation (22} allows us to
describe the continuous transition from completely coherent
transmission through the conductor to completely
incoherent or sequential transmission. In the limiting case of
completely coherent transmission, carriers are not allowed to
enter reservoir 3. Consequently, T,; = T, = 0, and the two-
terminal conductance is given by Equation (16). e, T, =T
and 7, = 0. In the limit of completely incoherent
transmission, T,, = T, = 0. In this case Equation (21) yields

- hii i
Roa=Gnn= M Anu.l + Nuv (25)

11

T,= (24)

To obtain the latter result we have made use of the fact that
for T,, = 0 we have T,,(®) = T,,(—#®). Equation (25} is

IBM 1. RES DEVELOP. VOL 32 NO. 3 MAY 198

I DR NN e

3 S

¢ Four-lerminal conductor with tunneling barrier junctions (dark areas)
for two of the probes.

Lo

nothing but the classical addition of series resistors.
Equations (15)-(25) extend results presented in [38-40] for a
sample without flux to the more general case of a three-
probe conductor subject to a Bux.

Adding a lead away from a conductor and connecting it to
a reservoir gives us a simple way of introducing inelastic
scattering into the conduction process. This method was
used in [37] to study the effect of phase-randomizing cvents
on the persistent current in a small normal loop and to
investigate the dissipative response 10 a small oscillating flux
superimposed on a static flux. Reference [38] investigates the
transmission as a function of increasing inelastic scattering
Eanghﬂlaomﬁgqgngnﬁﬁo%g
phase-randomizing events op resonant transmission through
2 double barrier is discussed in [39]. Thus, additional leads
allow a double interpretation: They can be thought of as
<a_gﬂogiggcn€§§=§
scatterers. Sample-specific fluctuations of voitage, resistance,
and conductance in a three-probe conductor are the subject
of {40, 45, 50).

» Point contacts
Further progress in lithography will make it possible to
produce samples with leads made from different materials.
An interesting possibility is the fabrication of barriers which -
separate the conductor and the leads ® This produces current
leads [14, 20} and/or voltage Jeads which are weakly coupled
[37-39] 10 the conductor.

Let us consider the conductor shown in Figure 4. Current
is fed in at probe 1 and taken out ai probe 2. Probes Jand 4
scrve 1o measure the voltage and are weakly coupled via
tunneling barriers to the conductor. The probabilities for
transmission from a probe into the conductor and into
reservoir 1 or 2 are small because of the intervening

pESE————

*5 Kaplan and C. Umbach, privane bCRUION.
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© through the probes.

tunneling barrier. Suppose the largest of these transmission
probabilities is . The transmission probabilities of the
conductor of Figure 4 can be expanded with respect to the
small parameter ¢. Transmission from port | to port 2 can
proceed via paths which never cross the tunneling barrier,
andthus T, = 77 4 ... ¢ Jowest order, The upper index
in parentheses indicates the order in «. But transmission
from port | 10 pont 3, for example, is only possible by
crossing a barrier, and thus 7,, = ¢ T + . .. . Trapsmission
from probe 3 10 probe 4 requires that the barriers be
traversed at least twice, and bence Ty, = o' T + ... Via
current conservation, the reflection coefficients can be
expressed in terms of the transmission probabilities.
Evaluation of Equation (12) yields a resistance

A‘. v 1_ TS -1
o ) T T
Tm T3 = T3 has the symmetry of the transmission
probability of a two-terminal conductor given by Equation
(15). The sums T,, + T;,and 7,, + T, are also symmetric
with regard to flux reversal, since T,, is zero 10 order ¢.
Therefore, Equation (26) has precisely the symmetry
required by the reciprocity theorem, Equation (3), Using
Equation (12), it is now easy to calculate the resistances
which are measured if current is fed and removed differently
and the remaining “good and bad” contacts are used 1o
measure the voltage. For the conductor of Figure 4, this
vields six resistances which satisfy the sum rule, Equation
(13). Equation (26) shows that the resistance, even when
measured with point contacts, depends on the details of the
coupling of the contacts 1o the conductor. The resistance is
not determined by the properties of the conductor alone (zero
Iransmission probability through the contacts), but depends
explicitly on how carriers can enter and leave the conductor

(26)

_Instead of using Equation (7) we can derive Equation {26)
in the following way: The voltage at probes 3 and 4 can be
calculated by using Equation {17). To the lowest order in c,
the existence of one probe does not affect what is measured
at the other. We thys find

o= Tyu + u.._utu @n
? T, + T,
and
N..._t_ + N-;uku 28)

M, =
N-l— + Nl‘u

Here we have omitted, for simplicity of botation, the upper
indices on the transmission probabilities indicating the order
in . The measured potential difference is

N.u_ u..u - N.n uu_ ( ) 29
(T3 + ToNT, + T, ¥ ™4

My = p, =

The net current through the conductor from probe | 10

M BUTTIKER

probe 2 is to lowest order in £ unaffected by these probes.
Thus the current is / = (e/h)T(u, ~ #,). Using this and
Equation (29) yields the resistance given by Equation (26).
Let us again emphasize the possibility of measuring negative
resistances in & four-terminal setup. Both x, and u, are
bounded by u, and x,; ie., mEpzuandy 2 2,
but u, is not necessarily greater than #,. Thus, the only
gcoeral bound we can give for the measured potential
difference is |, ~ u,| 5 4, - ;. Hence, the measured
resistance #,, ,, for the conductor of Figure 4 has upper and
lower bounds given by the two-terminal resistance,

Al 1 Ayl
Amvﬂam@w G0
We return to the subject of negative four-terminal resistances
in Section §.

* The Landauer formula

A very ofien quoted formula for the resistance of a one-
dimensional conductor is the Landaver formula

[16, 28,29, 57]

#=(hje’XR/T). 1)

How does this result relate 1o the resistance formulae
discussed above? A four-terminat interpretation of Equation
(31) has been put forth by Engquist and Anderson [32]. To
arrive at Equation (31) they not only assume that the voltage
probes are weakly coupled, as discussed above, but also
assume that the probes couple to the conductor in 2
symmetric fashion with fregard to right- and left-moving
carriers. Furthermore, at the Junction of the conductor with
the probe, they match the currents and not the current
amplitudes. In contrast, our treatment is fully quantum-
mechaaical. We also pote that the situation envisioned by
these authors differs from that of Figure 4 in that the voltage
probes are connectad to the perfect leads and the conductor
is disordered only berween the voltage probes. Elastic
scattering is then characterized by a transmission and 2
reflection probability 7 and R of the disordered region,
These simplifications and ‘assumptions give rise to
transmission probabilities 7, = 7, = Tto order :°, T, =
Tu=T,=T, =]+R, Ty=T,=T,=T,=Ttoorder
¢,20d T, = T, = T to order ¢*. Using this in Equation (29)
yields

#y =y =3[0+ R = (1 = RV Y, - ;)
= Riu, = u,). (32)

Since the current is f = (e/h)T{u, = u,), this gives Equation
(31}. Thus, by using the assumptions of Engquist and
Andersen, we can deduce the Landauer formula from
Equation (12) or Equation (26). T has the symmetry of the
transmission probability of a two-terminal conductor. Since
R = 1 — T, the Landauer result is symmetric under flux
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reversal. ‘hstead of Equation (3), the Engquist and Anderson
discussionyields &, (H) = By k) = B (—H) i, TS
Dot necessry 1o exchange current and voltage leads when
reversing fre magnetic field. For a four-probe conductor, we
typically tave six differing resistances, whereas the Engquist
and Andeson discussion yields only three. In addition 10
#,, 5. giveeby Equation (31), using Equation (12) and the
transmissin probabilities as specified above, we find £, 5, ™
—(h/e")RT} and #,, . = 0. The sum of these three
resistances according to Equation (13), is zero. (Note that in
the latter anfiguration, the voltage difference is not
reasured dong a piece of the conductor carrying a net
current. Sich voltage differences across Y-shaped leads are
generally mt zero and have indeed been measured [41]. For
another exgeriment demonstrating such ponlocal effects, see
{58].) In pinciple it could bave been possible that for stnictly
one-dimemsonal conductors a higher symmetry than that
predicted-ty Equation (3) applies. Bui Equations {12) and
{26), whichare valid independent of the number of
channels, ] us otherwise. Note also that the symmetrty -
assumed by Engquist and Anderson on the coupling of the
voltage prabe with the conductor ensures that the resistance,
Eguation:{31), is always posilive, in contrast to Equaticn
(26). We reumn o the discussion of the Landauer formula
from a diffrent point of view in Section 5. The symmetry of
the condudance formulae of Azbel [25] and Bittiker et al.
{21] is discassed in Appendix B.

4. Rigidily of the reciprocity symmetry

The situatimn discussed until now is highly conceptual. We
have discused conductors with four leads which are
connected to reservoirs se close to the conductor that it can
be assumed that scattering within the conductor is only
elastic. Clearly, the spatial scparation of elastic and inelastic
scatiering # more 2 theorist's invention than an
experimersal reality. in the experiments, the probes lead
away from the section of conductor which is under study.
The probes are connecied to macroscopic pads over
distances which are large compared to the inelastic scattering
length. Thas. inelastic scattering occurs in 2 rather uniform
fashion thrsughout the conductor and the leads. Using the
concepts developed here, we would like to understand why
reciprocity is also observed in the preseace of inclastic
scattering. Furthermore, reciprocity is also observed
regardless of how many probes are connected to the
conductor. We have already pointed out that probes act like
\nelastic scaiterers. Thus the validity of the reciprocity
relations both in the presence of inelastic scattering and in
the presence of an arbitrary number of leads attached 1o the
conductor is really the very same problem.

Below we show that the relations of Equations (6) and M
can be generalized and are valid for transmission
probabilities which are the sum of an elastic coherent part
iel) and an inelastic or incoherent part (in). Thus, in general,
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Five-probe conductor. The addition of a fead does not change the
reciprocity symmetry and permits us to study conductors which are
| large compared to the phase-breaking Jength.

1,(8)=T,,#)+ T, (%) (33

where the combined transmission probability 7, has exactly
the symmetry given by Equation (5). Similarly, the refection
coefficients are in general a sum of both an elastic and an
inelastic part, and the symmetry of the total reflection
probability is again given by Equation (5).

Consider now the conductor shown in Figure 5, where we
have added a fifth probe connected 1o a potential u,. The
currents in this conductor are determined by Equation (7),
where i = 1,-+-, 5. Here we want to show that by
climinating one of the chemical potentials, say u;, we once
again obtain Equation (7), with i = 1,---, 4 and T, replaced
by 1',. This then shows that Equation (12) is still valid; the
only difference is that the T are replaced by 7. If probe 5 is a
veltage probe or an inelastic scatterer, we must require that
1, = 0. This condition determines 4, as a function of the

remaining chemical potentials,
1
BTN, = xsrm Tymy- 34
Using Equation (34) to eliminate u, in the equations for the
currents at the other probes yiekds
e =
I= MTz_IbhvlulM_ N._Q_.L- (35)
with
T,T,
R, =R +—=—-, 36
N, =R, (a6)
H...u N.u\
4.: -T,+ N.-R, an

In Equations (36) and (37), the first term gives the reflection
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Reservoir

o

3

Normal loop penetrated by an Aharonov-Bohm Mux Suppors a
circalating equilibrium curremt despite the coupling to a
phase-breaking dissipative reservoir. From [37], reprinted with
permission.

{transmission) of carriers which have nor entered reservoir 5,
and the second term gives the reflection (transmission) of
carriers which have entered reservoir . Since the reservoirs
act as phase-breakers, the second term in Equations (36) and
{37) can be viewed as the inelastic, incoherent part of the
total reflection (transmission) probability, The first term in
Equations (36) and (37), on the other hand, describes
coherent reflection (transmission). Thus Equations (36) and
{37} appear as simple generalizations of the refations found
for a three-probe conductor {38—40],

Now it is easy to see that the symmetry of the new
transmission and reflection probabilities 7 and £ is the
same as that of the original purely efastic transmission
probabilities. Furtherraore, by using Equation (7) for a five-
probe conductor and eliminating #s, we obtain

=R+ % T (38)

N=R +7 T,. (39)

Equations (38) and (39) are a consequence of current
conservation in & four-probe conductor. Therefore, the 7
and & satisfy the same Symmetry conditions and curren:-
conservation relations as the T and R, Hence, all results
obtained for the Tand R in Sections 2 and 3 of this paper
are also valid for the 7 and &,

Obviously, if we have a conductor with many leads n > 4,
we can repeat the steps outlined above n — 4 times, uatil
only the chemical potentials of the particuiar four-probe
Mmeasurement under study occur. Equation {12) is then valid
for a set of generalized transmission and reflection
probabilities. Thus, these considerations show that the
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reciprocity symmetry is a very rigid feature of electrica)
conduction. Reciprocity applies regardless of the number of
leads attached 10 the conductor and regardless of whether we
deal with clastic or inelastic transmission.

5. Self-induced fields

Charge transport gives rise to magnetic and electric fields. In
the presence of steady current flow, considered in this paper,
current density and charge density are related to fields via

CVXB=j (40)
VD = 4xe(p - p,). (41)

In this section we are chiefly concerned with the induced
electnic field, or with the associated electrostatic potential U:

VU + (dxefe, Xp = p,) = 0. (42)

The key intention is to explore the connection of the
electrostatic potential U/(r), which is defined at every point in
the conductor with the chemical potentials measured at the
contacts, as discussed in the previous sections. Before
discussing this, it is worthwhile to consider briefly the
induced magnetic fields.

* Magnetic field induced by persistent currenss

Consider the conductor in Figure | at equilibrium. All the
reservoirs are at the same chemical potential, u = By ==
#y = u,. According 10 Equation (7), this implies that the
currents at all the contacts are zero, J, = [, =f=] =0
However, this does pot imply that the current density j{r) is
zero in the interior of the conductor. Simple model
calculations suggest that there exists an equilibrium current
pattern j{r} in tiny and open conductors. Figure 6 shows an
open conductor. A loop is connected to a reservoir via a
single lead. The lead allows an exchange of cartiers between
the loop and the reservoir. As shown in {37}, such a loop
exhibits a persistent current which is & periodic function of
the flux ¢ threading the loop. The amplitude of the circular
equilibrium current is nonzero as long as carriers can
complete a full revolution before escaping from the loop into
the reservoir. This simple model was introduced to discuss
the effect of inelastic events on the circular currents found in
closed loops in [18]. The simple model of Figure 6
demounstrates that circular equilibrium currents are not &
property of closed systems only. Considering the lead
concected to a reservoir as an inelastic scarterer, [37] arrives
at the same conclusion as [59]: A modest number of inefastic
events only reduces the amplitude of the circular currents
but does not suppress such currents completely. Comparison
[8, 10] of the inelastic effects introduced via a current lead
coupled to a bath {37] with intrinsic inelastic effects in 2
closed {oop [59] highlights the effect of coupling a
measurement probe to 2 tiny conductor. For additional work
on closed loops we refer to [60). In the conductor of Figure
6. an equilibrium cusrent. pattern anses because elastic
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scatteringleads 10 a density of states which is sharply peaked
near the dgenstates of the closed Joop. In a more general
geometry,such as the conductor in Figure 1, carriers are not
confined & move on a circular path. However, it is known
that quanum-mechanical interference leads to an enhanced
probabilis for a carrier which initially is at point P to return
to point P(see for exampie [15]). A pet current arises if the
probabilities for clockwise and anticlockwise motion along
such a pattare different. Since the net current through the
contacts iszero, no joule heat is produced. Calculation of
5&%35%%9«55?2&0&2
every poimtin the conductor. Moreover, since the currents
are an egulibrium feature, they are not determined by the
aﬁsﬁﬂﬂﬂmag-_oﬂgaa%gﬁ
the wave. finctions at all energies. Typically, bowever, the
main contibution to these currents arises from a narrow
energy intarval extending from the Fermi encrgy to an
energy somewhat smaller. On a length scale, small compared
10 the pham-breaking length, we can thus expect to find a
nonzerc ememble average ([J 3_“_ ). These currents induce
a magneticfield according to Equation {40).

If the chemical potentials of the conductor of Figure ) are
different agd a net current is induced, say from contact 1to
contact 2,:8en, as is well understood, an additional
magneticifeld B(r; u, — u,) is produced which is
proportionsl to the difference of the chemical potentials. We
do not discass this further, but instead refer the reader to
[42] and [61], which calculate such felds in the metallic
diffusive regime.

o Induced dectric fields

Induced dheetric fields in the presence of current flow past
isolated imurities have beeo emphasized by Landaver

[27, 28, 58,62]. Local fields are of importance for the
discussion of nonlinear effects [63, 64], and they play a
central rok in the von Klitzing effect [65). Here we wish to
stress the dstinction between the local field E(r), or the
potential L), and the chemical potentials 4, discussed in
the previoss sections of this paper. The chemical potentials
%, are thermodynamic potentials which characterize a bath.
The potesdml U(r), on the other haod, characierizes the
distributioa of unscreened charges in the conductor. 1o &
macroscopic conductor, where each volume clement also
contains a hirge number of carriers, U(r) also becomes a
thermodymamic quantity, i.c., a Jocal Fermi energy. Ina
macroscepic conductor, we can couple the volume element
under consideration 10 & bath, and if the coupling is
sufficiently “weak,” the bath has a chemical potential u(r) =
eL'(r), at deast if U(r) varies slowly compared 1o the
screening fength. In the coberent quantum transport regime
we must be more cautious. [t makes a difference whether a
small copdector over a given length interval is closed, or has
a junction to an extra lead, with & reservoir attached. In
general, as we show, u(r) # eU(r).
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One-dimensional two-probe conductor

Coosider & one-dimensional conductor consisting of a
disordered region with perfect leads attached to each side.
The perfect leads are in turn connected to reservoirs at
chemical poteptials u, > u,. Now suppose that self-consistent
screening applies for the squilibrium situation, i.c., for u, =
u,. Consider the additional charge density A p induced by
the current flow. The density of states in the perfect Jeads,
corresponding to states with positive velocity, is dt/dE =
1/2xhv. We denote the wave function which describes
carriers incident from reservoir 1 with chemical potential u,
by ¢, (x), and the wave function which describes carriers
incident from the right by ¥,{x). The added charge is [37}

dn 2

where ¢, is normalized such that the incident beam bas unit
amplitude. Both the wave function and the density of states
are taken st the Fermi energy. In a region where An is
spatially independent, this excess density is screened. Since
the tota] charge density in such a region is zero, the
screening field raises or Jowers the band bottom to achieve
this [62). The charge which is gained or lost by adjusting the
band bottom is

A= 22 (U= X1+ 1N @4)

Note that An,_ is the Jocal excess density which builds up if
the chemical potential of both reservoirs is mised by el — &,
from u, = ;. The net charge difference A p, which remains
unscreened and enters Equation (41), isthus Ap =

An — An,_. Inserting this into Equation (41) yiekds a
differential equation for U(x):

AV eU(x) + [, |9, 1P+ 1y ¥ 1
— UGN, 12+ 19,1 =0, (45)

where A = (¢, /dxe’)'*(dE/dn)'” is 8 screening length.

The proper solution eU of Equation (45) has the value 4, in
the Jefi reservoir and drops to the chemical potential u, in
the reservoir to the right. Below, we resort, for simplicity, to
drastic approximations. Suppose that the wave functions
vary slowly on the scale X, the screening length. In this case
the first term in Equation (45), A* VU, can be neglected,
and we obtain

19,0017, + 190017y
W1+ 1nm”

If the screening length is not short compared to the Fermi
wavejengih, we can still saivage Equation (46). If we are only
interested in the long-range variation of U(x), we can
average the wave functions in Equation (45) over distances
of the order of A. Clearly, if such an averaging procedure is
used, some information on the phase sensitivity of U(x} is
lost. Equation {46) was obtained by Entin-Wohlman et al.

elU(x) = (46)
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[35], who argue that eU(x) is what js actually measured at a
chemical potential probe, -

Applied to the perfect leads, Equation (46) reproduces,
with an additional approximation, the Landauer result,
Equation (31). To see this, consider 2 scatterer connected to
perfect leads. The scatterer has a lransmission probability
T={r{’anda reflection probability £ = 171%. To the left
wehave | ¢, |"= | + R, |y,{% = T and from Equation (46)
we fing

elUy=3{(1+ R)u, + Ti,). 47)

Tothe right we have [y, )* = T, |y, | @ | + R, and from
Equation (46) we find

eU,=i{Tu, +(1 + Ry ]. | (48)

Sizce the total current driven through the conductor is [ =
(&/h)T{a, - Hy), we immediately find £ = (U, = U)I=
(h1€'XR/T).

In the derivation of the Landauer formula given above, we
have related | ¢ |’ to the transmission and reflection
probabilities. Since the reflected wave interferes with itself,
the exact density of carriers is determined by Pe(x)} -

L+ R + 2Re(re™). Since the reflection amplitude # is
proportional to R'? > R, it is actually the interference term
which is dominant for weak elastic scattering (R « 1), If the
exact expression for the charge densities is inserted into
Equation (45), the result is a voltage which is oscillating even
in a perfect lead. The suppression of such interference terms
is one reason that Landauer's result is positive, whereas
Equation (26). which allows for such interference terms, can
give a negative resistance.

The voltage U(x), as defined by Equation (46), does not
match the chemical potentials of the reservoirs. (This can
only be achieved by allowing the one-dimensional leads to
spread out to accommodate a large density of states
{16, 58, 66].) tmry [1 1] bas pointed cut that the difference
in potential between a reservoir and a lead gives rise 1o a
contact resistance, £, = (h/e’ X Vi= U)I where u, = ev,.
Using Equation (47), the contact resistance is, accordiog 1o
this interpretation, universally equal to h/2€ for a one-
channe! conductor, However, due to the oscillatory nature of
the voltage in the lead, we can expect such contact
resistances to fluctuate from sample to sample and 1o exhibit
a sensitivity to the phase of the wave function. If we consider
the conductor of Figure 4 and use the results of Section 3,
we find contact resistances which can fluctuate in a wide
range. If we define the contact potential as 4, — #, and use
Equation (27), we find a contact resistance with a lower
bound of zero and an upper bound of (he’y1",

Equation (46) can be used to determine the voltage [/ at
rwo arbitrary points along the conductor {35). Denote these
points by x, and X,. Then, by evaluating # = (v, -yt
with the help of Equation {46), we find
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Rlx,, x,)
A1 TR = 1061 v, (x,))?
& T + 19,0 PN, 1 + 1)1

{4%)
Equation (49} is reminiscent of Equation (26). Like the
Landauer formula, bhowever, it does not contain any
perturbations due to the leads. It links the electrical potential
L(x) to a “resistance.” The “resistance™ given by Equation
{49) typically exhibits no symmetry at all with regard to flux
reversal. If Equation (47} is applied to a ote-dimensional
ring {35, 67} and at least one of the points x, or x, lies ip the
disordered part of the conductor, the resistance given by
Equation (49) can be expected 10 be neither antisymmetric
nor symmetric with respect 1o flux reversal, despite the fact
that the conductor is only connected to two reservoirs. This
is demonstrated by a calculation in [67]). [Reference [67]
makes an additiona! approximation and replaces the local
equilibrium density of states with the density of states in the
leads. This corresponds to setting the combined densities of
the two wave functions multiplying U in Equation (45)
equal to 2.] A similar calculation in [35] finds a purely
antisymmetric resistance, due to the high symmetry of the
conductor investigated and the symmetric location of the
points x,, x, chosen.

One-dimensional many-probe conductor

To better illustrate the difference between the voltage
measured at a contact and U given by Equation (45), we
consider for simplicity a one-channe! conductor connected to
three reservoirs, as shown in Figure 3. Let the density of
states in all the leads be equal, Proceeding as above gives, for
a three-probe conductor, a local voltage U(r),

O 0, + 19,000, + 19,90 %,
IO+ 1,01 + 4,001

Here the index on the wave function indicates the reservoir
from which the carriers are injected into the conductor.
Equation (50) is valid for every branch of the coaductor with
T=X,r=y orrm;onthe comresponding branch (see
Figure 3). Connecting 2 lead 10 the conductor thus changes
the potential throughout the conductor. Equation (48)

has been evaluated in the periect leads of a three-probe
conductor in [38]. Let us briefly consider probe 3, acting as a
voitage probe, and show that Equation (17) results. In this
case, within the perfect lead of probe 3, we have [¥,(x)) =
Too Wal)" = Ty, and | g, (012 = 1 + R,,. Insenting this
into Equation (48) and using Equation (7) for i = 3 with I
=0 yields eU, = 4,. This is an astonishing result in view of
the approximations made to arrive at Equation (50). For a
voltage lead which does not support a net current, it might
be more adequate to consider just the long-range variation of
U (and thus to neglect the interference terms in the absolute

el(r) = (50)
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values af the wave functions). Clearly, these results can easily
be extended 10 & four-probe conductor with one-dimensional
perfect keads, [n this case, the voltage U(7) is determined by
four wave functions and four chemical potestials. Thus, for -
the magy-probe conductor with one-dimensional leads, we
have an (approximate) picture of the connection of the local
potential with the chemical potentials of the measuring
baths. We sce that the reciprocity symmetry is connected to
the fact that at a probe (a point of measurement), three

{or four) wave functions determine the outcome of the
measurement. In contrast, only two wave functions are used
in Equations (46) and (49).

Potential fluctuations in the measurement lead
mncunonasgsnlﬂﬁao—..vn_oﬂ_ potential U'(r)
w_onu-gvnown%.ﬂgmu Figure 7. A net
current flows from the bath with chemical poteotial 4, to the
bath with chemical potential z,. The measurement probe,
leading to a bath at a chemical potential u, given by
Equation (17), is connected to the conductor at point P.
Equation (50) predicts a potential U(r} which fluctuates
along the probe depending on all three wave functions ¥,.
Fluctuations of L/(z) along the probe occur for several
reasons, First, the probe itself is typically a disordered
conductor. In this case the Buctuations are determined by
the precise disorder configuration within a phase-breaking
length. Even if the probe is an ideal perfect wire, a voltage
variation occurs across the junction of the perfect probe with
the conductor [38, 40]. Thus, in geperal, the chemical
potential x, = eV, is ot related ip 2 simple way to the local
potential U, m U(P). The fact that U, and ¥, are not equal is
important. [t means that a contact potential difference V. =
U, = ¥, exists between the local potential at P and the
measured voltage. Typically, voltage drops arise due 10
current fiow past an obstacle. But in the conductor depicted
in Figure 7, there is no nef current flow in the measurement
lead_ A situation similar to that shown in Figure 7 also
follows from the work of Maekawa et ai. [43] and Kane et
al. [45]. They define a local electric field by enforcing current
conservation on an expression for the nonlocal current-field
relation.

The existence of such contact potentials means that a
voltage measurement with a lead does not give us direct
jnformation on the local potential of the conductor at the
point of attachment. Such contact potentials arise not only
in the roetatlic diffusive limit. Even if voltages were
measured by inserting a tunpel junction between the
conductor and the lead, or if the tunpeling microscope were
used 10 measure the potential [68], such contact potentials
would also be present. In the presence of a large barmer, the
wave functions ¥, are exponentially attenuated at the
junction. The wave functions ¢, and ¥, have an
exponentially srnall amplitude factor in the measurement
lead; ,, which is large in the probe, is exponentially small in
the conductor. As shown by Equation {17), the measured
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_ One-dimensional conductor with 3 voliage probe. Current flows
! from the bath at chemical potential &, to the bath at chemical
“ potential j1,. A voltage probe is attached to the conductor at point P,
i The measured chemical potential is . The heavy line depicts the
} Jocal potential U along the x, y, and z segments. Typically, the
i messured chemical potential differs from the clectric poiential I/ a1
_ . the point P of anachment. Screening causes the band bottom (faim
| lines below yy) to follow U(r).
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voltage is determined by 7, and Ty, i.e., by 1the
exponentially small wave functions ¥, and ¥, at the location
of the bath. If the junction cannot be controlled on an
-Sﬂwnﬂx.ﬁnuﬂﬂﬁmonoqﬁ.-bu&zﬁngf
varies exponentially from sample to sample. Hence the ratio
T,/ T, exhibits fluctuations that increase as the coupling
between the lead and the conductor becomes weaker.
Iovoking tunnel junctions between the Jeads and the
conductor can, therefore, be expected to icrease the
fuctuations in the contact potential and 1o lead to voltage
fluctuations which are even bigger than those measured
[41,42] in the metallic diffusive limit {40, 46, 49, 50]. Even
metallic-diffusive voltage probes give rise 0 voltage
fuctuations which increase with the length of the probe
[40, 46).

Since the chemical potential of 2 measurement probe
is not simply related to the voltage U at the point of
attachment, measurement of negative resistance in the
geometry of Figure 4 does not imply that the voltage U
increases in the direction of the current flow. The contact
potential ¥, can be positive at probe 3 and negative at probe
4. If these contact potentials are large enough, we measure a
negative resistance despite the fact that U(r) drops
moootonically along the conductor.

Voltages can be measured other than by the exchange
of carriers with a probe; an ajterpative technique uses
capacitive probes [57]. It is suggested that in the absence

of particle exchange with the measuremment probe we ¢an 329
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measure the loca! potential Us. Thus, the appearance of
contact potentials discussed previously is avoided. The key
question which must be answered s this: Can we have
caough Coulomb coupling between the conductor and a
capacitor plate to make a measurement without significantly
affecting the effective potential which the carriers see while
moving along the conductor? A recent experiment which
uses capacitive coupling to shifl the phase of the Abaronov-
Bohm oscillations [18-21) is described in [69].

Measurement-theoretical aspects

Equations (] 5) and (17) are also of interest for the theory
of measurement [70]. We can look at these equations xs
describing the interaction between the measuremen
ngaﬁog.géugngaa
its end) and the system (the conductor). In coptrast 10 the
discussions of the mezsurement process, which treat a
Hamiltonian for the combined system, the approach
presented here describes the measurement as a scatiering
process and analyzes an S-matrix. The phase of the wave
functions is broken by the reservoir at the end of the probe,
This notion avoids g difficulty which measurement theory
tries to explain: Why doesn't the measurement apparatus
obey the superposition principle even though the total
system is described by a Hamilonian?

There is a fundamental difference in how we have treated
the local potentials and the Currents. The reciprocity
Symmetry is a consequence of microscopic reversibility,
Current conservation and time-reversal invariance are what
determine the Symmetry of the transmission probabilities jn
Equations (6) and (7). In Equation (45) the time-reversed
wave functions of ¢, and ¥; do not oecur. The time-reversed
wave function of ¥, describes carriers incident from both
reservoirs which in the disordered region interfere, giving a
beam of unit amplitude for the outgoing wave. The time-
reversed wave functions are excluded, since carriers incident
from different reservoirs are incoherent {18, 62].

Local potentials in q manp-channel two-probe conductor
Consider a disordered region connected 1o two perfect leads,
Assume, for simplicity, that the perfect leads are strips,
with x the direction aoano_ﬂnEwEo&gou
perpendicular to the strip. Also assume that the perfect leads
to the left and right are identical and support N quantum
channels with'a density of states (dn,/dE) = 1/2zhv,. Here
v, is the velocity in channe! i at the Fermi energy in the x
direction. As in [21], we assume that the reservoir feeds
chanpels incoherently with Fespect to one another. With
these specifications the many-channel generalization of
Equation (46) is

S ¥ D+ 1 (5 )1
ellx, y) = _:_-z._ . (51
Z 101+ 1y, 0 00
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Here ¢, , is the wave function at the Fermi energy describing
carriers incident in channel i from the Jeft-hand reservoir,
Similarly, ¥y, describes carriers incident in channel / from
the right-hand reservoir. As in the one-channel case, the
amplitude of these wave functions is normalized such that
the incident wave has amplitude 1. The voltage U(x, y)
obtaioed in this manner is a complicated fluctuating
function of x and ¥. Let us briefly discuss the voltage U(x, y)
in one of the perfect leads, In the perfect leads we can
represent the wave functions  as a superposition of
cigenstates of the Jead Hamiliopian, This Hamiitonian is
separable and bas cigenstates e*“f ( ;). Here S()is the
“transverse eigenfunction” of channel § and k; is the wave
vector along the lead. The wave functions in the left perfoct
conductor are

FmN

Y=L L0, % + w,v,) ", &™) (52)
FL 7]

for carriers incident from the left, and
=N

Vam T S OWo ), e 3

Fod)

for camiers incident from the right. Here r, _is the
probability amplitude for reflection into chanpel jofa
carrier incident in channel /, !,z 4 is the transmission
probability for carriers incident in the right perfact
conductor in changel f to reach channel ; to the left. The
deasity of carriers |y, , i contains diagonal terms
LS (¥) proportional to the density of the incident wave
{io channel i) and the density of the reflected waves. There
are off-diagonal terms /() /" (1e"™5* proportional to the
reflection amplitudes in channels i and ;. Furthermore, there
are 2 terms which arise from multiplying the incident wave
with the reflected waves, These latter terms are proportional
0S¥ (7)™ Hence the voltage U in the perfect leads
is nonuniform and exhibits long-range oscillations, since
k - k, can be small {of the order of k:/N). Therefore, since
screening typically oocurs over much shorter distances, the
voltage U(x, y) follows these long-range oscillations.
References [21), [25], and [34] do not allude to spatially
nonuniform voltages in the leads, but attribute a spatially
averaged voltage 1o each lead. In these works the densities
_Euuﬂa«a_ﬂs& with respect 10 x and ¥. Thus
the densities are expressed in terms of transmission and
reflection probabilities alone. The potential drop across the
disordered region is obtained by introducing these averaged
densities into Equation (51). The result for the conductance
is given in Appendix B {Equation (B7)). We emphasize that
using the spatially averaged densities in Equation (51) is not
equivalent to calculating a spatial average of the exact
voltage; i.c., {el/) = Alllv 1M W._._.En. the spatial
average of Equation (53) is in general not equal to the
potentials determined in [21, 25,28, 29, 34]. To calculate
the voltage drop across the disordersd region, [21), [25], and
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[34]. following [28] and [29], treat the carrier densities
classically.

To achieve a uniform voltage in & perfect lead, it is
necessary to consider a lead that supports a pumber of
channels which is large compared to G/(e’/h). In this case
the amplitudes of the wave functions (Equation (53}}
associated with the transmitted carriers are small. We can
neglect the terms in Equation (51) proportional to u, in the
left perfect lead and can neglect the terms in Equation (51)
proportional 10 u, in the right perfect lead. Wide leads are
peeded if we want 10 construct a potential which smoothly
joins the chemical potentials of the reservoirs.

6. Conclusions

The resistance formulae discussed in Sections 2-5 exhibit &
certain beauty and elegance. Their agroement with the
experimentally observed symmetries [27, 36] and their
successful application [43-46, 49-50] makes one suspect that
they will ikely survive more realistic treatments of, for
instance, the reservoirs. We have first derived expressions for
quantum-mechanical coherent transmission. In physically
relevant situations, we deal with coherent and incoherent
transmission. Our expressions are also applicable in this case,
and permit us to study the continuous transition from
completely coberent to completely incoherent transmission
{38, 39). We have emphasized that resistances measured at
contacts relate chemical poteatials and currents.
Furthermore, our discussion stresses that the measured
resistance depends on the properties of the contacts, whether
we deal with good contacts or with point contacts.

The discussion of the local electric potentials given in
Section 5 seems much more susceptible to the detailed
assumptiops which we have made. Realistically, a reservoir
feeds carriers into the conductor not in a continuous
coherent fashion but with finite coberence length and with
fluctuations in time. That has little effect on the total (time-
averaged) current, and it is only currents which determine
the resistances of Sections 2-5, but it is likely 10 alter the
charge accumulated in some small spatial region. The
detailed distribution of charge and voltage is, bowever, of
interest and provides a physically appealing picture. We
hope, therefore, that the problems exposed in Section 5 will
stimulate further research ip this direction.

Appendix A: Transmission probability
expressions for the Casimir conductances
Reference [7] finds the following expressions for the
conductances in Casimir's equation {{8), (9)] relating two
currents in a four-pole conductor to the chemical polentials:

a,, = (€A1 = R )S = (T + T XT, + TS, (AD)

a,, = (& /ANT,, Ty = T,, TS, (A2)
ay, = (€ 1NT, Toy = Tu TG VS, (A3)
a,, = ?.»3:2 = huuvw - Q..n_ + N.EXN.B + ﬂ._ug_\.w.. (A9)

IBM ). RES. DEVELOP. VOL 32 NO. 3 MAY 1988

where

S=T,+T,+ Tu,+Tu= T,+7T,+ T+ T, (AS)

From Equation (5) it follows that the diagonal cocfficients
E&Bn.oﬁwwu_.vnnﬁr-uaﬁuongun_ elements
obey o, (#) = a,(—#). The § conductances describing

the situation where a current 7, flows from terminal 1 to
terminal 4 and a current /, flows from terminal 3 to terminal
N!nocﬁn&cqnwou:gpcaouula.;lu.nl.ui
Equations (A1)}<{AS5). The ¥ conductances describing the
situation where a current 7, flows from terminal 1 to
terminal 2 sod a current I, flows from termipal 4 to terminal
3 are obtained by the substitution 3 — 2,2 —+4,4—3in
Equations (A1)=(AS5).

Appendix B: Four-terminal interpretation of the
conductance formulae of Azbel [25] and Buttiker
st ol. [21}

A four-terminal interpretation of the results of {21] and 125]
is explicit in the work of Sivan and Imry [34). Below we
show that such an interpretation is compatible with the
amggmnﬁmgcrisouguﬂo:
Ennb&nmoﬂ.ggwoon%ﬁanﬂoaaw
theorem, Equation (3), in the presence of a magnetic field.
To this extent we picture, as ip Figure 4, two contacts
gﬁnc«uegmc&in;dﬂ the perfect leads. We
iptroduce the total transmission and reflection probabilities
into channel { for carriers incident from the lefl,

j=N =N

R,= z bu..t. T = z Lo {BI)
=1 =t

and channel i for carriers incident from the right,
-~ g

R = .M. Rz T, IgM. Ty (B2)
jm -

_umﬁnun?aﬁoaﬂuﬁ&é?%wanﬁib&cwﬁn
piled-up densities. The density in channel i on the left is
proportional 85.. T, due to transmitted carriers from
reservoir I. It is now assumed that the piled-up densities
determine the flow of current from the conductor to the
measurement probe. The current from all of the N channels
to reservoir 4 is 1aken to be proportional to

=N

T,=T,=¢Lv,'T, (B3)
=)

with 3 matrix element ¢ coupling a/l the channels of the
conductor egually to those of the measurement Jead. Note
that ip this discussion coupling of the conductor 10 the
measurement leads is described by a single parameter ¢.
Similar considerations give

=N

Ty=Ty=e 3T, (B4)
i-
-~

T,=T,=¢ L v, (1+R) (BS)
=1
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imN
Ta=Tu=c I v]'0+R;). (B6)

e d]
Furthermore, 7, = 7,, = 0 to order ¢. To lowest order in ,
the transmission from reservoirs 1 1o 2 is unaffected by the
probes, 7= T, = T,.. T has the symmetry of the two-
lerminal transmission coeficient, Equation ( 16). Using these
results in Equation (7) or Equation (8) vields

Ay 1
»u;...xlﬁ.luv.ul.. 1
£ 2 -
Ms

Equation (B7) is the main result of [21] and [25). In the
absence of a magnetic beid, the transmission probabilities
given above have the required reciprocity symmetry for the
Iransmission probabilities associated with a four-terminal
conductor. However, in the presence of 2 fux @, the
transission probabilities given above do not obey
[Equation (5)], T,(%)= T,,(-%). From Equation (B3)

we find

1
MM:+.&..IN.L

(B7)

Tu®)=T-#)=¢ L v]'[T(8)-T(-8),  (my)

which is jn general not zero, since T,($) o T(-®). As
pointed out in Section $, the results of Azbe] [25] and
Biittiker et al. {21] relate a spatiaily averaged loca] electric
potential difference Al7to a resistance, not a genuine
chemical potentiai difference 4Au. From this viewpoint it is
not surprising that Equation (B8) is not symmetric under
magnetic field reversal, as pointed out in [24]. The
reciprocity symmetry (3) is a consequence of the relation
between currents and chemical Ppotentials, but says nothing
about the relation of electric potentials and currents.

We conclude this appendix with an estimate of the
magnetic field asymmetry [24] predicted by Equation (B7),
We consider a piece of conductor of length {, (the phase-
breaking length) and with an elastic scattening length i. The
ensemble-averaged resistance is ( By = ((he)Ty =
S\NJ:..\?C. where ¥ is the number of quantum channels,
Using the argument of Lee [71] that the reflection
coefficients fluctuate independently yields (L&, . (#)~
Ros(=®)) ® (he* VU, 1), Since I, <, this is much
smalier than the experimentally observed asymmetry
[27, 41] which is of the order of (A/e’) #°, independent of
the separation of the voitage probes [41]. Equation (B7)
predicts a small asymmetry because jt is determined by
spatially averaged voltages and because the physics of the
contacts is neglected.
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Coherent

and sequential
tunneling

in series barriers

by M. Buttiker

A simpie approach which can describe both
coherent tunneling and sequential tunneling

is appliad to resonant tunneling through a
double-barrier structure. This approach models
phase-randomizing events by connecting to the
conducior 8 side branch leading away from the
conducior to a reservoir. The reservoir does not
draw or supply & net current, but permits
inelastic events and phase randomization. A
conduciance formula is obtained which contains
contribulions due to both coherent and
sequeniis! tunneling. We discuss the limiting
regimes of completely coherent tunneling and
completely incoherent transmission, and discuss
the continuous transition between the two. Over
a wide range of inelastic scattering times
tunneling is sequential. The sffect of inelastic
events on the peak-to-valley ratio and the
density of states in the resonant well is
investigated. We also present an analytic
discussion of the maximum peak conductance
e/h of an isolated resonance in a many-channel
conducior,

1. introduction
As is well known, the scattering of waves or carriers ata
target which permits inelastic events in addition to elastic

©Copyright 1988 by Iniernational Business Machines Corporation.
Copying in printed form for private use is permitied without
pavment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
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free withous further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper musi be obined from the Editor.
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scattering ¢xhibits a ¢ross section consisting of two
contributions: an elastic, coherent part and an inelastic,
incoherent part [1, 2. If for the purpose of calculating the
conductance we view the conductor (or & device) as a target
at which carriers are either reflecied or permitied 10 traverse,
we can similarly expect that the conductance also exhibits
two contributions: a coherent contribution which arnises from
carriers traversing the sample suffering only elastic events,
and an incoherent contribution due to carriers which
suffered inelastic evenis while traversing the sample. Carriers
which are scattered clastically emerge with a phase which has
a definite relationship 1o the phase of the incident carriers.
Carriers which are scattered inelastically emerge from the
sampie with a phase which is unrelated to that of the
incident carriers. A discussion of conductance which views
the sample as a target has long been advocated by Landauer
[3, 4]. The incident currents are specified and the net current
and the piled-up charges are obtained from the
wavefunctions [3, 4). This approach is typically restricted 1o
the case of elastic scattering (coherent tunneling) only.
Recently we have expanded this approach and have found
an expression for the conductance which aflows for both
coherent and incoherent scattering processes {5]. The total
transmission probability for a carrier 10 traverse the sample
is

T I+ T, ()]
where T, is the probability for a camier to traverse the
sample coherently and T is the transmission probability for
carriers which have suffered an inelastic event. The coherent

transmission probability cannot be calculated as if there were
no inclastic events in the sample, since it is also affected by
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Double barmer irectangles) with an inelastic scatierer in the well,

i modeled by an extra branch leading away from the conductor and

! connecied to an extra reservoir 3. Reservoirs [ and 2 serve as source

¢ and sink of carriers and energy . Reservoir 3 draws no net curtent but
permits inelastic phase-randomizing events. A carrier which
traverses the double barrier from reservoir | to reservoir 2 withous
entering reservoir 3 is said to tunnel coherently. A carrier which
progresses from reservoir | to reservoir 2 via resenoir 3 is said 10
wnne! sequennally.
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the presence of these processes. For the case of & single
inetastic scatterer located in the sample, the incoherent
transmission probability in Equation (1) is of the form [5)

T = 55y 2)
TS+ S,

S, is the transmission probability for a carrier emerging from
the inelastic scatterer to traverse the sampie backward
against the direction of carrier flow. S, is the transmission
probability for a carrier n_.._.n_.,u...u from the inefastic scatterer
to traverse the sample forward in the direction of current
flow. Equation {2) can be undersiood in the following way
_{4]: Only a fraction S /(5, + §,) of the carriers reaching the
inelastic scatterer will leave the sample in the forward
direction. The probability for camers incident on the sample
10 reach the inelastic scatterer is S,, and the probability for
incoherent transmission is thus 5, multiplied by the factor
we have just discussed. A mathematical derivation of
Equation (2) is given in [5] and in Appendix A of this paper.
It is the purpose of this paper to apply Equations (1) and
(2} to a sequence of two barriers with a resonant wel)
between them [6]. Resonant tunneling is of interest in
double-barmicr diodes [7-15}, in tunneling through a barrier
with impurity states [16-17), in strongly localized
conductors {18-20], and also in scanning tunneling
microscopy, where a localized state can be provided by &
protruding adatom [21]. In particular we investigate the
effect of inelastic events on tunneling. A carrier which
traverses one of the barriers coherently but is scattered
inelastically in the well and loses phase memary before
eventuzlly escaping from the well is said 1o tunnel

M BUTTIRER
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sequentially [10). A recent discussion of sequential tunneling
which does not include a phase-randomizing agent found
that coherent resonant tunneling and sequential tunneling
lead to equivalent results for the current {14]. The analvsis
presented here does not suppont this conclusion. Coherent
tunneling is contained in the first 1erm of Equation (1), and
sequential tunneling is given by the second term of Equation
(1). Intlastic events which are needed to destroy phase
coherence lead 10 a broadening and decrease of the resonant
transmission [1, 2, 19] and, equivalently, 10 broadening of
the density of states in the well. The decrease of the peak

-transmission with increasing inelastic scaniering is

accompanied by an increase of the off-resonant transmission.
As a consequence the peak-to-valley ratio of the total
transmission probability decreases with an increasing
number of sequential processes.

To model inelastic events we use the approach of [5].
Consider Figure 1, which shows two barriers (indicated by
squares) connected by pieces of perfect conductor (solid
lines). The conductor is via a junction (the triangle in Figure
1) connected to a side branch. For simplicity the perfect
conductors (denoted as channel | and channel 2 in Figure 1)
are assumed to be one-dimensional, with two states only at
the Fermi energy. The side branch, however, consists of two
quantum channels (channels 3 and 4) and is, in tumn,
connected 10 a reservoir at a chemical potential 4,. Reservoir
1, a1 a chemical potential 4, plays the role of a carrier
source, and reservoir 2, at a chemical potential u,, acts as a
sink. Reservoir 3, in contrast, draws or delivers no net
current. The condition of zero net current in the side branch
leading away from the conductor determines the chemical
potential u, as a function of , and u, {see Equation (A 11)).
Each of the reservoirs has the property that it absorbs
carmiers incident from the conductor, regardless of the energy
and the phase of the carriers. Furthermore, each reservoir
emits carmiers into the adjacent conductor up to its chemical
potential. These rules, therefore, specify the currents incident
into the conductor {3, 4). The triangle in Figure | represents
2 quantum-mechanical junction between the side branch
and the conductor. A specific example is discussed and
solved in Appendix B.

A carrier scattered from the conductor into the side
branch propagates 10 reservoir 3, where the carrier suffers
inelastic events. Eventually, to maintain zero net current,
reservoir 3 emits a carrier toward the junction, where the
carrier is ¢ither reflected back 1o the reservoir or is scattered
into the conductor. S, introduced in Equation (2) is the total
probability for a carrier emitted by reservoir 3 to traverse
into reservoir 2, Similarly, S, is the total probability for a
cammier emitted by reservoir 3 to end up in reservoir 1.
Therefore, the carriers which traverse the sample
sequentially are those that are scattered into reservoir 3 and
re-emitied by reservoir 3, The junction (triangle) also allows
{or carriers incident in the conductor to be scattered not into
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th side Jranch but again into the conductor. Therefore, a
fractionaf the carriers can traverse the sample from reservoir
I 10 resemoir 2 without visiting reservoir 3, and these are the
cartiers which traverse the sample coherently.

Let usintroduce the probability ¢ for a carmier approaching
the juncton 1o be scattered into the side branch (channels 3
and 4). Far ¢ = 0 the conductor and the side branch are
completéy disconnected. For ¢ = | every carrier incident
from the sonductor on the junction is transferred into the
side brandk and reaches reservoir 3. Thus ¢ = 0 is the case of
completek coherent transmission, and ¢ = 1 is the case of
completéls incoherent transmission. If ¢ differs from these
limiting values, we have both coherent transmission and
sequentisl transmission. Thus the parameter ¢ determines
the amoust of inelastic scatiering. The approach discussed
here and i [5] allows the study of the continuous transition
from comgletely coherent to completely incoherent
transmissisn. To achieve complete phase randomization,
carriers need 10 be scattered with probability I into reservoir
3. If the jamction is required to be symmetric with respect 10
right- and left-moving carriers, probability 1 can only be
obtained # the side branch contains two channels. If the side
branch comains only one channel and is symmetnc with
respect Lo gight- and lefi-moving carriers, the maximum
probability [5] which can be achieved for scanering into
reservoir 3 is 1/2.

The meshod of introducing inelastic scattering or
sequential processes described above is not limited to a
single side branch. Conductors connected to many side
branches are of interest as well [5, 22). Another system is
obtained if we climinate two of the reservoirs in Figure 1 by
forming the conductor into a loop. A normal loop, driven by
a magnetic flux and with a single side branch to model the
effect of ingiastic events on coherent superconducting-like
phenomena [23], is the subject of [24]. Another interesting
feature of the approach proposed here is the following: The
conductor shown in Figure ! is a three-terminal device.
Reservoir 1 can serve as a current source and reservoir 3 as a
current sink. This situation bears a close resemblance to the
experimeni of Morkog et al. {25], where current was drawn
directly from the “well.” As in the experiment [25), our
approach also yields a resonant conductance in this case,
even though a net current flows only through one barrier.

Below, we emphasize the two-terminal conductance [26]
¢= ¥ = (¢’/h)T,, considering channels | and 2 as the
conductor. Thus we are not directly addressing the negative
differential conductance phenomena which were first
discussed by Tsu and Esaki [7) and which have gencrated
much interest lately [8-15, 25]. Insiead, we assume that we
can control the Fermi energy and that it is the dependence
of the conductance on the Fermi energy which matters. This
paper is also limited to the case where kT is small compared
to the width of the resonance {see, however, Appendix A).
Most of the calculations leading to the results presented
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below are relegated to four appendices. We focus on one-
dimensional conductors, except in Appendix C, where we
discuss the peak conductance due 1o an isolated resonant
state in a many-channel conductor.

2. Compietely coherent versus completely
incoherent transmission
In this section we discuss the extreme limits in which one of

the terms in Equation (1) vanishes. In the completely
coherent limit 7, = 0, the coherent transmission probability
through two barriers in series exhibits resonances near the
energies of the quasi-eigenstates of the well,

1 _..u
T T o
with a peak value at resonance
AT.T,
T (T, + T “

The peak value is | if the transmission probabilities of the
two barriers are equal, and is smaller than 1 and given by
T, =47, /T, in the case that 7, « T,. In Equation (3),

F,=T,+F, . ®

is the total elastic widih; T', and T', are the partial elastic
widths of the resonant level. 1/7, = T /A is the decay rate of
the resonant state. The transmission through a double-
barrier structure is analyzed ip Appendix B. This calculation,
which invokes some simplifying assumptions not relevant
for our subsequent discussion, yields for the partial elastic
widths the WKB expressions .

T, =hT,, I;=hT, i ©)

Here v is an attemnpt frequency, and in the case of a square
well is given by » = 2w/v, where w is the width of the well
and v is the velocity of a carrier in the well at the resonant
energy E,. At energies E away from E,, transmission is still
coherent but typically many ordens of magnitude smaller

than T, and, approximately,

T, = TexiT\Ts M

Therefore, the peak-to-valley ratio T, /T, is exponentially
large if the transmission probabilities are exponentially
small. Such huge peak-to-valley ratios have not been
observed experimentally; inelastic scattering, discussed
below, is one reason for this discrepancy. But there are other
reasons also, e.g., the averaging over an energy range due to
a three-dimensional incident distribution [10], deviations
from an idea) planar structure, and clastic scattering due 10
impurities [15).

Let us now turn away from the limit of completely
coherent transmission and consider the limit of completely
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incoherent transmission, 1.e., 7_ = 0. In this case every
carmier reaching the inelastic scatterer loses phase. In this
limit a carrier cannol travel from one side of the resonant
well 10 the other without being scattered inelastically. This
process is a special limit of the sequential wnneling process
and is labeled complerely incoherent. In general, a sequential
tunneling process permits many oscillations in the well with
frequency » before the carrier loses phase memory. We
invoke a scatterer (tnangle in Figure 1) which re-emits
carmiers with equal probability to the left and right into the
conductor. In the limit of complete phase randomization,
the probability of a carmier emerging from the inelastic
scatterer to traverse the sample backward is given by §, = T,
and similarly the probability of a carrier being scattered in
the forward direction is S, = T,. Therefore, in the completely
inccherent limit Equation (2) yields [$]

1.7, —_ _M.
Halﬂ.lu._...ﬂul ﬂ_...ﬂu ) ®

A single barmier with transmission probability 7, in an
olherwise perfect wire gives rise 10 a two-terminal
resistance &, = Q..:.Jﬁ._. Therefore, Equation (8), using
K= (e )T = (h1e )T, yields the series addition of
resisiors, K = &, + K, If inelastic scattering is so strong that
every carrier loses phase memory while traversing the well,
the resistance of the siructure contains no detailed
information aboul the geometncal armangements of the
scatterers (separation of the barriers) but is the sum of the
resistances due to the individual scatterers. Note that the
transmission in the incoherent imit, Equation (8), is not the
same as the off-resonant coherent transmission, Equation
(8). If the transmission probabilities are small. the
compietely incoherent transmission probability, Equation
(B). far exceeds the off-resonant coherent transmission
probability, Equation {7). On the other hand, the
transmission at resonance T, Equation (3), exceeds the
purely sequential transmission probability, Equation (8). It is
now clear what happens when we start from a situation
where only coherent processes are allowed and introduce
inclastic events. Both the transmission at resonance [peak
value, Equation (4)] and the off-resonance transmission
[minimum value, Equation (7)] must, with increasing
inelastic scattering, eventually approach the completety
incoherent limit, Equation (8). Therefore, the peak value
must in general decrease with an increasing amount of
inelastic scattering, and the off-resonant transmission must
in general increase with increasing inelastic scattering.

The transition from the compietely coherent limit 10 the
completely incoherent limit occurs through the sequential
tunneling regime in which carriers can execute many
oscillations in the well before losing phase memory. The
distinction of three regimes, the coherent imit, the sequential
tunneling regime, and the completely incoherent limit, is
made because resonant tunneling has two frequency scales
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[27] which, when compured with the inelastic scatiering rate
T /A, yield three physically distinct regimes: The time scales
[2] associated with a resonance are the elastic decay rate T /4
given by Equations (5) and (6) and the artempt frequency

» = vf2w. We show that for " a< I', we are in a regime
where the main part of the current is carnied by coherent
processes, in the regime T, & T, & A» current is carried by
sequential tunneling processes, and if v a< ', we are in the
completely incoherent limit. Below we discuss this in more
detail.

3. Crossover from coherent to seguential
transmission

To study the crossover from coherent resonant tunneling to
coherent sequential tunneling it is possible 10 apply the
formulae of Breit and Wigner [1, 2). The applicability of
these formulae 10 tunneling through disordered conductors
in the presence of inelastic scantering is mentioned by Azbel
et al. [18]. However, the results presented in [18] are not
compatible with the Breit and Wigner approach.
Subsequently results compatible with the Breit and Wigner
formulae were obtained for 2 symmetrical double barrier by
Stone and Lee [#9). They used an imaginary (optical)
potential to describe inelastic scattering. This does not allow
the determination of the forward and backward scattering
probabilities. Reference [19] makes the plausible assumption
{for a symmetric barrier) that 5, = 5, = S, and consequently
T, = 5/2. The approach of [5] introduced in Section 1 allows
us to determine the forward and backward scattering rates
S, and S;. These probabilities are also determined by the
Breit and Wigner formulae, which are mentioned in
textbooks [2] but seemn to have found little attention in solid-
state physics. A discussion of these formulae is presented in
Appendix C.

The key point of Breit and Wigner [1, 2] is the notion that
if there is elastic resonant transmission from channel 1 to
channel 2,

H,_H.u
(E-Ey+;1"
then the weakly coupled inelastic channels (channels 3 and 4
in Figure 1) are also characterized by resonant transmission

and couple to the elastic transmission with partial widths T,
and T,. The backward scattering probability becomes

T,

T.=T,=

[

4]

S, =-——. 10
" (E-Ey+iT o
and the forward scattering probability becomes
T,
s, an

uﬁum,,ulm.

where T, = T, + T, is the tolal inelastic width. According 1o
Breit and Wigner, the width T in Eguations (9)-(11) is the
sum of all the partial rates,
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=i
I'=Ir=T,+T,. 12
~1
T, and ¥, are specified by Equation (6). For the model
studied m Appendix B, the inelastic widths are

Ty=T,= he. 13
Here c isthe probability for a carrier in the conductor,
approacking the junction, to be scattered into the side
branch [=e Figure 1 and Equation (B8)]. By using Eguations
{(10). (11} and (2}, we find for the sequential transmission
probabiey

]
R 4

=7, — 1

lmh-h-wunvm—lu

Here we kave used the fact that T,,, = 4T,T/T7. The total
transmision probability near a resonance is thus

]
Ay
T.=T, PR Tl —
®E-EF+;T

(14

(15

Therefore, the peak value of the total transmission
probability at resonance is T,,,T,/T. Thus the inclusion of
inelastic or sequential events leads to a decrease of the peak
value and broadens the resonance. ]t is interesting 10
compare the fraction of the current carried by the carniers
traversing the structure coherently, T,/T,, = T /T, with the
fraction of the current carried by the carriers traversing the
sample sequentially. 7/T,,, = I'/T. To evaluaie these
fractions we have used Equations (1), (2), {9). and (10). We
see that if the total elastic width and the total inelastic width
are equal, the currents due 10 coherent tunneling and due 1o
sequential tunneling are equal. The smaller the elastic widih,
the smaller is the amount of inelastic scattering [19] needed
10 make the sequential tunneling current dominant.

In the crossover region T, = T, we have not only &
decrease of the peak value of the transmission with inelastic
scattering. but also an increase of the off-resonance
transmnission probability. The model calculation in Appendix
B vields an off-resonance (minimal) transmission probability
T .m IT,. (16)
Using Equations {15) and (16) yields a peak-to-valley ratio of
the order

7 2
Tom x Am..l.v ! - E. (n
N.E.‘na r AN._ + u..uuu Hh
where we have used Equation (5). Thus the peak-to-valley
ratio of the transmission probability decreases rapidly as
sequential tunneling processes become important.

We mention here an additional result which is derived in
Appendix D. The density of states in the resonant well also
depends on the degree of sequential tunneling. For the
density of states in the well we find in the crossover region
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; Ir ’
k.z_ 1 2 (18)

dE) T (E-Ey+iT

Note that the density of states in the well is determined by
the 10wl width I°, Equation (12). Thus, as the number of
sequential tunneling processes increases, the density of states
in the well becomes less sharply peaked at the resonant
energy and broadens. Reference [14], in attempting 1o show
that resonant tunneling and sequential tunneling are
equivalent, uses a density of states which is independent of
the degree of inelastic scatiering.

The Breit and Wigner formalism can only handle
the crossover from the coherent to the sequential
tunneling regime. If the inelastic scattering rate exceeds the
elastic width by orders of magnitude, one must
go beyond this formalism.
4. Coherence corrections of the completely
incoherent transmission
In the limit in which every carrier traversing the well is
scatiered inelastically, the coberent transmission probability
T, vanishes and §, = T, and S, = 7. The total transmission
probability is given by Equation (8). The completely
incoherent transmission is independent of the separation w
of the barriers. Consider now the situation in which a tiny
fraction of all the carriers can execute one or more full
revolutions in the well before losing phase memory. We can
then expect a small correction of Equation (8) by a term
which depends on the phase ¢ = kw accumulated during
well traversal. This correction term is, therefore, sensitive 10
the geometrical arrangement of the barriers. Below we
consider the case where the carriers in the well can execute
at most one revolution before losing phase memory.

Suppose that the carriers have a smatl probability 1 — e,
with ¢ close to 1 to traverse the well without being scattered
in1o reservoir 3. Interestingly, 10 the lowest orderin } — ¢, it
is the forward and backward scattering probabilities which
contain these interference terms, not the coherent
transmission probability. The coherent transmission-
probability T, is easily obtained in this limit. The probability
amplitude for traversal of the structure of Figure 1 from
channel 1 10 channe} 2 is £, = {,v] — ¢ ., and hence

T.= Ty = ' = (1 =T, 19

Carriers which traverse coherently from channel t to
channel 2 and in addition execute & full revolution in the
well have 10 traverse the well at least three times and are of
order (1 — ).

Now consider the sequential tunneling process and let us
focus on the backward scattering probability S,. Consider the
carmiers which are injected by the inclastic scatterer into the
conductor with a negative velocity. A fraction of these leave
the well through the left barrier with amplitude 1, and give
rise to a backscatiering probability S, = 7, 10 lowest order.
Most carriers are reflecied back into the well if R, is close 10
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(a) Maximum resistance and minimum resistance corresponding to
off-resonant and resonant transmission of a double-barrier structure
as a function of . The parameter £ is the probability for carriers
incident on the junction 1o be scattered into the extra reservoir, The
twobarriers forming the well have transmission probability T,=0.05
andT, = 0.01. (b) Ratio of coherent current and sequential current as
a function of € for the double-barrier structure with parameters as in

Figure 2(a).
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1, and a iny fraction of these carniers traverses the well back
and forth, completing a full revolution. The probability
amplitude for a carmier starting in the well and completing a
full revolution is A4 = (VI — ¢ R}V = ¢ R\t
Here V1 = ¢ is the absolute value of the probability
amplitude for a carrier 1o traverse the well without losing
phase {without being scattered into reservoir 3 of Figure 1),

and R;" and R}" are the absolute probability amplitudes for

M BUTTIKER

reflection at the right and leA barmier. ¢ = kw- with w the
width of the well is the phase accumulated during well
traversal, and 3¢ is the phase accumulated during the two
reflection processes. The superposition of the carmiers
escaping directly from the well with amplitude ¢, on those
that escape after one revolution with probability amplitude
1,4 gives rise 10 a combined amplitude £, + 7,4, and hence to
an interference correction proportional to 2 T Re [4], with

Re [4] = (1 = OR"R " cos(2¢ + 24). (20)

Consideration of alf the processes that contribute 1o the
backward-scatiering probability to order | — ¢ gives {see also
Appendix B)

S = T[1 = (0 = XT, + 2R,"R, cos(#))). 21

Here & = 2¢ + Ag is the 1otal phase. In contrast 10 T, the
backward-scattering probability S, is sensitive 10 the
separation of the two barriers. Similarly, for the forward-
scattering probability we find

Sp= To[1 ~ (1 = XT, + 2R)"R}"cos(3))). (21
Using Equations (19) - (22) 1o evaluate Equations 5 and (2)
yields

T\T,
T, +T,

T = (1 + 21 = eXT\T, - RIPRcos(@))].  (23)
For ¢ = 1, Equation (23) gives exactly the result of Equation
(8) for completely incoherent trapsmission. Equation (23) is
valid independent of the magnitude of the transmission
probabilities T, and T, If these are taken 10 be smalt
compared to unity and if wg use in addition Equation (B22),
which expresses ¢ in terms of the inelastic scattering time r,
and the weli frequency » = v/2w, Equation (23) becomes

S 11
“ T4,

(1 = 2¢”"* cos(9)]. {24)

Thus, in the case of strong inelastic scattering 2e7, < |, we
obtain corrections 1o the completely incoherent transmission
which are sensitive 10 the geometrical arrangement of the
scatterers, If the Fermi energy is such that ¢ = (2n + |)x, we
have maximum transmission, and for & = 2xn we have
minimal transmission.

Due to interference effects, the number of states in the
well per unit energy (see Appendix D) is also modified. In
the case of complete phase randomization, the number of
states per unit energy is dV/dE = 2w{dn/dE). A calculation
yields

dN/dE = 2widn/dE)
X [I + (11201 = eXR, + R, - 2R)"R}Pcos(®)),  (25)

- which in the limit of small transmission probabilities

becomes
dN/dE = 2w(dn/dE)1 + 2¢”'*sin’(#/2)). (26}
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The erttanced transmission at @ = (2n + 1) coincides with
ar’ enkanced density of states and the minimal transmission
at ¢ =2nx is accompanied by a reduced density of states.

§. Trawsition from completely coherent to
complietely incoherent transmission

In Secton 2 we discussed the limiting behavior of
compleely coherent and completely incoherent
transmimion. In Sections 3 and 4 we investigated the
departue from these simple limits. In this section we address
the tramsition from one limiting behavior 1o the other for the
entire demain of inelastic scattering. A simple model
calculation is presented in Appendix B, and here we
summanize these results by discussing Figures 2 and 3.

Figuse 2(a) shows the two-terminal resistance
Ri(hie')m T with T, given by Equations (1) and (2)
evaluaied in Appendix B for & two-barrier structure with
T,=08%and T, =0.0] as a function of the coupling
paramedsy ¢. The upper curve shows the maximum
resistance (minimum or off-resonant transmission) and the
Tower cweve shows the minimum resistance (peak
transmagion). ¢ = 0 is the purely coherent limit, and the
minimsm {maximum) resistance is determined by Equations
(3) and {7), respectively. ¢ = | is the purely incoherent limit,
and the resistance is determined with the help of Equation
(8). Foramall ; the minimum resistance is given by Equation
(15) (Breyt and Wigner limit) and the maximum resistance is
determined by Equation (16). An increasing number of
sequential tunneling processes (increasing ¢} leads to a
decreasing ratio of the minimum and maximum resistance
(transmission) caused both by a decrease in the maximum
transmission probability and by a rise in the minimum
transmission probability. Thus sequential tunneling leads to
lower peak values in the transmission, but increases the off-

" resonant transmission. For ¢ close 10 1, only small
corrections remain from the completely incoherent
transmission. These corrections are due to a small fraction of
carriers which can undergo a complete revolution before
ieaving the well, as discussed in Section 4.

Figure 2(b) shows the ratio of the coherent current to the
total current, 7,/7, .. and the ratio of the current due 10
incoherent (sequential) processes 1o the 1otal current, 7,/T..
For small transmission probabilities, a small amoum of
inelastic scattering 2e = 1/vr, > (T, + T,) = 1/vr, makes the
sequential current dominant.

The density of states in the well gives a good indication of
the degree 1o which coherence effects play a role. In Figure 3
the density of states in the well (caiculated in Appendix C) is
shown as a function of E = E, for three different scatiering
rates. For small scattering rates Equation (16) applies. With
increasing inelastic scatiering, the variation in the density of
states is less pronounced. For ¢ = 1, i.e., when camiers are
scattered every time they reach the junction in Figure |, the
density of states in the well is without structure.
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Phase randomization is 2 consequence of inelastic events.
To describe such processes it is necessary to explicitly take
inio account the phase-randomizing agent. To describe
sequential tunneling in terms of a density of states
corresponding 10 the completely coherent case, as in [14]. is
not correct. In order to have sequential tunneling we must
have a phase-randomizing scatterer, and this in turn affects
the density of states.

Admittedly, in this paper we have focused on 2 one-
dimensional (one quantum channel) conduction problem.
and inelastic scattering might have a more drastic effect in
such small systems. The approach introduced here can,
however, be extended to treat more complex situations, as
indicated in Appendix C.

i AMIaa e %

Note added in proof

References [14] and [34] consider a large applied voltage V'
which exceeds the width T of the resonance. References [14)
and [34] find an integrated current which is independent of
the inelastic width T,, when the resonance is centered in the
applied biss range. We emphasize that Equation (15) has a
limited range of validity. For an applied volage large
compared 1o the elastic width T, but small compared to h»,
the current decreases with increasing elastic width I', with a
slope
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Equation (27) is valid for a small inelastic width. The peak-
to-valiey ratio ts smaller than that given by Equation {i7)
and is proportional 10 A%*/TV.
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Appendix A: Coherent and sequential parts of
conductance

Consider the conductor [5] in Figure 1. To derive Equations
(1) and (2) we have 10 calculate the net current which flows
due to a difference in the chemical potentials 4, and u,. The
perfect conductors between the reservoir and the scatierers
are assumed 10 be one-dimensional; i.e.. there are two states
at the Fermi energy, one with positive velocity (from the
reservoir toward the conductor) and one with negative
velocity. Let us consider the case of a low temperature such
that the energy spread k7 can be neglected. The reservoir j
feeds ali channels connected 10 it equally {29] and up 10 the
chemical potential u,. Let us introduce a reference potential
ug which is smaller than or equal 1o the lowest of the three
chemical potentials .. uy, u,. Below the reference potential
#, all states are completely filled and we need 1o consider
only the energy range above u,. The current eminied by the
reservoir j into an' adjacent channel in the energy range u, -

My is

1, = eldn/dENu, ~ u,). - (A1)
Here v is the Fermi velocity and dn/dE is the density

of states (for one spin direction). In one dimension

dn/dE = (dn/dkXdk{/dE) = |{2xhv, since dn/dk = 1/2x.
Thus the reservoir injects into each channel connected to it a
current

I, = am\uﬂbx_:; = k) ) (A2)

To obtain the net currents we must specify the probabilities
of carriers for transmission and reflection at the conductor of
Figure |. Let T, be the probability for a carrier incident in
channel /10 traverse the structure into channel & to reach a
different reservoir. The probabilities for a carrier emitted by
a reservoir 10 be scattered back into the same reservoir are
denoted by R, In the absence of a magnetic field the
probabilitics are symmetric, 7, = 7, R, = R,,.
Furithermore. because of current observation,

R +T,+T,+T,=1, (A3a)
Ta+R,+ T+ Tyy= 1, {Alb)
Ty +Tp+ Ry + Ry =1, (A3c)
T,+Ta+R,+ R, =1 (AM)

Consider now the net current flowing in channel 1.
In channel |, reservoir | contributes a net current
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(e/2xh)1 — R, X, - #o). The incident current given by
Equation (A2) is diminished by reflection at the sample.
Current injected by reservoir 2 gives rise to & current

= (e/22R)T (u, ~ uy) in channel 1. Curremt injected by
reservoir 3 into channels 3 and 4 ZIVeS rise 10 a current
—(e2xh) T, + T Xu, — ko) in channel 1. Collecting all
contributions yields a net current in channel t,

(4
/= m (1 - R, - 12y = Syu,). (Ad)

Here we have introduced the towl transmission probability
S=T,+T, (AS)

for a carvier incident in channel 3 or 4 1o be scattered into
channel 1. The reference chemical potential does not occur
in Equation (A4) since the currents proportional to u, add to
zero because of Equation (A3a). Similar considerations yield
& current in channel 2 given by

L= M.MM (1 = Ry = Ty, - Sems). (A6)
where
Si=Ty+ T, (A7)

is the total probability for carriers incidens in channels 3 and
4 1o be scatiered into channel 2. Finally, the currents in
channels 3 and 4 are found 10 be

[3

3™ 3e7 [(1 - R, - Rouy = Tu, - Tyans), (A8)
e .
\- - ﬂ —A_ - hh& - .uw‘.—u e .u__.-uu. A>Ov

The net current flow in the extra branch consisting of
channels 3 and 4 has 10 be zero, Using Equations (A3) and
the definition equations (A5) and (A7), we find

e

0= L+l = .N”m _a.. + _m.Ltu = Spm — Sl (A10)

and hence the chemical potential #, is given by [5]

oS+ S,
hETS S

(All)

Equation (A11) is a result which is important beyond the
context of this paper. The extra branch leading away from
the conductor and connected 10 the reservoir also can
describe 2 voltage probe, and &y is the chemical potential
which is measured at this probe [28]. Equation (A11)
sencralizes earlier concepts of “potentiometers™ used in
{29-31] because it invokes no assumptions on the symmetry
of the coupling between the lead and the conductor and
because the junction in Figure 1 is treated fully quantum-
mechanically: je., amplitudes are matched, and not
intensities.
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Here we use Equation (A11} 10 eliminate &, from
Equation (A4) or Equation (A6) to determine the net current
flow along the conductor. Current conservation requires
I =}, =-1, Using Equation (A3} and the symmetry T, = T,
yields. afier a litdle algebra,

e 58
T.uul.‘_T +h +Wv€_ u___u,.

Here T, = T,, = T,, is the coherent transmission probability.
These carriers never reach reservoir 3. Thus the total
transmission probability has two terms, as indicated in
Equations (1) and (2). The two-terminal conductance with
the voltages (chemical potentials) measured at reservoirs 1
and 2 becomes

G= IV = elfin, = u,) = (eMT,,

- :»;Aﬁ +

An extension of this approach for conductors with many
slates at the Fermi energy is discussed in [28].

For completeness, and to avoid potential
misunderstanding. the expression for the conductance for
the case of a sizablie spread kT is added here. Assuming that
reservoir j emits carriers with a Fermi distribution

RE = g) = {exp(E — u)kT + 1},

‘a repetition of the steps explained above yields (= G, + (,
with

(Al2)

Se5t v (Al3)

S, + S/

(Al4}

G = (&'/h) ._. dE(-df}dE)T(E) (A1S)
and

dE(-df}dE)S(E) | dE(~dfidE
¢ = ey LAECHEISE) [ dECAPAENSAE)

[ dE(=dfidEXS(E) + S{E)} '

where df/dE is the derivative of the equilibrium Fermi
function fiE - E_).

Appendix B: Solution of specific example

Below we present a calcutation which specifies the basic
ingredients of our approach, the transmission probabilities
T, and the reflection probabilities R. The barriers 10 the
right and left of the junction (see Figure 1) are specified by
2 % 2 s-matrices which determine the outgoing waves in
terms of the incident waves. (Ahernatively, we can also
specify transfer matrices.) The elements of the 2 X 2 s-
matrix are the reflection amplitudes r,, 7} and the
transmission amplitudes 1, = 1] for the scatterer 10 the left
and r;, 7/, t, for the scatterer to the right. Here the quantities
without a prime give the reflection and transmission
ampiitudes for camiers incident from the left and the
quantities with a prime give the reflection and transmission
amplitudes for cammiers incident from the right. These
amplitudes are conveniently expressed in the form
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Iuﬂ\.

= 7 %e (BI)
and

= [R)e"™*, (B2)

= iR}, (B3)

where ﬁ and R, are the transmission and reflection
E.ocnu.__a‘ of .._.n barrier, respectively; ¢, is the phase
accumulated during bammier traversal; ¢, + ¢, , is the phase
change associsted with reflection for n!._...a m.x..t_nu. from
the left-hand side, and ¢, - 4, is the phase change
associated with reflection for carriers incident from the right-
hand side. The phase ¢ accumulated by traversing the picce
of perfect wire between the two barriers can also be included
in the amplitudes given sbove. Below we assume that the
junction (triangle in Figure 1) connects precisely 10 the
center of the well. The following substitutions in Equations
(B1)- (B3) account for the phase increments for traversal
from the barrier 1o the center of the well: ¢, — ¢, + ¢/2,
‘l.lo ..l‘p’ulv‘u.? ONM. n.ulo n.u...O\N
Multiplication of the two transfer matrices associated with
the two scamterers yields a combined transmission probabitity
through the double well structure given by

2
4
T,= ..t_|____.u_||m {B4)
11 =rrl
By using Equations (B1)- (B3} and the substitutions just
discussed, Equation (B4) becomes [3]
T,

- . (BS)
Ta= 13 R.R, + 2R,"R;cos(#)”
where
E=20+4,+d,+e¢,— 9, (BS)

Equations (B5) and (B6) are exact. The phase accumulated
in the well is

¢ = kw = w(ZmE)?/h,

where w is the distance between the barriers and E is the
energy of the incident carriers. To simplify the analysis, we
assume now that it is only the energy dependence of the
phase accumulated in the well which matters, and that the
energy dependence of all the other amplitudes and phases
in Equations (B5) and (B6) can be neglected, Thus

&(E) = 28(E) + A¢, with ¢ determined by Equation (B7)
and A¢ an energy-independent phase. Note that we are only
gﬂi&ﬁ%ﬂ?-%é?iﬂ
only the phase ¢ accumulates dunng well-traversal counts,
then the condition for resonance of the transmission
probability [Equation (BS)] is ® = 2¢(E) + A¢ = x(2n + 1),
where n is an integer. This condition determines the phase
¢ = ¢, accumulated at resonance, and determines through
Equation (B7) the resonant encrgy £, . In the limit of 3|

(B7)
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impenetrable barriers, R, = R, = |, we have A¢ = x, and the
resonance condition & = 2¢(E) + A¢ = x(2n + |} yields the
ladder of eigenstates of a square well, E, = (F'r’/2m)Xn/w)’.
Due to the simplifying assumption made above, the
transmission probability, Equation (BS), exhibits a whole
ladder of resonant states. Below we investigate the behavior
of the transmission probability near one of these resonant
levels. Expansion of the denominator away from ¢ = ¢, ,, for
small transmission probabilities T, « 1, T, « 1, yields
Equations (3) - (6). The transmission is minimal for ¢ =
2rn, and this value is taken as & measure for the off-resonant
transmission probability. For small transmission
probabilities the denominator of Equation (BS) is
{1 + R;”R}% = 4, and hence the off-resonant transmission
is proportional 10 ; T, T, as stated in Equation (7).

Let us now specify the properties of the junction in Figure
1. The junction connects the conductor (channels | and 2)
1o the extra branch (channels 3 and 4). The amplitudes of
the incoming waves in these channels (see Figure 1) are
denoted by ¢, and the amplitudes of the outgoing waves are
denoted by ¢]. These amplitudes are related bya 4 x 4
scatiering matrix 5, such that ¢ = ¥ 5,¢,. A simple choice
is [5)

o VI - Ve 0

viee O 0 3
Il & o 0 -JVi-¢
0 Vi =VT-¢ 4]

(88)

The parameter ¢ plays the role of a coupling parameter and
is later related to the inelastic scattering rate. For ¢ = 0, the
junction completely decouples the extra branch (channels 3
and 4) from the conductor. For ¢ = 1, carriers incident in
channel ! are transmitted into channel 3 with probability 1
and carmers incident in channel 2 are transmitted into
channel 4 with probability 1. Therefore, in this imit all the
cartiers in the conductor approaching the junction reach
reservoir 3. Some detailed results presented below do depend
on the particular choice of the splitter, Equation (B8). We
cannol, in general, expect results which are independent of
the specific phase-randomizing mechanism. In general, all
the matrix elements in Equation (B8) can be different from
zero. Moreover, the matrix elements can be energy-
dependent. As mentioned in (5], this can give rise 10 peaks
in the conductance whose origin is not resonant
transmission.

To obtain the overall transmission probabilities T. R, for
the structure shown in Figure 1, we need to determine four
wave functions ¥,. The wave function ¥, has amplitude | in
channe! j describing incident carriers with a unit flux, and
has amplitude r, describing carriers reflected into channel
and amplitude r,_ describing carriers transmitted into channel
J. From these amplitudes the transmission and reflection
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probabilities T, and R are obtained. A calculation vields the
following results: ’

R, =[R +(l - )R,

+ 2R\"R A1 = Decos(®/1Z1, (B9)
Ry, =R, + (1 - o)'R,

+ 2R\7R1 - ycos(®))/| 21, (BIO)

Ry = &Ry(Z), (B11)
R, = ERJ\ 21, (B12)
Ry= Ry =[1+RR,+2R"R cos(dNZI°,  (B13)
Ty=To=( =T\ T/1Z], {B14)
Ty =T,y =cT/12Z0° (B15)
T, =T, =l - 0GR /1 ZP, (B16)
To=T=ell - TR/ ZP, (B17)
Ta= T =eTyl21% (813
where

[Z¥ = 1 + (1 = oFR.R, + 21 = )RR\ cos(#).  (B19)

If we allow for complex ¢ (complex energy), the
nav_:_.anN.._._.:|Lhuaﬂawz<m=w_.3u:vnn=nae

E= L — i(T,+ T )2. Here the elastic width is given by

T, = —hvlog(R,R,), (B20)
and the “inelastic™ widih by

F,= =2hvlog(l = o). (B21)

For ¢ = 0, when channels 3 and 4 are decoupled from the
conductor we find the results discussed at the beginning of
this Appendix; i.e., the results for T, given by Equations
(BS) and (B14) are the same. and R, = Ry, = | — T,,. The
Breit and Wigner formulae [1, 2] (see also Appendix C) are
obtained from Equations (B9) - (B!8) in the limit
Oe) = XT,) = O(T,) & 1, with the partial widths given by
Equations (6) and (13). The total elastic and inelastic widths
are consistent with Equations (B20) and (B21) in the limit of
small transmission probability and small . The results of
Section 4, the limit of £ close 10 |, are obtained by
expanding Equations (B14) ~ (B18) to first order in (1 = ¢).
Equation (B21) allows an interpretation of the parameter ¢
in terms of an inclastic scattering time; with T, = A/r we
obtain from Equation {B21)

p=] =g (B22)

From Equations (B15) ~ (B18) we obtain for the forward
and backward scartering rates

S, =T+ (1= aR)12Z)%, (B23)
S=:Tll+ (1 -0R)IZ (B24)
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Tdgether with T, = T,,, with T,, given by Equation (B14).
Equations (B23) and {B24) determine the total transrmission
probabihty 7,,,, Equation (1), for arbitrary coupling ¢.
Figures 2{a) and 2(b) are generated with the help of these
resuits,

Appendix C: The Breit and Wigner formulae

The Breit and Wigner formulae determine the scattening
matrix in the presence of a resonance. They are usually
derived in the contexi of nuclear reactions {1, 2] and this
perhaps accounts for the fact that they seem not 10 be
appreciated in solid-state physics. Consider a barrier
connected 10 two perfect wires [4, 29]. In the perfect wires
the Jongitudinal motion is assumed to be separable from the
transverse motion. Thus motion in narrow perfect wires can
be characterized by the quantized motion in the transverse
direction, giving rise 10 a set of discrete energies £ Kinetic
longitudinal energy can be added to the transverse energy 10
give the Fermi energy: £, = Ak’/2m + E, Here we have
used a free-particle term 1o characierize the kinetic energy of
the longitudinal motion, but this is not essential. Thus each
channel j is associated with two states at the Fermi level with
longitudinal velocities v, = £ v{2/mNE, — E). We have N
input channels and N output channels. The set of transverse
energies in the perfect wire to the Jeft of the barrier can be
equal 10 or different from the set of transverse energies 1o the
right of the barrier. Similarly, for conductors with side
branches, we assign 2 set of channels to each branch of the
conductor {5, 22, 28]. For the conductor of Figure 1, N = 4.
The conducting sample mixes these channels; i.e.. a wave
incident in channel j leads in general to outgoing waves in all
the channels. We have used here the notion of channels in a
perfect conducior [29] as an example. The Breit and Wigner
formulae presented below apply quite independently of the
particular properties of the channels, i.c., whether we deal
with plane waves, Bloch waves, or spherical waves. Let us
denote the amplitude of the incident current.in channel j by
g, and the outgoing current amplitude in channel j by a,.
The relation between the incoming waves and the outgoing
waves is given by an s-matrix a; = I/ 5,4, Current
conservation requires the matrix s 1¢ be unitary, and time
reversal (in the absence of a magnetic field) requires in
addition that this matrix be symmetric, s, = 5,. Suppose now
that the barrier contains a state with a long lifetime A/T at
an energy E = E, — iT/2. The key point of Breit and Wigner
is the following: All matrix elements of the s-matrix which
relate 10 the decay of the resonance must themselives be
resonant and have a denominator of the form £~ E, + iT/
2. Below we assume that all the channels of the s-matrix
discussed above couple 10 the resonant state. If this is not the
case. our considerations apply 10 a properly defined and
reduced portion of the s-matrix. The s-matrix takes an
especially simple form if it is expressed on the basis of the
“eigenchannels™ which are related to the channels discussed
above by an orthogonal transformation 0. Consider for
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simplicity a sample (barrier} connected to only two perfect
wires. The eigenchannels are defined in the following way:
Away from the resonant energy, transmission through the
sampie is very small and can be neglected. Thus. away from
resonance, carriers incident on the sampie are {in this
approximation) totally reflected. In general, camiers incident
in channel j are reflected with nonvanishing probabilities
into alt the channels of the perfect conductor. The
cigenchannels are chosen such that the reflection away from
resonance is diagonat. There is an orthogonal transformation
O, which transforms the channels of the lefi perfect
conductor and an orthogonal transformation O, which
transforms the channels of the right perfect conductor. On
the basis of eigenchannels 1he s-matrix away from resonance
is given by s__ = 3_#"""*, where §__ is the Kronecker
symbol and &, are the phases acquired in the reflection
process. On the basis of the eigenchannels, and in the
presence of resonant transmission, the matrix elements of
the s-matrix are of the form

™,

Spn = TI.. - -.h.|.|.|| E + 2 (cn

Jos,
where the matrix elements M, remain to be determined.
The s-matrix is symmetric, and hence M__ =M.
Furthermore, since s is unitary, differing rows of the s~
matrix must be orthogonal to one another. The
orthogonality of rows m and n gives

M., Mo
E-E-ij2 E-E +iI)2

=N
ir nM MM,

(E-Ey+.I"
As shown in [2], Equation (C2) imnplies first that M, _ is real
and second that M, is a matrix which is equal to its own
square. Since M is symmetric, it can be diagonalized, and
since the matrix is unimodular, its cigenvalues are either 0 or
L. If there is no accidental degeneracy of resonant levels in
the sample, all eigenvalues of the M-matrix are equal 10 0
except for one eigenvalue, which is equal 10 1. As shown in
[2]. in this case

M, = JT_TT,

where the T,, are called the partial widths of the channels
and I = 37IT, is the total width of the resonant Jevel. Thus
the set of phases §, n= ), ---, N, and the N partial widths
determine the matrix elements of the s-matrix. The matrix
[Equation (C1)] specified by Equation (C3) is unitary. The
constraint $7F &, = 8, where sind = T2[(E- E) +
(I'/27)'?, makes s_, a special unitary matrix. Using
Equations (C3) and (CI} yields a probabitity

.,

Sy = |8 = s (C4
Bl = EEF+IT ) 73

(«€2)

{C3)
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for m# n and

(E-EY+:(r-T)
(E-Ey+:r

S = 15,07 = (&)
for n = m. Thus the Breit and Wigner formutae, Equations
(C4) and (C5), determine the transmission probabilities and
the reflection probabilities of a resonant scatterer coupled to
A channels in terms of the partial widths of these channels.
For the particular example analyzed in Appendix B, we find
that in the Breit and Wigner limit, Equations (Bt 1), {(B12),
and (B14) ~ (B18) are of the form given by Equation (C4),
and Equations (B9), (B10). and (B13) are of the form given
by Equation {C5). In this example the transformation 10
cigenchannels affects only channels 3 and 4.

As an additional appiication of these results, let us
consider the case of a single resonant well in a barrier
cornected to the left and right to perfect wires (see [16] and
[17]). The perfect wire to the left has N_quantum channels,
and the perfect wire 1o the right has N, quantum channels.
The total number of channels is N = N, + N, The decay into
the eigenchannels on the lefi-hand side of the barrier gives
rise to the partial widths T, and the decay into the
eigenchannels on the right-hand side gives rise 10 the partial
widths T, . The probability for transmission from channel
{on the Lh.s.} to channel / (on the r.hs.) is, according to
Equation (C4. 7, =T, T, AE=-E Y+ _..n Here
=T +T,isthe _oﬁ_ widthand T, = M..,. , is the 10tal
partial width associated with decay of the _.ao_.u_.: state into
the rhs. perfect conductor. and T, = $7 T, is the total
width associated with the decay into :..n Lh.s. unqmoﬂ
conductor. The conductance [29, 32}

& e " N
G= A.}.v:: 1= Aﬂv ,-m._ T,
is casily evaluated and given by

-
h/(E-EY + ([, +T) ()

Here we have evaluated the conductance on the basis of
eigenchannels, which is allowed since tr{r”1} is invariant
under the orthogonal transformations O, and O, discussed
above. Thus, application of the Breit and ¢<ﬁ=2 formulae
immediately yields the key result of Kalmeyer and Laughlin
{17]. in the presence of a single resonant state the
conductance is bounded by e’/4. The maximum value is
obuined if T, = T, A single resonant state, described in the
Breit and Wigner formalism by requiring that the M-matrix
have only one eigenvalue equal to |, can at best provide one
effective conduction channel [33),

Appendix D: Local density of states

In this section we discuss the density of states in the well and
the effect of inelastic scatiering on the density of states. Let x
be the coordinate along the conductor, with x = 0 marking

M BLTTIKER

the location of the junction. The number of carriers in the
segment of the conductor between x and x + dx and in an
energy interval £, £ + AF due to carmiers incident in
channel jis [24, 31]

dN(x) = (dn/dE)AE | g (E, x)|'dx. (D1)

Here (dn/dE) = 1/2xhv is the density of states in channel ;.
The wave function is normalized such that the incident wave
has amplitude 1. In the conductor of Figure { we have a
total of four wave functions, each describing carmiers incident
in one of the four channels. Thus, in the sample of Figure 1,
assumning that the density of states of all the channels is the
same, the number of carmers in an interval from x 10 x + dx
is given by

4
dN(x) = (dn/dE)AE T ¥ (E, x)|'dx. (D2)
el

Let us now apply Equation (D2) to find the total number of
carmiers in the resonant well. This requires that we integrate
the right-hand side of Equation {(D2) over the width of the
well. Dividing this by AE yields the number of states in the
well per unit energy,

r=ufl

dN/dE = (dn/dE) M .bv , dx [$(E. 1))”. (D3}

k] Tam=n
For a well which is wide compared to the Fermi wavelength,
the integration limits are determined by the turming points.
We are not interested in density variations on the scale of a
Fermi wavelength and, therefore, it is sufficient 10 use a
density which has been averaged over a small volume several
times larger than the scale set by the Fermi wavelength
13. 24, 29, 31]. In the well the wave function is a
superposition of plane waves. The averaged square of the
wave function to the left (and right) of the spliter is
determined by a pair of amplitudes, a,, 25, b,, b/,
respectively. For instance, the ucnﬂnnn wave E_._Qmoam to the
left o?rn splitter are given 3 (v, (x)]%) = la M +
_nNC: = e+ _...._C: Ina the () indicate the
spatial average. Because the a and ¢ coefficients (see Figure
1) in this equation differ only by phase factors, either set can
be used. For brevity we do not present this calculation in
detail but only give the final resylt,

dN/E = (dnfdEXwi2X 1/ Z1)
X{(2=eXT, + T) + (1 =eX2 ~ MR T, + R,T)
+2+ o2 - eXR, + R)+ 241 —~)RR,).  (D4)

The number of states per unit energy, Equation (D4), is
shown in Figure 3. Equation (B7) is used 10 obtain the
energy dependence. In the Breit and Wigner limit, Equation
{D4) yields Equation (17). In the limit ¢ = | corresponding
to complete phase randomization, the density of states in the
well is the same as that in the perfect leads connecting 10 the
reservoirs: i.c., Equation {D4) yields dN/dE = (dn/dE)2w.

" Clearly, for a narrow weil with a width of the order of the
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Fermi wavelengih. the approximations used above to find
the number of states in the well are not adequate. The key
point of our discussion, already made in [24), is that inelastic
scatiering affecis the density of states.
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WHEN IS THE HALL RESISTANCE QUANTIZED?

M. Biittiker

IBM Research Division,
IBM Thomas J. Watson Research Center
P. O. Box 218, Yorktown Heights, New York 10598

{ . INTRODUCTION

In this paper, we apply to the quantum Hall effect (1) some elements of a
theory which expresses electric conduction in terms of global transport coeffi-
cients (2). This approach relates transmission probabilities directly to global
longitudinal resistances and global Hall resistances. It is an extension and mod-

Y ification of earlier work (3) with the key distinction that current and voltage

‘ probes are trealed on the same physical principles. As a consequence this ap-
"P‘ proach (2) explicitly reflects the fundamental symmetries of electrical con-
£ PN duction (4-6). This approach (2,6) has recently been used 1o address a wide
:'-:"l range of problems: voltage fluctuations in small metailic conductors (7), trans-

port in ballistic conductors (8), low field anomalies of the Hall effect (9-14), the
effect of phase randomizing events on the series addition of resistances including
resonant tupneling (15), and electron focusing (5). The application to the
quantum Hall effect of this approach (2,6) was noted independently by
Beenakker and van Houten (10), Peeters (11) and the author (16). Remarkably
the generalized resistance expressions found in (2,6) are valid over the entire
range of ficlds. Furthermore, in contrast to other recent work (17,18, 19) on
the quantum Hall effect, the discussion based on (2) does nol invoke any a priori
assumptions about what is measured at a voltage contact. This approach permits
the study of the Hall effect in highly non-uniform samples and highlights the role
of current and voltage contacts. Under special circumstances the theory (16)
predicts simultaneously quantized Hall resistances and quantized longitudinal re-
sistances at values which are not given by the number of bulk Landau levels
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below the Fermi energy. Such anomalous plateaus have been observed in ex-
periments by Washburn el al. (20) and Haug et al. (21). The approach predicts
that contacts arc important, whenever there cxists a non-equilibrium population
of current carrying states (16), A striking demonsiration of this effect has been
given by van Wecs et al. (22). Experiments by Komiyama et al. (23) also re-
quire a proper treaiment of the contacts and point to extremely long
cquilibration Jenghts. Van Wees ¢t al. (24) have demonstrated the suppression
of the Shubnikov-de Haas oscillations if current is injected or detected with a
point contact. Very small samples, as observed by Chang et al. (25), exhibit
fluctuations both in the longitudinal resistances and the Hall resistances (26),
The longitudinal resistance can even be negative (25,27). The approach ad-
vanced here invokes lransport along edge states (28,29). A direct test of
transport along edge states is provided by the analysis of the Aharonov-Bohm

effect (30). Motion along edge states leads 1o the prediction (16,18) that the _

Aharonov-Bohm effect is suppressed in the quantum Hall regime for ring struc-
tures which are wide compared to a cyclotron radius, and this has indeed been
observed by Ford et al., Timp et al., van Loodsrecht et al., and van Wees et al.
(31). Aharononv-Bohm like oscillations require backscattering either in the
bulk (18) or at the contacts (19). The suppression of the Aharonov-Bohm ef-
fect is important, since some of the pioneering papers do invoke the sensitivity
of a two-dimensional electron gas to an Aharonov-Bohm flux (28.32) 10 explain
the quantum Hall effect. Below, we address the question posed in the title of
this paper by discussing a few representative simple examples. We are con-
cerned with situations where electron motion can be completely described by
edge states with localized interactions between them. More complex situations
at arbitrary fields can be analyzed computationaily as is nicely demonstrated by
the work of Ravenhall ¢ al. (12) and Kirczenow(13). Finally, we address some
older experiments, which by measuring voltages at interior contacts, have led to
the conclusion that current transport cannot be along edge states. We point to
a differing interpretation of these experiments,

Il. GLOBAL RESISTANCES

Fig. Ia shows an electric conductor consisting only of resistive elements and
connected to a number of terminals at chemical potentials ppi=1234.. The
terminals are sources and sinks of carricrs and energy and are assumed to have
a density of states so large that the current density can always be assumed to
be zero. The terminals are at equilibrium. The currents incident from the ter-
minals on the conductor are related te the voltages Vi=pi/e by the
conductances {33),

i

The G; i in Eq. (1} are global conductances; they describe conduction from one
terminal {0 the other. A quantum transport theory is obtained by spacing the
terminals so closely that electron motion from one icrminal to the other is
phase-coherent. The conducior scatiers carriers only elastically. Inelastic,
phase-randomizing and energy dissipating events occur only in the reservoirs,
We can then follow (3) and view (he conductor as a target which permits trans-
mission and reflection of carriers. Ref. 2 finds for the currents I; incident on the
conductor,

I = Tt:‘ [(M; —R;)u; — ZTij"j]' (2)
i

where M; are the number of channels in reservoir i and R;; and Tij are the total
probabilities for reflection at terminal i and the total probability for transmission
from probe j (o probe i. Comparison of Eq. (2) and Eq. (1) taking into account
that each row (and colum) of the matrix defined by Eq. (2) adds to zero, yields
Gij - (e2/h)Ti-. In a configuration where reservoirs m and n are used as a
source and sinL and contacts k and ! are vollage probes, the resistance is
amn.kl = (ug — py)/¢l. Here | = Im = — I, is the current impressed on the
sample. At the voltage contacts, there is zero net current flow, Iy = ll = 0.
These conditions on the currents determine the resistance (2,6)

Reonia = (/) Ty, Ty =T, T,)/D. 3

D is a subdeterminant of rank three of the matrix formed by the coefficients in
Eq. (2), which multiply the chemical Potentials. All subdetrminants of rank
three of this matrix are equal and independent of the indices in,nk, and |.
Microreversibility, implies T;j(B) = Tji =B), R;i(B) = R;;( ~ B). Using this in
Eq. (3) gives rise to the reciprocily of four-terminal resistances,
le_mn(B) = an,k!( —B). We cile here only two recent experimental dem-
onstrations of this symmeltry (4,5), which is a manilestation of the Onsager-
Casimir symmetry of the transport coefficients of Eqs. (1} and (2), and refer the
reader 10 (6) for additional references. Ref. 6 discusses conductors with more
than four terminals and shows that a mapping exists such that a generalization
of Eq. (3} applies. If the terminals cannot be assumced to be closely spaced, fic-
litious contacts can be used (o bring incoherence into the conduction process
(14,15) or alternatively inelastic scattering has Lo be incorporated in the calcu-
lation of the globai conductances from the outset (7). A derivation of Egs. (1-3)
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Stone and Szafer (34).
l. THE QUANTUM HALL EFFECT

Let us next consider how the quantum Hall effect is established., For the
scope of this paper, it will be sufficient 10 assume that ¢lectron motion occurs in
a potential eU(x.y) which varies slowly compared to the cyclotron radius. The

states at the Fermi energy Ep are then determined by the solution of the
equation

Ep = fwn + 1/2) + eU(x,y) (4)

where n is a positive integer and x,y is a path in two-dimensional space. We

emphasize, thal it is the equilibrium potential eU which matters, i.c. the potential

in the absence of a net current flow (p) = py = pq = ug). Eq. (4) admits two
types of solutions: There are open paths which necessarily originate and termi-
nate at a contact. In addition, there are closed paths. We refer (o the open paths
as "edge" states since typically the open states form close (o the boundary of the
sample. In Fig. 1 the open paths are indicated by faint solid lines. At zero
temperature and in the absence of tunneling between open states and the closed
paths it is only the open paths (cdge states) which contribute to electric con-
duction. 1t is the connection of the contacts via edge states (open paths) which
determines the measured resistance. Each edge state provides a path along
which carriers can traverse the conductor without backscattering (16). If

Fig. I. (a) Conductor with Hall probes. (b} Conducior with barrier reflecting
K edge states.

cach ol Lhe incident edge states carnes a unit current (is full), all outgoing edge
slates carry also a unit current (are full). Given N edge states, the total trans-
mission  probabilities in  the conductor of  Fig. la are
T4y = N, T34 = N, Ty3 = N, and T4 = N. All other T;; are zero. The total
teflection probabilitios in the absence af internal rofotidn are Rjj=M; - N
The Hall resistance 31 342 is determined by T4 1T23 —T43T2 i which is e(]ual
1o N2. Evaluation of the 'subdeterminant yields D = N3. Al Hall resistances of
the conductor of Fig. la are quantized and yield + h/e2N. The "longitudinal”
resistances (for example 8?12'43 Y are zero. Note, that the resistance is deter-
mined by states at the Fermi energy only.

1V. ANOMALOUSLY QUANTIZED FOUR-TERMINAL RESISTANCES

There are many arguments which can be put forth to explain the quantum
Hall effect. To test such arguments, they should be applied to make predictions
for situations which are not ideal (35). The discussion given above can easily
be applied to the case where various current and voltage probes are intercon-
nected with the result (hat the two-terminal resistance is
R, 2 = (h/e2)(p/q) with p and q integers as found experimentally by Fang
and Stiles (35). Below we analyze situations where the connection of edge
states to various contacts is changed in a well controlled fashion. Fig. 1b shows
a conductor where a gate creates a barrier o carrier flow. For a certain range

of barrier height K edge states are reflected. Application of Eq. (3) predicts
Hall resistances (16) . ‘

h 1
R wf{—)——— 5
13,42 2 (N=K) (5)
Ryp13(B) = K5 45( ~B) = (L) B2k (6)

e ' N(N-K)

and quantized longitudinal resistances (16) which are symmetric in the field,

-

v " h K
Ry543(B) = B s( =B) = R4y 2(B) = (— ) ————.
1243 12,43 43,12 2 N(N-K) )]

All other four-terminal resistance measurements on the conductor of Fig. 1b are
zero. The plateaus predicted by Eqa. (5-7) have been observed in strikingly
clear experiments by Washbum et al. (20) and Haug et al. (21). Interestingly,
van Houten et al. (36) found Eq. (7) to be a good approximation to the low field
four-terminal magneto-resistance of a constriction, if there is some equilibration
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S0 far we have assumed that carriers which reach a C(.)l"llut.‘l. [rom_ ll.u: interior
ol the sample can cscape into the reservoir with prut?ubnlnly i. 'Ijhls‘ is called a
‘contact without internal reflection (16). Currcspondlngly: il carrlers‘apprloach-
ing a contact have a probability of less than | to escape into the re:..er\fmr. weI
have a comact with infernal reflection, A cufrcpl source com:ac-t with mte:;n.;
reflection populates edge states in a non-equilibrivm rashlfm. similar to the 2'"1-,
rier discussed above. 1f contacts with no internal reflection and contacts ‘mtn
internal reflection alfernate along the perimeter of the san'tple.ali Hal} resist-
ances are still quantized (proportional to 1/N) and all_ longltudlqal resmlance's
are zero (16). But if two contacts with internal reflection are ad]acenll there is
at least one Hall measurement which depends on .lhe detailed sc‘:auenng prop-'
ertics of the contacts. A clear demonstration of this has come with the work o
van Wees et al. (22). They consider two contacts spaced closcl_y compared to
an equilibration length. The width of the cgmacls can be varied and lhu; a
barrier is created at the contacts which permits only a limited number of edge
states to transmit. Fig. 2a shows a particular silu:.nmn. where N-K edge states
transmit at contact 1 and N-L edge states transmit at contact 2. The'HaIi re-
sistance 13.42 18 determined by the number N of bulk edge_ states, §;‘t;)ce car-
rier flow is (rom contact 1 to contact 4 and contact 4 prm:ndes equili ration.
But if carrier Mow is from contact 2 to contact 4 the Hall resistance is

3
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Fig 2. (u) Conductor with two contacts with internal reflection. {b) Conductor
with barrier and two weakly coupled contacts.

~

where M=min(K,L). It is the contact which provides less reflection, i. e. which
exhibits the larger conductance which determines the cutcome of the measure-
ment (5,22).

Let us briefly return to the conductor of Fig. |b. Clearly, the anomalous
guantization {ound in the conductor of Fig. 1b also hinges on the properties of
the contacts (at least as long as the contacts are within an equilibration length
of the barrier). To show this, consider the conductor in Fig. 2b where two of
the contacts are separated by barriers from the main conducting channel. If this
barrier forms a smooth saddle, the contacts interact only with the outermost
edge state. Let the probability for transmission from this contact to the outer-
most edge be Ty < 1 at contact 1 and Ty < 1 at contact 3. The Hall resistances
are anti-symmetric in the ficld and given by (h/e2)1/(N — K} independent of
Ty and Ty. All longitudinal resistances are zero (1) in contrast 10 the example
discussed above. That this is so is seen by inspection of Fig. 2b. It is only the
outermost edge state which is measured and this state penetrates the barrier.
These simple examples show the significance of the properties of contacts. This
of course is only true as long as the contacts are close enough 1o the barrier to
sense the differing population of the edge states. If the contacts are further than
an equilibration length away from the barrier then the outcome of the measure-
ment is independent of the properties of the contacts and given by Eqs. (5-7).
Komiyama et al. (23) have performed experiments on conductors with contacts
which exhibit internal reflection. (The contacts in these experiments are prob-
ably much more complex then the simple exampies discussed here). These ex-
periments are interesting in many ways: they demonstrate that an equilibration
of the population of edge states does not occur even over distances of several
hundred pm. Furthermore, they drastically demonstrate the highly non-local na-
ture of conductance in the quantum Hall regime. The absence of longitudinaj
resistance in Fig. 2b is closely related to a recent experiment by van Wees et al.
(24) which demonstrates the suppression of the Shubnikov-de Haas oscitlations
by selectively populating or detecting edge states with a point contact.

V. INTERIOR CONTACT

The approach advanced here which emphasizes the transport along edge
states, which is supported by the experiments described above, has been ob-
jected to in the past on seemingly clear experimental evidence (37-40). Cape
{40) writes "There is considerable confusion about this question, due mainly to
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poes on to defend a classical current distribution pattern based on the notion of
local clectric conductivitics oy, and oy, A number of experiments have been
performed with contacts in the inlerior of the conductor, as shown schematically
in Fig. 3a. Even for ficlds at which the Hall resistunce is quantized, the voltage
measured with reference Lo an interior contact exhibits large fluctuations as the
field is increased through the platcau. It is argued Lhat since carrier molion in
high magnetic { iclds is along equipotential lines, the measurement of a voliage
which differs from that of the current source of curreat sink in the interior of the
sample indicates current flow in the bulk of the sample. Below we point out that
the vollage measured at an interior contact can exhibit large swings without an
appreciable change in the current fiow patlern.

The conductor of Fig. 3a has three reservoirs and il is, therefore, sufficient
to consider Eq. (2) fori=1,2,and 3. In the presence of zero net current flow
into reservoir 3 the chemical potential is (14)

Ty +Ta

(L))
Ty +T32

Hy =

The measured chemical polential is determined by the probabilities of carriers
entering contacts 1 and 2 to reach contact 3. The bottleneck for this processes
is the transmission from the edge states Lo the contact. Motion along the edge

e

Fig. 3. (a) Conductor with interior contaci. (b) Typical energy spectrum of the
conductor. The arrow indicates the position of the contact.

form the edge stales lo the contacl can occur via quantum tunneling and al
higher temperatures via Mott hopping through impurity states. We can thus as-
sume that the transmission probabilities Ty and T3 are extremely small. The
current exchanged between the edge states and the measurement reservoir is
negligible compared o the eurrom flowing alany Vhe cdgea. Dwespiie Jhe
minuscule current which flows from the upper edge 1o the lower edge the
measured chemical potential exhibits very large fluctuations. Indeed if
T3p << T3 << N, the measurement yicids a potential u3~ #) and if
Ty < < Ty < <N, the chemical potential is uqy ~ py. Large swings in the
chemical potential of interior contacts are indeed experimentally observed and
in macroscopic conductors are likely due to small but large scale non-
uniformities of the sample which for some fields make a Mott hopping path 10
one edge more likely than to the other. Fig. 3b shows the spectrum of the con-

_ductor in the vicinity of the interior contact. The interior contact is taken to be

closer to the lower edge and in Fig. 3b its position is indicated by an arrow. If
the Fermi energy is slightly above the bulk Landau level N (onset of the N Hall
resistance plateau) carrier flow to the upper edge is more likely since there are
more impurity states available. The measured chemical potential is slightly less
but close to g1. As the magnetic field is increased (the Fermi energy lowered)
the density of impurity states between the contact and the lower cdge increases
and this path becomes favorable. Hence the potential at the interior contact
approaches that of the lower edge and is closer to pj. In large samples it is only
the average impurity distribution which counts. In smaller samples we can ex-
pect the sample specific impurity distribution to become important and lo
produce very irregular chemical potential fluctuations (7). If additional exterior
contacts are added to the conductor in Fig. 3b, our model gives, in complete
agreement with experiment, that a two terminal measurement, using an interioc
contact and an arbitrary exterior contact (without internal reflection or arbitrary
contacts but spaced further apart than an equilibration length) does not depend
on the extesior contact. That is because motion along the edge occurs without
resistance. If open edge states were to reach the interior contact the resistance
would be of the order of h/eZ and not as experimentally obscrved in the mega
ohm range.

Transport along edge states combined with a formula which expresses re-
sistances in terms of global transport coefficients (2,6) leads to an appealing and
simple picture of the quantum Hall effect and is applicable to a variety of highly
non-uniform sample geometrics.  Recent experiments by Chang and
Cunningham (41) indicate that an extension of this approach to the fractional
quantum Hall effect should also be possibie.
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