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1. INTRODUCTION

Modern methads of epitaxial growth,!” the Molecular Beam Epitaxy (MBE} and the
Metallo-Organic Chemical Vapor Deposition (MOCVD), have provided the capability of
fabricating a hugh variety of thin (5 - 100 1) layers of uifferent semiconductor compounds
on a substrate. with interfaces of atomic precision. These semiconductor heterostructitres
generate a new set of pbysics as well as devices. These systems can be separated into two
vlasses:

1. Heterojunctions and quantum wells: The former is composed of two compounds.
denoted by A and B, with electrons (or holes) confined at the interface. The latter is
a sandwich of the form ABA, where the central fayer may or may not contain charge
rarriers depending on whether the system is doped or undoped. In both heterojunctions
and quantum wells, the charge catriers are confined in two dimensions. The special features
are high mobility, discrete levels in high normal magnetic fields and strong electron-electron
interaction because of the enforced confinement. [n these lectures, we shall examine the
consequences of these characteristics.

2. Superlattices: A superlattice is composed of a periodic array of semiconductor
compounds, e.g. of the form ABAB. .., in thin layers. Tunneling between barriers i3 an
important characteristic. DBy contrast, a multiple quantum well of similar composition.
ABAB. ... has wide barriers so that carriers are confined to separated wells. While some
features of experimental observations can be explained by the simple Kronig-Penney maodel,
for many important electronic properiies in the superlattice the role of the interface is

crncial, We shall stndy some af these 1ssues here.

Tn section 2. the basic electron properties due to confinement in a simple quantam well
mwdel are presented. Justification ol the square well mordel in terms of an extension of the

cffective mass Lheury ig deseribed in section 30 A particularly important concept. which

determnines the electronic behavior across an interface, is the band-edge offset, which is the
change in the energy of the bulk conduction hand minmimum or the valence band maximum
on crossing from one semi-infinite medium into another while the electronic behavior in
cach region is kept the same as the corresponding bulk semiconductor by some means. We
examine the physics which determines the offset in order to understand the theories for
caleulating the offset as well as the empirical determination. [n section |1, consideration
of the relative positions of the valence and conduction band edges of the two constituent
compounds leads to a variety of eiectronic behavior, which 13 conveniently classified into
three types of quantum wells and superlattices.

Section 3 covers the clectronic structure in superlattices, including both the Kronig-
Penney model and the mixing of electrons from different valleys. Section 6 studies the
effects of a large magnetic field. A magnetic field normal to the interface separates the
subbands into discrete Landauy levels, producing striking observable properties. A magnetic
field parallel to the interface controls the crossing of the interfaces and, thus, provides an
excellent means of studying tunneling through a barrier.

The lectures up to this point deal with the effect of the heterostructure oo the electron,
namely the one-electron properties. The rest of the lectures deal with many-body etfects.
The doped quantum well is a superb laboratory [or studying many-body effects because
of the ease with which the paraneters of the system can be changed by applying an elec-
tric leld, a maguetic field, or a stress. Section 7 examnines the self-energy effect, which is
particularly Jramatic as a function of a normal magnetic field. Photo-lurmnescence is an
important tool in the characterizalion of electronic states of the quantum wells and super-
latlices. Section 9 investigates in some detall Lthe processes involving in photo-luminescence,
including relaxation mechanisms by phonon scatterings and by shake-up of a Fermi sea.
Ulie synthesis of the one-electron subbands and the many hody effects leads 10 understand.

ing of a beautijal array ol phenvmena ohserved i lnminescence experiments,



2. BASIC ELECTRONIC PROPERTIES IN QU AN-
TUM WELLS

2.1. Typical Band Structure of Bulk Semiconductors

Many of the electrome properties in a quantum well can be extracted from the elec.
trons aud holes near the band edges in a bulk semiconductor, using a modified effective
mass approximation.t?) For a typical direct-gap semiconductor, such as GaAs (Fig. 1}, the
conduction band edge wave function is s-like (I} ) and the valence band edge is p-like ([';5)
with a three-[old degeneracy.!® Taking into account the spin-orbit interaction, the s-like
[, states become T'y, which are still a total angular momentum J=1/2 doublet. The p-like
states are split into [y, or J=3/2 st;tes with a four-fold degeneracy, and T'; states, or
J=1/2 with a two-fold degeneracy. The spin-orbit spiitting is generally large enough for
the higher energy [y states to be considered separately in a qualitative consideration but

not so large that in quantitative calculations ['; can be neglected.
2.2. Electron Confinement

‘The basic principle is simple. In a quantum well of, say, Al:Gay_;As/GaAsfAl Ga,_ As,
thie conduction band edge energy of GaAs lies in the band gap of AlGaAs. Thus, a con-
duction electron in GaAs will not be able to escape deep into AlGaAs and is thus confined,
and its energy level is quantized (¥ig. 2). The conduction band edge of the two compounds
form a square well putential from which the normal (z-axis) motion quantization can be
calculared. The ju-plane motion is free-electron like with the conduction band effective
mass m”. The effective mass equation for the envelope function is given by
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Phe resulting discrete subbands as functions of the momentum paraliel 1o the interface

plane ave shown in Fig. 3 with a coustant density of states to each subband. More ciaborate

boundary conditions across the interfaces are not essential when the conduction band
cdges of the Lwo semiconductors are close to cach other but are necessary when the band
ollsets are comparable to the band gaps, such as in [nAs/GaSb or IuSb quantum wells.

The sandwich structure of undoped semiconductors contains no carriers and is called
an undoped quantum well. If the outer layers of the quantum well {AlGaAs in aur present
example)} are doped with donora {acceptors), electrons (holes) will be trapped in the GaAs
well. A spacer layer of undoped AlGaAs between the doped barrier and the GaAs well fur-
ther separates the carriers from the doping impurities and thus achieves very high mobility.
This technique of introducing doping is called modulation doping.t*!

Because Lhe dimension of a quantum well is between the microscopic (~ 1A) and the
macroscopic (1 um) scale, a number of typical dimensions should be kept in mind. For a
quantum well of thickness of 1004, the typical wave-vector is about 10-3/ X. For an electron
density of 10" ¢m~?, the Fermi energy is of the order 10 meV for the effective mass m* of
0.1 times the iree electron mass. [n a magnetic field of 1 Tesla, the cyclotron resonance is

about 3 x 10! Hz or 1 meV for the same effective mass.

2.3. Hole Subbands

A [requently used approximation for the valence bands is two sets of parabolic bands, one
with a heavy effective mass my,, thus called the heavy holes. and one with a light mass, g,
called the Llight hoies. {For GaAs, mus >~ 0.4 and me = 0.1.) While this approximation 1s
certasnly simple in concept, it does not even reproduce significant qualitative features of the
hole subbands in a quanturmn well. We shall avoid this approximation. 1 hope to convince
you that the complex of degenerate valence subband is not that difficuit 1o visualize and
that cut of it come some very nice pliysics,

To deduce the valence subbands in a heterostructure, we again start with the hulk

Latel strueture, Consider only the set of Tour bands degenerate at the top of the va



jence hands at [y (J=3/2). Represent the wave function of a state by four compo-
nents, defined by the z-compenent of the angular momentum (normal Lo the interfaces),
my = 3/2.1/2, —1/2.=3/2 The k.p Hamiltonian was deduced by Luttinger'® from sym-
metry considerations. For the quantum well, the motion parailet to the interface again has
plane wave for all four components of the wave function with wave vector k = (&5, k). The

4 x -+ Hamiltonian matrix has the form

P+q -5 R 0
A 0 R
H, = 9 . {2)
oAl 0 P-Q S
0 Rt st P+Q

where:
2 2 2
PEQ =~ F ol + V() ¢ gl £ ) 4K
= -2 Ak, 7 =1in+)
Ra= 2V3ukl,  p=in—m)
S = VI L2 ky =k iky
The y's are the Luttinger parameters for the valence band, m iy the free electron mass.
The diagonal terms £ £ & vontain, in order, the z-components of the motion with the
effective square well potential, the Kinetic energy terins in the x-y plane. The expressicn
for R is called the cylindrical approximation since it preserves the rotation symmetry about
the 2 axis for the Hamiltonian. For the full Luttinger expression. the apisotropic correction
1, must be added 10 the /i terms.
The structure of the Luttinger Hamiltonian can be nnderstood as follows. [n the cylin
drical approximation (neglecting the f¢, terms), the formn of the Hamiitonian. quadratic
in ke k, ko= 1—71- conserves angular momentn about the z-axis. ky = ko % ik, are

womorphons to the angular momentum rassing and lowering operators. &, does not affect

the z-component of the apgnlar momentum. For example,
<3H|2> = Sk k.. h

Since the spin my is raised from 1/2 to 3/2 (in units of A}, the orbital angular inomentum

must be lowered by unity and, hence, the factor k_. Stmlarly,
<32AHI-1/2> = k%, (4

{neglecting the R4 term in the cylindrical approximation), lowers the orbital angular mo-
mentumn by 2 to compensate for the increase of the spin. < 3/2|H| - 3/2 > would require
three factors of k_ and, therefore, vanishes in the quadratic approximation.

If the off-diagonal terms of the Luttinger Hamiltonian are neglected, we have a parabolic
approximation for holes, but note the essentiai difference with the naive version described
at the beginning of this section. The m; = *i/2 components are degenerate, having a

parabolic energy dispersion having an effective mass in the z-direction as heavy:

1
LT — (9
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If one of the my = £3/? components of a state dominates. we might refer 1o the stale

as a heavy hole state. The effective mass components of the “heavy” hole parallel 1o the
inerface plane are light:

1

— (5)
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Similarly, the my = £1/2 components yield the light holes with light mass along the z-axis

1 -
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aned moderately heavy mass parallel to the interface plane
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For {iads, the Luttinger parameters are 5, = 6.35, 12 = 2.10, aod 73 = 2.90. The heavy
hole masses are ey, = 038 and my = U115 The light hole masses ate my, = .04 and
gy = V.21

In a layer bounded by impenetrable walls, the Luttinger Hamiltonian can be solved
analytically.!™ In the following, we shall concentrate on the AlGaAs/GaAs system, for
which the buundary conditions of continuous wave function components and their gradients
are quite adequate for bound hole states in GaAs.®

Since k = (k;, k,) remainy a good quantum number, in the center of the two dimensional
Brillouin zoue, & = 0, the Hamiltonian becomes diagonal and the states are eigenstates of
my (£3/2 lor heavy holes and +1/2 for light boles). These states are used as the basis
set in the mini k.p method lo obtain all the subband states.!® While this basis set may
not be the best for computational purpose,®~!*} it can serve that purpose and, moreover,
it serves as a useful way 1o visualize a general valence subband state as a mixture of m,
states due to k.p matrix elements. We shall demonstrate later how this method can be
used to understand the optical transition between the conduction and valence subbands.

[n the Luttinger Hamiltoman, if the parameters v, and vy are nearly equal, then the
fi, term proportional to u can be dropped. The energy subbands are isotropic in k, the
wave-vector parallel to the interface plane. This is the approximation referred to above as
the cylindrical approximation. The g term, though small, can have an important effect in
sume cases. For example, in the leterojunction there s spin splitting of the top heavy-
hole subbaud. One component has a nearly circular Fermi surface and the other is aearly
square when the g term is included . Ou the other hand, where averages over k about the
z-axis are involved, such as in the optical spectrum or in a Landau level, the cylindrical
approximation is adequate 't

Figure |, after Ref. 13, is a typical example of valence subbands in an undoped Al-

Guds/GaAsfAlGaAs quantum well. Under the cylindrical approximation, the bands are

1

isutropic in k. At k = 0, the states are cigenstates of m {h for £3/2 and ¢ fur +1/2).
I'he subband index is given by integers starting with 1 in descending order of the energy.
[t vhe figure. only the Lop two heavy hole bands and the top light hole band are shows.
I'he dot-dash lines are in the para’olic appreximation in the sense of neglecting the off-
diagoual terms (S and Rj of the Luttinger Hamiltonian. Note that the heavy hole bands
iy = £3/2) have a lighter in-piane mass than the light hole bands (m, = +£1/2). When
the off-diagonal terms are included, the proximity of the second heavy-hole band pushes
up the 1€ light hole band so that, for small &, the light hole band is actually electron-
like.® Although the finite k states are mixtures of different m, states, the subbands are
unambiguously labeled h or ¢ because of their lineage at & = 0.

The 1A and 1¢ subbands look as if they might cross in some systems and the k.p terms
split them apart again. Examination of the wave {unctions show that at % values larger
than the uncrossing point, the 14 band is dominated by the m; = +1/2 components and

vice versa.

3. INTERFACE EFFECTS ON ELECTRONS

The simple potential models described in the last section lead to electron subbands for
the GaAs/AlGaAs sysiems which are well verified Ly experiments, some of which we shall
discuss below. There remain systems which cannot be described by such simple effective
potentials. Even for cases where the models work, one may ask why, knowing the fact that
the effective mass approximation is usually derived for a potential additional 1o Lhe crystal
potential which is slowly varying. The square well potential due to the heterostructure
coutains abrupt jumps. [u this section we describe a theory which extends the cffective
inass theory to abrupt ideal interfaces'® and then give an account of the theoretical concept

of band offset and its empirical determination.



3.1. Effective Mass Theory for Heterostructures

Covsider the electron motion governed by a one-particle Schradinger equation with
the potential given by the crystal potential plus any contribution from charge distribution
and due to the exchange-correlation effect g /a the density functional theory,!' The het-
erostructure is conceptually divided into bulk homogeneous semiconductor regions bounded
by interface regions consisting of 1-3 atomic layers. (See Figure 5.)

[n the buik region, the electron potential has a large component due to the periodic
lattice potential of the homogeneous semiconductor and a spatially gradually varying po-
tential due to charge redistribution and external fields. The effect of the crystal potential
18 accounted for by expanding the electron wave function in this region in terms of Bloch
waves of the periodic potential. For energies close to the band edge, the linear combination
is approximated by an amplitude modulation of the Bloch waves near the band edge. The
envelope function then is governed by an cifective Schradinger equation with the effective
potential given by the slowly varying component only.

[ connecting the wave function from oue bulk region to another, the true wave function
and its normal derivative must be continuous throught the interface region. It is then
nuportast to remember Lhat the bulk region is finite and the Bloch waves in each region
consist of evanescent as well as propagating waves. In the interior of the bulk regions, the
envelope function s a modulation of the propagating Bloch waves. The evanescent waves
contribute only at Lhe ioterface.

The slowly varving component of the putential is unimportnt in the narrow interfuce
region. o the language of the scattering theory, the propagating Bloch waves in one bulk
region are seattered inte dilferent channels of Bloch waves i a neighboring region. Tle
“oetlicients of the S.matrix may be used to determine the boundary conditions for the

evelape Tanction, In Ref. 20 examples of construction of ¢he S-malrix are given for the

model of an interface being a geometric plane, The general concept applies to any model
of the interface. The presence of the evanescent waves means that, a prori, there is no
reason why the envelope wave function or its derivalive need he continuous. Examples will

Le given in the following section.
3.2. Band Offsets

Consider a heterostructure of two dissimilar semi-infinite semiconductors. In the flat-
band condition described in the foregoing subsection, an electron in one of Lhe two butk
regious will be like in the corresponding bulk semiconductor. Let the difference in valence
band edge energy between the two bulk regions be AF,. The electron at the higher lying
valence band edge is connected to the propagating Bloch waves in the other bulk region.
The electron at the lower valence band edge has, in the other region, an evanescent wave.
The two states can be simulated by the effective mass potential step, AE,. This quantity,
called the valence band offset, is clearly a fundamental input ta the effective potential model
for the heterostrncture. [T the band gap difference between the same pair of semiconductors

is denoted by A, the conduction band edge is given by
AL = AF, - AL, (9)
The offset is often imeasured as a fraction of Lhe band gap difference, e,

Qo= AL/ANE, {10}

What contributes o the valence band offset” [n a heterastructure, nsually a superlatbice,'t !

Lthe electronic charge density is determined self-consistently in the density functional theary. (!
Che resulting self-consistent electrostatic potential has a constant, el average in each hulk
region, The difference hetween the potential averages in Che Ltwo bull resions, Ad, s due to
the dipole laver formed from re arranging the hulk electron deasity in the interface region.
lo cach bidk semiconductor, the valence band edge energy is then caleulated refative to the

1



same potential cell average. Let the Jdifference of the bulk valence band energy be A£Y.

The valence band otfset is the sum
AE, = AEP + Ap. (11)

While the theoretical contributions to the band offset are now clear, a seltf-consistent
jocai densily approximation calculation of the superlattice requires large scale computation.
What we need is a simple model which coutains the essence of the contributions to the band
offset. It is found!'®'®) that the dipole term, 2@, is small compared with the bulk diiterence,
AEB. This agrees with the empirical lindings of weak dependence on the orientation of the
interface and of transitivity: the offset hetween A and B is the sum of the offsets between
A and C and between C and B. Tersoff*” gave a nice reasoning for the dipole term to be
small. Av stated above, the valence siates in the range AE, above the lower valence band
edge penctrate into the interface region with decaying evanescent waves, which constitute
one compoenent of the interface dipole. Similarly, the decaying waves from the conduction
band offset will also contribute Lo the dipole. This dipole layer then acts to lower the offsets
in order to minimize the dipole inoment and thus to lower the electrostatic energy.

Two similar models!'516 are designed to neglect the small dipole term and to define the
bulk potential zero in order to determine the bulk valence energy difference, AED. In cach
bulk region the energy zero is defined by a potential average. While the same averaging
method must be used in both regions, the definition of the average is not unique. (1) Start
with the superposition of neutral atomic spheres."®! The potential outside each sphere goes
to zero, which will be taken as the zero of energy for the bulk region. (2) The patential
zero is defined by the periodic electron density of the bulk in each Wigner-Seitz cel) (46
There 18 also a model™® which takes into account Lhe orientation dependence of the dipole
Lerrn.

There is a variety of empirical inethods to determine the band offset:

14

I. Optical spectra of excitons. Because of confinement of the electron and bule n a
quantum well the exciton lines dominate the optical spectra of transitions between the
conduction and valence subbands, much more so than in three dimensional systems.
By fitting the exciton lines from the square well model to experiment, the vidence
band offset quotient in GaAs/ Al Gay_zAs was first'® determined to be 13%. The
value was accepted for almost a decade before Miller et al.'*®) found from the vptical
transitions in a parabolic quantum well that the valence band offset quotient was
much larger, about 50%. Careful fitting to additional forbidden exciton lines for
the square quantum well?!) gave 43%. This shows the insensitivity of the exciton
lines to the polential step size. Many other measurements have favored the larger
valence band offset, with the commonly accepted value now being J4%, i.e .35 eV
for GaAs/AlAs. For Gads/Al:Gay--, thie offset is approximately linearly dependent

on Al concentration, 0.55z eV.

2. X-point conduction valiey. Later, we shall see how valley mixing allows optical transi-
tion between conduction subbaads in the X-valleys and the ['-valley valence subbands.
From the pressure dependence of the photoluminescence linesi?® in GaAs/AlGaAsthe
X-valley subbands can be identified. Since the X-valley potential misimum occurs
in the AlCaAs layers and the valence potential maximum occurs in the GaAs layers,
ihe valence band offset can be deduced from a knowledge of the transition energy
pius the bulk indirect band gap and the small exciton correclion because of the large

X-valley effective mass.

3. Deep level impurity.(2# [t was found that deep-lying transition metal impurity levels
are fixed relative a commen potential zero for a group of isovalent semiconductor
compounds. The encrgies of the band edges relative o these deep levels may then be

used to establish the band olfsets.
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. Charge transfer in heterojunction.

X-ray photo-emission specira.?® One core level is selected from each semiconductor
adl the valence band edge is measured by XPS for each bulk. The difference ia core

energies is measured from the XP5 for the heterojunction.

Internal photo-emission.'?®F A structure of metal, a thin 'ayer of Gaas and a layer of
AlGaAs make up a Schottky barrier and a heterojunction. By measuring the onset of
photo-current excited by light, the Schottky barrier height of GaAs and the height of

AlGaAs are separately measured, from which the conduction band offset is measured.

. Thermionic emission. [n a sandwich of p-GaAs/AlGaAs/GaAs, from the temperature

dependence of the thermionic emission current, the activitation energy yields the

valence band offset (27

(281 A modulation p-doped AlGaAs with a spacer

layer of AlGaAs facing the GaAs heterojunction leads to a hole layer on the Gads
side of the interface. A low tempectature de Haas-Shubnikov measurement determines
the hole density. A model calculation of the heterojunction electrustatic potential
jeads to the hole density depending on the valence band offset. Comparison with

experimentally determined density then fixes the offset.

. a0 . .
. Capacitance-voltage measurements.™ As an alternative to the above, the conduction

bhand offset of an n-channel GaAs/AlCaAs junction is determined from the capaci-

Lanee dvpendc-nr(* on gate voltage.

. Wainan scattering. Light scattering determines the intersubband energies in the con-

duction valley.™ Model potential reproduction of the conduction subband energy

spacings then Jetermines the conduction band oifset.

4. TYPES OF SUPERLATTICES

Esaki et al.®Y have classified the superlattices according to the band edge alignment.
In some cases, it becomes necessary to treal the conduction and valence bands in the same

complex of muiti-band effective mass equations. We shall examine new physics which arise

out uf Lhe conduction-valence k - p interaction via simple models.

4,1, Classification According to Band Edge Alignment

Figure 6 shows three types of superlattices depending vn the relative positions of the
band edges of the two compounds which make up the superlattice. Type [is typical. with
the band gap of one semiconductar entirely in the band gap of the other. GaAs/AlGads
superlattice is a famous example. Type II shows averlapping valence band of one semi-
conductor with the conduction band of the other. [nAs/GaSh is an example. Recently,
Type [l is also taken to mean the valence band edge higher in one semiconductor and the
conduction band edge lower in the other, regardless whether the overlap exists or not.!*?

Type [I] shows Ty and g inversion of one semiconductor relative 1o another.

4,2. Two-Band Model

In seetion 2, the effective mass equations for the corduction band and the valences bands
are considered separately. The k- p mixing between the conduction and valence bands is
neglected because of the large baod gap. The baud interaction is iimmportant in a number
of vases: Type | with a narrow gap semiconductor, such s Insh or Cd Mg, Te, Type |
with a large offset, such as the conduction band in a GaAlfAlAs superiattice, and Type
[l superlattices. In principle. we can straight-forwardly nse the maltibazd EMAincluding
e bands, two from the [y conthietion bands, four from the top ') valence bands, and
two from the [7osplit-off bands. We shail use the simple two band model, including the

coniuction and light-hoie band, o lustrate the important physies of band interaction.
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With the basis of a pair of I, and [y Bloch waves, the 2 x 2 effective Hamiltomian is

miven by
V+A kP
i = . (1)
LP V-2

Both v and A depend on z along the superlatlice growth direction. In each layer, V
represents the energy at ihe center of the gap and 22 the bulk band gap. In the two-band
model, because of completeness and symumetry, the basis functions and P are assuned to
be the same [or both semiconductors.

Figure 7 shows the real and imaginary wave-vectors at a given energy for the true wave
function to be matched at the boundary. By considering the limit of vanishing evanescent
waves(?! or by assuming the continuily of one component of the envelope functien,™ ar
by simply integrating the Hamiltonian across a sharp interface with step function changes
s V and A, the boundary conditions are derived that two components of the envelope
function are continuous, Note that it does not follow that the derivatives are continuous.
[u fact, such conditions will over determine Lhe 2 x 2 effective mass equations which are
differential equations of first urder. The Bag model for quark confinement, using the Dirac
equation, has the same boundary conditions,*

In the GaAs/ AlAs superlattice, the lowrst conduction electron subbands are sutficiently
lose to the bulk conduction ba1. edge that the parabolic tulk band approximation used
in the effective mass equation is valid. However, the conduction band edge of AlAs 15 1.06
=V above that of Gads. The parabolic approximation for the evanescent wave in the AlAs
barrier region using the AlAs [ edge effective mass is clearly inappropriate. The energy
ol the electron subband is dewp in the gap of AlAs and is treated in the extension of the
Lwer-band model %A Tune-band model, jnetiding the s-state for the bulk conduction band

aned 3 pestates fur the bk valenee bands, is wlopted foc both the Gads wells and AlAs

barriers. [he Hamiltogian is now

Vid &P kP ORP

P V-A 0 0

BP0 VoA 0 o
kP 0 6 v-a

In the 4 % 4 cffective mass equations, three components of the envelope functions are solved

in terims of the s-wave component, f,. By substituting them intu the first equation, the set
of 4 x 4 equations is reduced to a single Schrodinger-tike equation:

Bod L d (k)
2[2[‘ Em(:,E)E+ m(z, £) ]f-+[v(3)+3(5)_51f=:[]| {14)

where
miz, E)= BE -V +3)/2P {15)

Integrating Eq. (14) across the interface and letting the thickness of the small interface .
region tend Lo zero, we find the boundary conditions of f, to be continuous and

1 d
m_(:,—é_)"&:f’ (16)

to be continucus. These are just extensions of the Ben Daniel-Duke!) boundary coudition
to energy levels deep in the gap.

Later, we shall study a tunneling experiment in the Gads/AlAs superlattice where
the romduction electron energy E is close to the GaAs conduction band edge, Le. ¢ =
E -V, — A, may be treated as a small energy parameter in comparison to the gaps and

olfsets. To the leading order in e,

PR in the well
m{z, E) = (17}

my = my — Q.{m] —m,) in the barrier

where

myp, = b PP (13)
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are the bulk masses. Note that the renormalized mass is equal to the bulk effective mass
in the well region but aot in the barrier. Taking the bulk effective-mass in the well,
m;, = 0.06Tm,, we find, within the approximation of the same basis functions and P for
the well and the barrier, the bulk effective mass in the barrier to be mj = 0.14m, and the
renormalized mass to be my = 0.09m,, Le., a 35% reduction. Direct energy gaps of .52
eV for GaAs and 1.13 eV for AlAs and a band offset of Q. = 0.66 are used in the above

estimates. /37
4.3. Metal-Insulator Transition in Type II GaSb/InAs

For thin enough layers, the electrons confined in [nAs have higher energies than the holes
in GaSb (Fig. 8a).1?) As the layer thickness increases, the decrease in zero-point energies
will mean that the two subbands will overlap, resulting in a metal-insulating transition !
Figure 8b shows that, within the margin of uncertainty of the hand offset (indicated by
the double lines), energies (solid lines) using the boundary conditions of Eq. (12) vield
better trangition thickness than the square well model (dashed lines) in comparison with

rxpetimentt™ (804 for cach layer).

4.4. Type III HgTe/CdTe

Schulman and MeGill have suggested™ that quantum well confinement will turg the
sero wap HgTe into small gap semiconductors, nseful as infrared detectors. Unusual inter-
fuce states are found theoretically. " They can be understood by the simpie inversion
of the light hole bands of HgTe above the light-hole band at T'y of CdTe. The cusp of
the envelope function (Fig. 9) at the interface boundary satisfies the buundary condition
dfjf:[ma being continvons. |See Ser. 1:1] The inplane energy dispersion has nte sting

. . . . R an
featires, ncluding termination of a subband al a linite wave vector. !

5. ELECTRONS IN SHORT-PERIOD SUPERLAT-
TICES

A superlattice Ay By with each period composed of N layers of semiconductor 4 &nd
M layers of semiconductor B is said to be a short period smperlattice il V and M are
sall integers, say less than 10. We shall use the example of 4 being GaAs and B being
AlAs. In a bulk I1I-V semiconductor compound, there are generally three sets of local
conduction band minima, at ', X, and £. In Gads, the conduction minimum at [ js
the lowest; in AlAs, the X point minimum is the lowest. Thus, in a superlattice, the
conduction subbands from these valleys can mix. These mixing effects are consequences of
the superlattice beyond the effective mass potential. They have been extensively studied
both experimentally and theoretically. For reviews and comprehensive references, see Refs.

43 and 4. Here, we shall study a small oumber of fundamental issues in valley mixing.

=

5.1. The Kronig-Penney Model

In the Kronig-Penney, the periodic square well potential lollowing the band edge align-
ment provides a zeroth arder approximation for the conduction subbands in the superlattice,
Figure 10 shows the band edge alignment!™ along the growth axis of the superlattice of
(GaAs)n(AlAs)a for the valence band edge and for the three tmportant conduction valleys
at I' ¥ and L. The valence subband holes tend to he confined in the Chids regions. The
bulk T' vouduction valley is lower in the GaAs regions than i the AlAs regions and. thus,
tends Lo confine the conduction electrons to the Gads regions, The X vallevs of AlAs lie
lower than those in Gads and tend to contine the electrons in the AlAs regions.

Because of the anistropy of the elfeclive mass tensor of AlAs at the N peint. {001),
the effective mass parallel to the crvstal axis is given by oy o= 1L and normal to the
axis by oy w2 2L The sero pomt caergy o the N, or (0013 valley due to o onfinment

along the growth axis (001} with the larger effective tuass vy is smaller thag the Zero point



energy in the X, (100) and X, (010} valleys with the smaller effective mass m,. Thus, the
Kronig-Penney predicts that the lowest X, subband lies lower than the X, or X, subbands.

Since the effective mass in the [ valley of GaAs is 0.067, much smaller than either of
the effertive masses of the X valleys in AlAs, the zero point energy in the ' well in GCaAs
regions s larger than that in the X, well. If the GaAs region is sufficiently thick, the
lowest [ subband lies below the X, subband and the superlattice has a direct gap from the
[ valence subband to the [’ conduction subband. If the GaAs region is sufficiently thin so
tbat the [ subband lies above the X,, then the gap is “pseudo-direct” in the sense that
the gap is direct in the superlattice Brillioun zone but in the optical transition the electron
is excited from the GaAs region to the AlAs region. The transition from direct to pseudo-
direct gap can be effected by varying the relative layer thickness,"*® by applying an electric
field along the growth axis,*”) and by hydrostatic pressure® or uniaxial stress."¥ The
optical transition in the pseudo-direct case is distinguished by the characteristics of lower
optical efficiency, slower photoluminescence decay rate,(*® distinctive dependence on the
longitudinal electric field, ' diflerent temperature dependence of energy gaps from that of
the bulk GaAs gap,'*) and the g-value from the optically detected magnetic resonance. !

If we assume the superlattice to be perfectly lattice-matched, the lattice translational
symmetry parallel to the interface plane, i.e. normal to (001} direction, is unchanged and the
~ wave vector along the interface plage is still a goad quantum number. Then the interfaces
van scatter the Bloch waves from the I' valley into the X, valleys and vice versa. When
the T and X, subbands are close in energy, the mixing due to the interface is important
and does not appear in the Kronig-Penney mudel. In the superlattice, X, and X, have

equivalent wave vectors in the interface plane and can also have mixing by the interfuce.

My

5.2. Symmetry Properties of Superlattices

Unlike the Kronig-Penney modei where the symunetry properties are trivial, the super-
lallice syminetry properties are important in considering the valley-mixing effects whether
[ - X, or X; - X,. [n this section we collect a few important symmetry properties for
an idealized superlattice with a period along the z-axis of N layers of an AB compound
and M layers of an AD compound,*¥} all atoms being on the sites of a zine blende lattice
with lattice constant a. The symmetry properties are unchanged if the spacings between
the planes deviate from a. The coordinate axes are chosen as usual along the principal
symunetry directions (100}, etc.

The Bravais lattice of the zinc blende is fcc. Viewed along the z-axis, aiternate planes
of atoms of the same element do not lie on top of each other. The lattice vector covering
one period of Lthe superlattice points along the growth direction if .V + M is vven and pointy
along (0,1, ¥ + M) if N + M is odd. Therefore, the Bravais laitices are different in the
two cases, When N + M is even, the Bravais lattice is simple tetragonal, with the basis

vectors:
(1,1,00a/2, (—1,1,0}a/2, (0,0, 1)(N + M)a/2, (19}

where @ iy the bulk lattice constant. When N + M is odd, the Bravais lattice is body-

centered tetragonal, with the basis vectors:
(1.1,00a/2, (—1,1,0)a/2, (0,1,V + M)a/2 (20)

The corresponding Brillouin zones are shown in Figs. 1{b) and 1(c). Different parts of the
three dimensional fcc Brillouin zone are folded inwo a superlattice Brillouin zone as shown
in g, 11.

Because of the ineyuivalence of the B and [ planes, of the point group operations in [y

{-t3rn), only those which du not change the z coordinates, i.e. Cy, {two-fold rotation about
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the z-axis) and 7, and &, {rellections in the ©r = +y planes), and those which involve two
leld rotations about the x and v axis (7, (7, and the four-fold (improper) rotations
about the z-axis cum reflection about the xy plane {5y, 55,) survive as the point group
operations leaving the superlattice invartant. These form the Dyy (12m) point group. 34
The space group is symmorphic and is D, (Pim2) when ¥ + M is even and DY, (Iim2)
when .V + W is odd.

Of particular interest are the subbands along the &, direction through the bulk conduc-

tion valleys at ', X, and [, i.e. with wave vectors (0,0, fe*), (a®,9, fe*), and (a"/2,a"/2, fe*)

where
DL <], a"=2rfu, ¢ =2xfa(N + M), (21}

Referning to Fig. 11, we put a bar over the symbol for a symmetry point in a superlatiice
Brllouin zone to distingnish it {from the point in the bulk zone. The point groups associated
with the various symmetry points for the superlaltices along these three segments are given
in Table I. The consequences of the difference in symmetry along (a°, 0, ¢) between the states
labeled in X, T W .V for odd V4 M and 3.V, 1 for even ¥V + M will be shown later.
The space group operations can be divided into those not changing the z coordinate
{denated by L) and those changing 4 to -z (denoted by J). An A plane between a 3 and a D
plane may be regarded as an interface plane between an Al region and an AD region. For
an operation of J, the origin is at an atom rquidistant from two nearest interface planes of
A atoms. For detiniteness, the origin will be chosen to he the mid-point in an AD region.
Thus, it is at an A atom if M s even and at a D) atom i M is odd. The representations
im the bulk will be referred 1o the vrgie ab an A atom. If we number along the z-axis the
avers feach laver conststing ol an A plane and w0 3 or 1) planer, an ever-numbered Diver
and wn odd-muubered layer are stiggered telative 1o eacl uiher whereas two layers, hoth

even or odd nnbered, Lie directiy ou top of cach other. When M ois cven, an operation ol
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J brings an even- {odd-) numbered A plane tu another even- fodd ) nmbered A plane and
an even nmbered 13 or D plane to an odd-numbered B oor 1) plane of the same species.
When M is odd, the roles of the A and B or D planes are reversed. Thus, when a point
sroup contains elements of J, the symmetry properties of the states are different for even
and odd M, in addition to the difference due to ¥V + 3/ being even or odd. The effects of
this difference will become apparent later.

At a number of symmetry points, such as T and A, we are interested in stales with
irreducible representations of unity under operations in F and +1 under 1, which will be
refetred 10, respectively, as even and odd parity states.

5.3. Computation Methods for Superlattice Electronic Struc-
ture

We refer to Ref. 14 for a recent review of the theory. There are two complementary ap-
proaches 10 the calculation of the electronic structure of a superlaitice. The first-principles
approach has the advantage of generating a self-consistent potential, taking into account
the interface effect, and is useful for a small number of layers, for ¥ + M up to about 14,
We shali concentrate lere on the other approach, the empirical approach, which is based
an the knowledge of the bulk band structures of the constituent compounds which make up
the superlattice. Thus. a band structure method is adopted with the input parameters of
the method “reverse-engiueered”™ from the band stractures of the constituent compounds
i hulk foerm. The bulk parameters are applicd to the interior lavers of the corresponding
componnd. Far the interface region, either averages of the bulk parumneters for botl com-

pounds are Laken or the atoms are assigned to either bulk region. In one study, ™

Vinterface
parameters are vared o stindy the effect on the superlattice subbands,

Ihe bt Linding method offers one framework for a superfaltice subband caleniation

with cipirical mpat.™ The tght-hading interacton parmetess involving two atomie

ko
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sites 1 the same material are chosen Lo reproduce the bulk bands and the band edge
offset. Fhe parameters involving Lwo sites across Lhe interface are taken to be averages
of the bulk values. An appropriate choice of which bulk band features to fit is impor-
tant for the accuracy of the subbands of the superlattice. For example, complete neglect
of the next-nearest-neighbor interaction leads to an infinite transverse effective mass in
the X-valleys of the bulk bands, with the consequence that the subbands from the Y-
valleys along the growth uxis always lie above those from the inplane valleys, contrary to
both experiment and the expectation from the effective mass approximation. Inclusion of
the second-nearest-neighbor parameters™® remove this difficulty. A partial study of the
variation of the subband energies as functions of the interface parameters shows a weak
dependence, justifying the use of the bulk average. The states studied do not, however,
have large amplitudes in the interface regions.

The strengih of the tight-binding method is in its chemical approach, since the hond
parameters are local functions of the buik semiconductor. The shert-range interaction is
particularly suited for the study of interface disorder, an important area for understanding
horizental and vertical transpurt, where much remains to be done. At present, the method
suffers from lack of information oo the physics of the interface, namely the cause of the
band edge oifset and the deviation of the tight-binding parameters in the interface region
from the huik values. This weakness is, however, in practice rather than in principle,
unlike the EMA. The tight-binding frainework would be very useful if the knowledge of
the interface could be used to give the tight-binding parameters in the interface region.
The possible avenues of using experimental results and of using results of first-principies
hand calculations in superlattices to fix the tight-binding parameters in the interface region

should Le explored.

The empirical pseudo-potential method gives another framework for the superlattice

electron structure calculation.'™ The pseudopotential for each atem in the superiatbice
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is determined from the constituent of the bulk semiconductor. It is then assumed to be
unchanged even in the interface region. A further simplification in calculation is possible
if the atomic positions in the superlattice are taken to be in the ideal bulk lattice of one
of the constituents. The zeroth order pseudopotential is taken either to be the average of
the two compounds or that of one compound, and it produces a set of bulk bands. The
difference between the superlattice potential and the zeroth order potential is treated as
the superlattice potential which provides the deviation [rom the folding of the bulk bands
[rom the zeroth order potential into the small supertattice Brillioun zose. This provides a
very attractive way of tracking from zone folding the origin of the subbands.

The advantage over the EMA, which the pseudopotential method shares with the Light-
binding method, is the avoidance of the wave function matching over a fictitious interface
plane. The pseudopotential method is easier to use tban the tight-binding method in fitting
the bulk bands over a range of several electron volts but is more difficult to use in fitting
finer features such as the effective tensors at a band edge or the spin-orbit splitting of the
valence band edge. While the pseudopotential method shares with all empirical methods
the inaccuracy of the interface atoms, it may be easiest to change the pseudopotentials of
the interface atoms using the charge density distribution from a self-consistent computation

of an interface.

5.4. Valley Mixing Between I' and X

In Fig. 12 we plot the calculated™® conduction subband energies at T" as functiona of
N for the N/N superlattice. By comparing with the EMA results using the square wells, as
shown in Fig. 10, and by examining the wave [unctions which are deminant in the GaAs ur
AlAs region, we identily the levels as from the ' op X, valley, deuciod by nl' and 2.X with
n=10,1,.... Note that. because the E valley effective mass is small, the [ levels are more

widely spaced and increase i energy more rapidly than the X levels as N decreases. The
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parity is defined in Sec. 5.2, The even (odd) parity states have irreducible representation
T, (Ty), following the nurmber system of Koster.®*! [n the tight-binding representation, the
coefficients of the S orbitals have the same parity as the state, and those of the P, orbitals
have the opposite parity. Each [ level retains the same parity as N varies, but the parity

of each X level alternates for successive N's. The lowest level, 0.X, has the same parity

as the integer N. The parity behavior may be understood with the help of the cffective

Inass approximation, in which an eigenfunction is the product of the bulk wavefunction alt
4 band edge and the envelope function, The parity of the superlattice state is the product
of the parity of the buik band edge state and the parity of the envelope function. The bulk
[ state has a zero wave vector along the z-axis and, therefore, constant coefficient for each
layer wave [unction over the GaAs region of a supercell. The superlattice T level, thus,
has the same parity as the envelope wave function. On the other hand, the bulk X state
with wave vector (0,0,a") has an alternating +! as coeflicients of the layer wave function
in the AlAs region. In the AlAs region with M layers, the ratio of the coefficients of the
layer function on the two interface As planes is (—1)™. Thus, for the even parity envelope
functions of the (2n).X levels, the parity of the state is the same as that of M and, for odd
parity envelope functions of the (2n + 1).X levels, the parily of the state is opposite to that
af M. Thus, the parity behavior of the X levels shown in Fig. 12 is explained.

AL ¥V = 16, the crossing of the L[ level and the 1LY level resuits in a degeneracy because
the diflerence in parnity forbids any mixing. The lowest level anti-crossing occurs at ¥V = 12
134 A} which agrees with the observed (and expected from EMA) Gads thivkuess of type

11 to type 1 superlattice transition ™

5.5.  Valley-Mixing Between X, and X,

The pussibility of mixing between the X, and X, valleys was first pointed ont by Ting

and Chang!™ by projecting the X points onto the interface plane, Here we <hall take a

more general view of the superlattice Brillioun zone.™™! The lowest conduction bands of
bulk Gads and AlAs along a®(1,0, f) where 0 < f < 1, ie. X, -W-X,, have end points at
X; and a1 «7(101) which is connected to a*(010){.X,) by an fee reciprocal lattice vector.
The superlattice potential mixes the two valleys and can splil the valley degencracy unless
forbidden by symmetry.

The symumetry of the state with wave vector (a”,0.q}, ) < g = ¢, depends on N and
M, the munber of GaAs and AlAs layers in a period:

Case [. N and M both even: If we adopt the numbering systern of he irreducible
representations®) of the bulk A for the point group of V. the states of symetry V) and
V', correspond respectively to the mixtures X, £ X, as can be seen, for example, from the
tight-binding wave functions. The superiattice potential causes the splitting, as shown in
Fig. 13(a}, from the tight-binding calculation in Ref. 45.

Case {I. N and M both odd: The same two basis sets given by X £ X, now have
sywmmetry ¥, and Vy, respectively. The difference is due to the change of origin from As
in ({ase ] to Al in the preseat case. Under an inversion J, these stales traosform into each
other. Thus, these subbands are doubly degenerate. This is compatible with the double
degeneracy at the end point of Ms. This is borne vut by the calenlation for the 7/11
superlattice shown in Fig. 13(b).

Case 111, N odd and M even: The subband structure is iilustrated by the 7/10 super-
lattice in Fig, 13(c). The general point T has only one non-trivial syrmnetry operation, the
two-fold rotation about the z-axis. Compatible with the bhulk Yy s the even representation
T,. The end points are ¥ and ¥ which have the same symmetry by the tetragonal rota-
tion ~,,. Thus. the subbands are symmetrical abont the mid point V. I'he bands may
be thought of as ones arising from the Xoand X valleys vrossing at T where the valley
mixing splits the bands by degenerate perturbation theory, Actuadly, at the end ponts,

Lhere is a certain amount of mixing, but pot of equal strength.
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Case TV. N even and M odd: The states now have symmetry T,. The behaviur is
qualitatively similar to Case H1 except Lhat the splitting iv smaller, as shown in Fig. 13(:4).

The ~tates at W, and &, correspond o Vhe bulk X £ X,

5.6. Fractional Layer Numbers

‘T'he marked difference in the band structure in Fig. 13 as N or M changes is due
to the change in symmetry. We consider here what offect the interface roughness would
have on the band structure along [a®,0,q]. Based va the experimental observation of
the interface roughness, 5" we adopt a simple model of the first Ga layer after an AlAs
repion being a mixture of Ga and Al atoms. The subbands are then calculated within the
next-nearest-neighbor tight-binding model**} using a simple virtual crystal approximation
of r [raction of Al atoms in this interface layer. As r increases from 0 to 1, the 8/10
superlattice metamorphosizes to /11, as shown in Fig. 14. This is an interesting example
of how iuterface effect may be studied from the electronic behavior. It ia hoped that
Juminescence!*® and optically detected magnetic resonance®® may be used to observe

these states.
6. EFFECTS OF MAGNETIC FIELDS

A magnetic field, B, normal to the interface plane, quantizes the in-plane cyclotron
moticn inte a set of discrete Landau levels. This {eature leads to a distinctively Lwo-
dimensional property. A magnetic tiell parallel 1o the interface piane bends the electron
orbils to cross the interfaces, resulting iu reflection in the well and tunneling through the
Lactier. A parallel field is thus nsed to study the tunneling motion in a superlattice. To
include the uniform maguetic likd eifect in the offective mass equation. we simply substitule
Lthe wave vector by the operator

! cA

Koy = ?V + e (22)

where A1 : i
are A is the vector potential and the plus and minvs signs refer to the electron and hole

respectively.

6.1. Conduction Electron in Magnetic Field Normal to the [n-
terface

For the ¢ i i on j
he conduction electron in a quantum well, the motion in the normal magnetic field

is sinple. The parabolic energy subbands in zero magnetic field are quantized into sets of

Landau levels with equal spacing
hw, = heBfm"e, {(24)

Each level has a degeneracy per unit area given by

B 1
p=252
he 2T RY (21)

(3

where the cyclotron radius is

R. = \[hc/eB. (25)

The cyclotron frequence is proportional to 5. ldeally, the density of states is a set of &
functions, but disorder scattering broadens the & peaks and the localized states fill in the
valleys.  Still, the oscillatory dependence on the magpetic field of the density of siates
causes similar oscillations in conductivity (the Shubnikov-de Haas effect) and oscillations
in magoetic susceptibility {the de Haas-van Alphen effect). [o particular, the Shubnikov-de
ltaas period is commeonly used to determine experimentally the electron denyity.

We need a forinalism to treat the degenerate states in the same Landau level in order to
further caleujate impurity and electron-electron interaction effects in a strong magnetic tieid
if we wish to study the electron self-energy (which we shall do presently) or the integral

and fractional quantun: Hall etfect!®} (which you will hear about from uther lecturers)



For the normal magnetic fiell, the vector potential fies in the interface plane and the wave

vector vperators Jdefined in Eq. (22) satisfy the commutation relations

g ko] = of i
heziboy] = 1/ 1R
{hhe kuy) = 0 {(26)

We can define two sets of annibilation operatorst®37

Ap kh+nc/\/§
a, = ko R VT 97

amd their Hermitian conjugates. Lthe creation operators, obeying the usual boson commu-
tation relations.

it is straghtforward to show that the condiction effective Hamiltonian depends only
on the electron operators a, and ol which, therefore, serve to lower or raise the state Lo
another Landau level. The states i the nih Landau level may be written as

I
inom o= ———uT"uTmIU.U >, (28)
! Tl =B

n'm!

where the non-zero integer i classifies all the degenerate states in the same Landau level

and the ground state {140 > Las for instasce Lhe wave function

—rd AR
== exp Rl

[

The quamnm mnnber m has a physical interpretation in that the z-component of the
anular momentum for atabe Jryme > 0 22— moin nmts of kosince Che coooniponent of the

Allqlllu.r mamentum operator s !Li\('n ls_v

Lol - abay (3

H . t
Thus, «! and a, raise the angular momentum quantum number aud a, and u, lower it

v
Ihese states form a convenient basia set for many-body calculations and have also been

used far magneto-excitons. %

6.2. Valence Holes in a Magnetic Field Normal to the Interface

For holes in a magnetic field normal to the interface, the mini &£.p method also serves
the dual purposes of computing Landau levels and visualizing them. The 2 =0 and & =0
states are used as the basis set. For a magnetic feld normal to the interface, the diagonal
terms of the Luttinger Hamiltonian yield four sets of evenly spaced Landan levels with
well-defined m ;. The off-diagonal terms provide a mixture of m; states for each Landan
Jevel, thus changing its energy value. Figure 15 shows the typical resulting set of Landan
levels.

The in-plane motion can be expressed in terms of the nsual harmonic functions a,(x, ),
where i is the Landan level index. kye are the raising and lowering operators for wy. In
the aylindrical gange, A = rxB/2, u, can be associated with the azinuthal angular

momentuin eigenstates, as shown in the last section. In the eylindrical approximation of

the Lattinger Hamiltonian, the envelope function is of the Tormt
(w0l e 0 o 2 0egy oy pad Ve o gl i) (i

Al four components of the wave function must have the same my + 1 from total angalar
momentnm conservation. The kop mixing has two consequences: (1) The lield dependence
is non-linear. (2) The spaciug between Landau levels is aneven In fact, some levels do it

even order monotonically with the index n.



6.3. Conduction Electron in a Magnetic Field Parallel to the
Iuterface

Figurelt shows the magnetic tivld conliguration relative to the superlattice. The growth
wxis of the superlattice is again taken to be the z-axis. The magnetic fleld B is along the
g-axis. The vector potential o the Landau gauge is in the y direction: A = B{0, —z,0). In
the semiclassical picture, the cyclotron orbits can be centered in the well or in the barrier.
The latter orhit tnvolves tunueling through the potential batrier and. therefore, resonance
of such orbits cau yield information on the barrier,(3%)

The seniiclassical notions can be made more rigorous. For the reasons given in Sec. 1.2,
a [our-band model, Eq. (13), is used for the effective Hamiltonian. [n a fnite Reld, the
energy subbands can still be expressed in terms of a two-dimensional wave veetor (k. k) as
quantum numbers®# since the translational symmetry in the interface plaoe is preserved.

In the Landau gange,

A= DB(0-z0). (32)
From Eq. (22), where &, occurs in Eq. (13), now k, — =/ R? takes its place. The quantum

number &y also gives the center of the cyclotron orbit along the z-axis, R, = k,R?, which
can be used as the quantum nuimber instead of k.

Since the magnetic subband states of interest in the tunneling cyclotron resonance
experiment lie close to the bottom of the GaAs well, we can carry out an expansion in
e = E =V, - A, as explained in See. 420 A caleulated magnetic subband at 10T is
shown in Fig. 17. If 8 is measured in Teslas we have 2, = (256.56/vB)A. For example,
at 1 = 107, € = 314, Since the extrema of the subbands as functions of £, vceur at the
centers of Lhe wells or barriers, from the absorplion spectra with thermal accupation of the
lower subbands we can Jdednce the transition energies between some pairs of Lhe extrema

uf the subbands. The absorplion spectra are dominated by barrier-bound resouances.
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They correspond to transitions between states whose guiding centers for the cyclotron
orbits lie in the middle of the barrier. In Fig. 18, we compare the calculated transition
energy with the position of the dominant peak in the absorption spectra as a function of
the magnetic field strength. We note that the agreement between the calculation from the
renormalized effective-mass and experiment is much better than that of the one-band EMA.
The renormalized mass in the barrier, which i1s smaller than the AiAs conduction band
vifective mass, yields higher transition energies than the simpie EMA. This improvement is
independent of any uncertainty in the well and barrier width, This confirms vur previous
argument that the tunneling decay wave vector for energy deep in the gap should be
treated by a two-band model including conduction-valence band interaction rather than by

the parabolic approximation of the conduction band.

7. ELECTRON SELF-ENERGY EFFECTS IN A DOPEL

QUANTUM WELL

As an example, consider the effect of the two dimensional Fermi sea created by modu-
lation doping in the AlGaAs barriers bounding (with spacers) a GaAs well. A coanduction
electron or a valence bole moves in an effective potential due Lo interaction with the ather
electrons in the Fermi sea. The effective potential, called the self-energy, contains three
terms, the electrostatic potential due to the charge distributicn of the elecirons, the ex-
change and correlation terms. The latter two are non-lecal and the last is energy dependent.
The interaction effects are stronger than in a three dimensional system because of the quan-
Lum well confinement. In the zero magnetic field case, the theory of the seif-energy in the
quantum well® is uot very different from the three dimension case. The case of strong
magnetic feld® ) iy inore interesting lor several reasons. One is the unusual magnetic
field dependence, which can be checked against experiment.!™ 9% The uther is that be-

cause of the isolated Landau levels, the ciectrou-unpurity interaction, which provides the
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level broadeniny, s also unportant. Thus, we have to deal with the intricate problem of

electron-electron interaction in the presence of unpurity,

7.1. The Interaction IHamiltonian

We nse the modet of an interacting Fermi sea in a conduction subband of Landan levels
in the presence of impurities. In order to study also the hole self-energy, we allow for
a single hole in a valence Landau level which interacts with the conduction electrons.®!
With the magnetic field B normal to the interfaces, we choose Lhe symmetric gange, A =
B/2—y, £.0). We take from Sec. 6.3 the single-particle Landau states |nmj} where n is the
Landau level quantum number, n — m s the azimuthal angular momentum, § = e for the
lowest conduction subband which contains the electron Fermi sea for the n-doped quantum
weil, and j = & [or the highest valence subband. The effective Hamuiitonian is chosen to
consist of {our terms:

Ho= o v o+ He + H, . (3

The first term countains the single-particle terms for the conduction electrons and valemnce

holes:
Hy= S kool ton + 3 EME bom . (31)
where | |
B = (E/0 +he,(n+ 1)) {35)

For simplbcity, the spin-splitting i3 neglected and the spin degeneracy is understood. The
next twao terms are, respectively, the Conlomb interaction terins among the conduction

clectrons and between the etectrons and holes, grven Iry
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where Vimumameme for j = e, h, is the matrix eleinent of the Conlomb potential Vig) =

R . : .
27 feag, o being the dielectric constant of the background maternal  We refer to Ref. §1

tor explicit expressions for these matrix elements.

-1

.2.  Screening

Ihe Coulomb interaction is screened by the conduction electrons. The dielectric function

¢(4, 4w} can be expressed in terms of the proper pularization H(q, i)
elgyuw) = 1 -~ Fe(q)VigH g, w). {38)

We use the RIA for the proper polarization in the sense that it coutains no Coulomb
interaction. 1t does, however, contain the impurity effects 1n the one-partiele propagator,
as shown m the upper part of Fig. 19, and in the ladder dingrams as in the lower part of Lhe
iigure.®) By jucluding the impurity scattering in both the vertex and in the seif-energy,
the Ward identity is satisfied within the self-consistent Born approximation.

We shall see below that the most important part of the screening effect in the self-energy
15 ¢|q,9). We can concentrate on the solution for the static dielectric function ¢(¢, ). an

approximation for which, valid in the small ¢ limit, is given i Lhe form:
g, 0) = | +q/q~ Fo V) (. ). {30
The screening parameter ¢, in Eq. (40) is given by
qo = 2wt DUEe ) e, {40
where {270 15 the density of states at the Ferin level, [l non-diagonal part of the
polarization, H,41q.0), consisting ol the inter-Landau level excitations, e, n # n' terms,
15 of lugher order in g than 1he Jiagonal part. It may, herefore, be ovaluated 1o the

stnple bubble approximation, negleeting the impurity vertex coreeclion. Tn s high nuaenetie
. ! Y -

fietd the density of states oseillates with the variation of Beld strength, and, thas, the
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screening effect has also an wscillatory field dependence,'™) showing alternating nietal-hhe

and insulator-like behavior.

7.3. Electron and Hole Self-Energies

‘Phe self-energy $7(n) at level n due to Couluisb interaction can be evaluated as in the
cero magnetic field case neglecting the recoil energy of the particle {the so-called quasi-
static approximation®™®)). The self-cnergy then has two terms, screened exchange and

Cuulomb-hole:

Tn} = Tiin)+ EhL(n}, {11
S = LT (;2-,6’)) (42)
hin) = —Z}: = ql,o)—l)‘ (+3)
v (n) = “Z): v];"tl("‘l); e ! 5~ (44)

where the abbreviated Coulomb matrix element is given by

Y00 {45)

Vi ) = ¥olloa,-

Note that, while L2 (n) depends explicitly on the conduction electron occupation,
©1,{n) depends on the conduction electron vecupation only indirectly through the dielec-
tric screening. Since we have neglected the exchange interaction between the conduction
electron and the valence hole and since the valence hole density due Lo photon excitation is
taken to be nuch less than the electron density, the valence hole self-energy has a negligible
oxchange Lerin and has only the Coulomb-hole term, ¥h(a). From the explici expressions

the dependence of the screened eschange and Coulumb-hole terins va the dielectric funce
Lo, i is clear that. followine the osallatory inagnetie lield degendence of Lhe sereening
paraieter, the two sell-cuergy teris will uscillate as functivns vl the magnetic lield, albest

out uof phase The two terms i the conduction electron self-energy tend to cancel each
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uther vut, but the valence hole self-energy, having only the Coulomb-hole term, gives the

dominant vscillatory behavior in the pair total energy. lu Fig. 20, we show the nagnetic
licid dependence of the screening parameter g,, the screened exchange term U7 (0} and the
Coulomb-hele term £%,(0) for the conduction electron. An electron density uf 4 x 104 an-?
and a well width of 200  are used in this calculation. The SCreening parameter ,, |

eing

proportional to the density of states, has maxima at the Landan filling factor v = odd

integer, where the highest occupied spin-degenerate Landau level is hall-filled. Here we nse

the Gaussian type density of states for the Landau levels, )

Da(E) = 1f/n8J(2fm){Ceap{-2(£ - £,)}/T?), (6]

where [, the level width due to impurity scattering, is proportional to v/ 3

)

[/hw, = afVB. (47)
Here, a is a parameter, taken to be 0.5 in Fig. 20.

7.4. Comparison with Experiment

lu Fig. 21 the calculated transition energies between conduction and valence band Lan-
dau levels as functions of the magnetic field (solid lines) are compared with the experimental
energies!®™ for InP/In,Ga,_,As. The phase of oscillation of the transition energy as the
nagnetic field varies, which has maxima around Landau filling factor » = 2. 4,. ., are in

goud agreement with experiment. The phase of uscillation coincides with that of the hole

sell-energy. This confirms our argument given above vn the rejative importance of various

avll-cnergy terins, The exciton effect is important but not pronounced. !}



3. PHOTOLUMINESCENCE IN UNDOPED AND
DOPED QUANTUM WELLS

The photo-luminescence process consisis of three steps (Fig. 22): (1) Excitation: Light
is absorbed producing electron-tiole pairs or excitons. (2) The electrons and holes thus
produced relax to lower energy states or to exciton siates. (3) The electron-hole pair or
exciton recombines giving out luminescent light. When the excitation light [rquency is
swepl and luminescence is measured at a fixed frequency, usually that of the lowest exciton
line: or band edge, the intensity as a function of the excitation light frequency is called the
photoluminescence excitation spectrumm (PLE). If the excitation light frequency is fixed,
the intensity of emitted light as a function of Lhe emitted light frequency s called the
photoluminescence spectrum (PLYL Lo both the exvitation and luminescence spectra, the
heavy and light lwole excitons are well resolved.

Control of the polarization of the excitalion Light to be absorbed by the ruantum well
and measurement of the emitted light in dilferent polarizations yield further information
on the state of the electron-hole pair. Since the conduction electron state is simple, the
natire of the valence subband states may be deduced [rom such measurements. For the
qnantum wells, two configurations of polarization measurements have been carried ont: (1)
back seattering: where a circularly polarized light is incident normally on the quantum well
and polarization of light emitted near the normal is measured®™; () wave.guided: where
the quantum well acts as a wave guide such that the emitted light aloug the intertace plane

1 measueed for polarization normal to the plane and parallel to the plane %7

1)

8.1. Selection Rules

I the effective mass approximation, the transition matrix element between a conduction

subband state (e.s) and a valence subband state component (h,m;) is given by
<eslp-Alk,my »< foulfam, >, (48)

a product of the momentum matrix element of the Dloch waves at the band edges and the
overlap between the envelope functions, where s = +1/2 s the z-coruponent of the electron
spin and my = 3/2,1/2, -1/2,~3/2 is the hole angular momentun. Evaluation of the
mormenturn matrix element between the Bloch waves is straightforward. For different light
pularization, the resulting set of sefection rules relating 5 and rey can be cast in terms of

the z-component angular momentum conservation:
=y = my, (1M

il we assign the photon angular momentum my, values £1 for 74, right and left circularty
polarized hight about the z-axis, normal to the interface plane and the valiue zero for the
7, polarization along the z-axis. With the help of the selection rules, one can in principle
deduce from the measured polarization spectra the heavy and light hole nature of the

valenee states.
8.2. Polarization Spectrum in the Back-Scatter Configuration

Consider the configuration in which both the excitation lght and the emitted light are
measured at nurmal incidence, 8 as sketched in Fig. 23, The incoming photon is cicenlarly
polarized in the right handed sense (7). The fraction diflerence of emitted intensily of 7,

holit s defined as the polarization:
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ln general, the spin relaxation time of the cleciron is much longer than both the mno-
awnturn relaxation Lime and the recombination time so that the spin of the excited electron
i taken as unchanged. The bole spin relaxes very quickly to the lowest stale so that, in
the quasi-equilibrium just before recombination, hole spin is randomized because of the
four component mixing of the valence subbands. These assumptions lead to a quaiitative
explanation™! of the polarization spectrum in the undoped quantum welis in terms of the
valence band structure. Predominantly -1/2 (spin down) electrons will be produced by
excitation from lLeavy boles with my = —3/2. (The 3/2 state cannot be excited by o4
light according to the angular momentum conservaliun rule.) After relaxation, the clectron
cetains its down.spin while all my values of holes are available. Recombination of the -1/2
spin electron with 3/2 heavy holes yields a oy photon and recombination of the -1/2 spin
electron with +1/2 light hole yields a o photon. The spin reversal of polarization %)
shown in Fig. ¢, from heavy-lole to light-Lole excitons, is thus quaiitat.ively explained.

The same assumption of complete hole spin relaxation in an n-doped quantum well, in
which a Ferni sea of electrons of both spins is present, leads to a featureless polarization
spectrum, in contradiction to experiment.® (See Fig. 24b). The spin polarization of the
electron Fermi sea by the pholo-excited valence hole through an exchange interaction was
juvoked to explain the polarization reversal at the 2k — 2¢ in going from the undoped
Lo the n-doped wells. 5 Wel™ Lave undertaken a study of the bole relaxation processes
after photo-excitation. The results contradict the cominon assumption of complete spin
relaxation of the photo-excited holes.

We examine Lhe hole relaxation by emission of acoustic phonons in both undoped and
doped wells and by shake-up™ of the electron Fermi sea in the n-doped wells. While these
processes provide per se ouly moimnentun and energy relaxation, the diffcrent mixings of
spin components in ditferent hole stites Lhrough the & -p Lerms lead to hole spin relaxation.

Since the intrinsic hole spio relaxation is tuch slower Lhan the momentum relaxation, the
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hole: spin relasation is incomplete prior Lo radiative recombination. While in the bulk solid
the hole spin seems to be quite well relaxed, uniaxial stress in bulk GaAs tends to reduce
hole spin relaxation.™ Quantum well confinement appears to play a similar role as the

uniaxial stress.

3.2.1. Parity of Hole States

Since the spin components are mixed in a valence state, what takes the place of the
spinl quantum number in momentum relaxation? ln a symmetric quantum well, we find
tlie parity to be a good quantum number. The z-dependence of the four components of
the envelope has definite parity, pm = 1, for the m-th component. (In this section, my is
abbreviated to m.) From the structure of the Luttinger Hamiltonian, Eq. (2), the panty
of the four compuonents of the envelope wave function must alternate. Thus, we can define

a parity p for each hole state:
“—'“
pm=p(—1)5 . (51)

An important example is the top of the valence subband at zero wave vector where there
are two pure spin £3/2 states. The one with pure +3/2 spin would be even parity and the

one with —3/2 spin would have odd parity by vur definition.

3.2.2. Relaxation Processes

The conduction electron promoted from the valence band by the excitation light relaxes
to the lowest available conduction subband state in a time much shorter than the electron
spin relaxation time 7, or the electron-hole recombination time 7™ The hole acoustic
photon scattering through the deformation potential is given by the strain Hanuiltomiagt™
of the same form as the Luttinger Hamiltoman. "The acoustic phonons in the quantum well

are classilied into even and vdd parity phonons. 1Uis tien easy to deduce from the pariy of
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the strain tensor that phanon scattering either preserves or changes the parity of the hole
state and that the parity conserving hole momentum relaxation time, 7, i shorter than
the parity <hanging counterpart, 7.. The spin relaxation then comes about because the
initial and tinal hole states are made up of ditfferent mixtures of the spin components which
are determined |)_v the calculated subband structure. At the top of the valence subbands,
the hole spin relaxation time s taken to be roughly the same as the electron one, r,, much
lunger than .

For the n-doped well, the hole can also relax by shaking up the electron Fermi sea. While
we shall see that the shake-up process s important for the emission with z-polarization in
the wave guide configuration,”™ it is less than 10% of the simple recombination with o

polarizations. While it strengthens somewhat Lthe parily conserving hole refaxation, the

Auger process 1s not as important as the acoustic phonon scattering.

R.2.3. Spin Populations

The numbers of electrons and holes of each spin species produced by the excitation light
at a given energy are calculated by the simple optical transition. There are {our tvpes of
transitions excited by the g, light at a given energy interval from hole component with spin
and parity {m, pn) to electron with spin and parity (s, p,): (a) (=3/2, 1) — (—1/2, +i):
thi (=320 =0 — (= 1/20 =00 L) (=420 300 = (/2040 () (=1/20-1) — (172, -1
For the incident light wuh ot polarization, the generation rate of electrons with spin

ool are siven by

e sereration vate of holes of parity p o= £1 is civen by:

(a"fi L] b e 154}

A
G I3

= (b) +{c) (53]

The relation of the parity of each component to the parity of the hole state, Eq.(31), is
used.

Witk carrier generation rates and the relaxation times defined above, we set up the rate
equations'™ and solve for the steady state spin populations. ln a p-doped guantum well,
Lhe presence of equal spin popuiations of holes means that the luminescence polagization
is determined by the electron spin polarization:

o Gy -Gy, 561
i GQ%+G=.I T,

Similarly, in the n-doped well, the luminescence polarization is determined by the hole spin
population:

Cho—Ghr_—r T,
Po = e - : (57)
AR P S I

In the undoped well, the eiission intensity depeads on the lesser of the numbers of electrons
amd of holes available for recombination satisfying the angular momentumn selection rule.

Thas. the polarization is given by

min(n? ), nt ) — min(ng, nt)
min(n® ,, n, )+ min(n,n))
2 ]

3.2.4. Polarization Spectra

Fignre 24 shows, in order, the caleulated polanzation spectra for apadoped.ann doped,
and an undoped quantum well in comparison with experiment. The Lwo rabios, =/, and

ry fr., are taken Lo be 12 and 846 to lit the magnitude of ohserved polarization™?

the e dopeil and n-doped quantuin well, respectively. The same cilnes are then used for

the undoped well spectrum. The inarked Teatures are related to the valenee Lo conduetion

bt taneitiona, A shese featises aosing ot ol incomplete hole spin eelaxalion are



in qualitative agreement with observation'®® and the energies at which they occur are in
quantitative agreement, for undoped and doped quantum weils.
8.3. Luminescence Polarization in the Waveguide Configura-
tion

Figure 25 shows the experimental set-up "™ The multiple quantum well structure
contains undoped AlGaAs spacer layers which separate the doped AlGaAs layers from the
GaAs layers with the electrons, thus increasing the clectron mobility, The excitation hight
is incident normal to the layers (along the z-axis). The emitted light is wave-guided along
the interface planes of the quantum well (along the y-axis) and its intensity is measured in

two polarizations, along the sorwal (z-axis) and parallel to the interfaces (along x-axis}.

8.3.1. Simple Recombination Processes

In step (3) of the luminescence process, the simpie recombination consists in the de-
excitation of an electron from the Fermi sea of the n-doped quantum well to a hole in the
valence subband emitting a photon. The polarization of the emitted light can be determined
with the help of the selection rule based on angular momentum conservation, Eq. (49}

Since the top heavy hole subband (14) lies above the top light hole subband (1€), we
expect the intensity of the x-polarization, [, to start at the conduction subband lc to LA
threshold, £.4. Since the tragsition from spin £1/2 conduction band states to the +3/2
heavy bole states cannot result in zero angular momentum photons, the 2 potarization
spectrum, [, has to start al zero intensity from the threshold £, and grows gradually as
the heavy hole subband 1h acquires more light hole mixing as the photon energy increases.
1, has asudden increase at the threshold £, when the electron to light hole transition comes
into play. Figure 26 shows the calculated emission spectra for the two polarizations from the

vne-particle trapsitions. Contrary to the expectation based on the siniple recombination

processes, the observed [, spectrum starts at the same threshold as the /. spectrum (Fig.
27a}. The ntensity at the threshold canpot be explained by the gradual increase due to

the my mixing of the 1A subband.

8.3.2. Shake-Up Processes

A number of causes for the m; mixing at the top of the LA subband have been examined:
k-linear term due 1o deviation of GaAs from the diamoud lattice, asymmetry of the quanturm
well due to the diiferent quality of the interfaces as a consequence of the growth process
of the quantun wells, impurity, strain, invalidity of the eifective mass approximation and
the many-body elfect in the luminescence process.'*™™ With the exception of the last une,
Lhese yield f, one order of magaitude oo small at the threshold K.

Coansider a single relaxed hole as the initial state before light emission. As is well
known, the Fermi sea of electrons reacts to the presence of the hole. The process is entirely
analogous Lo the soft X-ray emission in metals (™ The excitation of the Fermi sea consists
of electron-hole pairs and plasmons. The lowest order shake-up processes are given by!™
the Feynman diagrams, Figs. 28 ¢, d, ¢, and g The shake-up represented by diagram ¢
or ity exchange counterpart d takes place in two steps, as described by Fig. 28b: (1) The
relaxed hole initially at state & of the valence subband excites an electron-lhole pair &, and
k; trom the conduction subband Fermi sea through the screened Coulomb interaction. The
hole cecoils to state & in the same or a different valence subband. (2) A conduction clectron
al &' recombines with the hole at &' emitting a photon. Thus, even if Lthe initial hole state k
is dominated by the 3/ component, the intermediale state &' provides polarization mixing
for the light emission.

Iigure: 28e is the Jdiagrammatic representation of the initial-state interaction or the
vxcitonic effect. The process is described pictorially by Fig. 231, in which a hole exates a

conduction electron of the same mwomentuin out of the Fermi sea and Lthen recombines with
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the satpe slectron. Such a process produces no additivnal polanzation mixing since Lhe
s of all the electrun-hole pairs at &' before recombination cancels out the polarization
mixing of the individual pair.

Figure 28g has the same vertex structure as Fig. 28, but the difference is n the retarded
<«reened Coulomb interaction. The process has an intermediate state like that in Fig. 28b
rather than Fig. 28(.

The lowest order diagrain ¢ diverges at the band edge.™ and higher order terms have
to be summned ™ [ constructed a simple forinuia for the shake-up effect!™ which takes
into account the phase space of the scattering events but ot the state dependence of the
interaction matrix element ur the mergy denommators. The emission mtensity in the o
polarization is given by

Liw) = STIMalik) + MMLGED) el e B8 Eep = Epie = ho). 159)
7k

M, (jk) is the single electron transition probabitity from the conduction state ck to the
valence band state j& with momentum k at polarization a, i.e. square of the expression
{18). The exponential factor would, in the nos-interacting approximation, be the thermal
Jistribution of the initial hole state in quasi-equilibrium with temperature . To fit the
high cnergy side of the £ spectrum, s abont 20K, Although the hole temperature could
e higher than the latlice temperatinre w hich is kept at 2K, 20K is unreasonably high. Our
justification of the large s then not the initial hole lemperature but the hroadening of the
witial hole spectral deasity due o sell energy elfects {Fig. 28a) by the same processes as the
shake-up. The second term in the square bracket on the right hand side of the formula 35
an average of the one-electron recombination provesses pver the Fermi sea, approximating

e second step of the shike np provess.
Pl Tactor A s o measare of the strengul of the electran fole interaetion and is abbained

by fitting the peak teight of the shake-up portion of the Lospectrum (Fig. 27a) in the region

i

Ol W . :
wi (5 meV above threshold below the onset of the electron light hole recombination. With
two adjustable parameters T and A, the spectra for two polanzations are well acrounted
for {see Fig. 27a).

The validity of the model is further confirmed by its ability to account for the stresst™)

and inagnetic field dependence for both polarizations without further changing the valnes

of Mand I

8.3.3. Stress

[iniaxial stress along the normal (001) and in the {110) plane add terms to the Luttinger

Hamiltonian for the holes'® given by

~1
|
A
1
—1
+1 0 wx
-1 ~—1
A . {60)
-1 e
—ex 1

where the strain A > 0 represents compression. The (001) stress preserves the tefragonal
symmetry of the quantum well. It changes the spacing between the Th and 1€ subbands
withont changing the my symmetry of the states wt & = 00 The resnlting subband structare
15 shown i the mididle panei of Fig. 29. The closing of the 1€ band 1o the 14 band
imereases Lhe single particle recombination portion of the f. spectrnm relative to the shake

ap pottion, as s evident i both theory and esperiment o the mdddbe ponels o g 270 The

discrepanoy of the oaenitode o avess between experiment and theory iy beatribngted

tor he L endty in oweastring Che stress and the macenracy b calcafated stoessdependence
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of the subbauds.

The (110} stress distorts the etragonal synunetry about the normal to the interface

1.

plane. Even thongh the stress increases the spacing between 1A band and 1 band (the
right hand panel of Fig. 24}, it mixes strongly the different m; components. As a result. the

stugle particie recombination processes are dominant in the [, spectrum from the “heavy

hole band,” 1h. [lence, the spectra in both polarizations are similar in form, as borne out

by theory and experiment (the right hand panels of Fig. 27). 3
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Table L. Symmetry properties of superlattice (N/M)

N+M

even

odd

Bravais lattice

simple tetragonal

body-centered

tetragonal

Space group DI, (Pim2) D8, (1im?2)
E(O <g <) aotation Ge notation Ge
{0,0,0} r Dy r Doy
{0,0,9) A Cay A Cay
{0,0,¢") z Dy zZ Doy
(a”,0,0) M Dy X Ds
{a=,0,q) Cay T o
(a0, e f2) v Ca, i S,
{a*, 0, %) A Dy Y D,
(wt/2,a"/2.0) X Cay Cia
fas 2 at /2, et /) W Cay RY Cin
(™2, 4™ /2, %) R Cay Cu

Gi o Point group al vector k

FIGURE CAPTIONS
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Fig

fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

1 Bulk band structure of a [TI-[V semiconductior, (a) without spin-orbit interaction.

and (b} with spin-orbit splitting.

2 Energy band edges in a quantum well and illustration of modulation doping.

3 Electron subbands and density of states in a quantum well.

4 Valence subbands in a GaAs/AlGads quantum well.

5 Effective mass picture across an interface.

6 Conduction and valence band edge alignment in three types of superlattices.

7 Bulk energv bands for real (solid lines) and imaginary (dashed liues) wave vectors.

8 (a) Subbands in a type 1l superlattice. (b) Optical gap as a function of equal InAs
and GaSb layer width. The solid lines are for the two-band model and the dotted
lines for the one-band model for the band overlap values of 150 eV {upper} and 175

meV (lower). Experimental data are from Ref. 38

. 9 Interface state envelope function at CdTe/HgTe interface.

. 10 Band alignment in a GaAs/AlAs superlattice. The solid line denotes the I' band

edges, the dashed line the X band edge, and the dot-dashed line the L band edge.

11 {a) Brillouin zone of the bulk lcc lattice. (L) Brillouin zone of an N/M superlattice

with even ¥ + M. (¢) Brillonin zone of the superlattice when .V + M/ is odd.

12 Euergy levels at T as functions of ¥ for the V/V superlattices. Labels nl and
nX denote the number of o level and its urigin in balk conduction valley. An open

suate Jenoles even parily and a cross wdd parity.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

13 Baad structure along (g™, 0. fe*) for superlattices (a) 8/10. {b) T/, (¢) T/10, and

(dy $/11.

14 Lowest two energy subbands along {u”. 0,4, ) for the rough interface. The subbands
are calculated by allowing the first £ia plane to be mixed with different Al {ractions.
The solid lines are the subbands of zero Al fraction, (GaAs)a{ AlAs)p, and the dotted,
shart-dash, loug-dash, dot-short-dash lines denote the subbands of the Al fractions
0.2, 0.1, 0.6, 0.8, repectively. When Al fractiun equals to 1, the superlaltice becomes

7/11 (dot-long dash). (Aflter Ref 44.)
15 Normal magnetic lield turning valence subbands ioto sets of discrete Landau levels.
16 Magnetic lield parallel to the interface plane of a supetlattice.

17 The left panel shows the subbands at B = 0 and k. = 0, &, = 0. The solid line
nses the renocmalized mass my and the dashed line uses the bulk effective mass my.

The right. panel shows the first 13 levels at B = 10T and k; = 0.

18 Transition energy between two lowest bands at R, = 0 as a function of the mag-
netic ficld. Squares with error bars are the measured energies for parallel field and
circles with crror bars are for normal ficld. The solid line is calculation with the
renormalized mass i the barrier and the dashed line i3 ralenlation with the buik

mass in Lhe barner.

. B9 Diagrams for the condnetion band polarization part with self-energy and vertex

corrretions due to impurity. The broken line represents interaction with unpurity.

30 Mapnetic field dependence of the screening parameter oy, electron self-enersy
5 I B I
-

tertns. sereened exchange 22 (01 aed correlation hole 05, (01, The electron density s

(NI REIR CI LAY

uli

Fig.

Fig.

Fig.

Fig.

Fig.

21 Transition energy between conduction and valence band Landau levels in a InP/[nCads

quantum well. Solid curves - theory {lRef. 61); dots - experiment (Ref. §4).

. 22 Three-step processes io luminescence.
. 23 Luminescence in the back-scatter conliguration.

. 24 Cirenlar polarization spectra for: (a) a p-doped quantam well, (b} an n-doped

well, and {c) an undoped well. The excitation energy is measured relative to the
lh — le transition threshold. Solid lines are calculation from Ref. 70 and dashed

lines are experiment from Ref. 66.
25 Luminescence in the wave-guide configuration.

26 Calculated luminescence spectra for the polarizations normal and parallel to the

interface plane due to simple recombination.

27 Unsiressed and stressed luminescence spectra: {(a) experiment, (b) theory. {After

Ref. T1.)

28 Many electron processes in lununescence. The hne denotes the electron or hole
propagator in the conduction subband, the broken Line the hole in valence subband,
amd the wavy line the photon ot screened Conlomb inleraction. See test for explana

tion of the diagrams.

.29 Stress effects on the subbanmd structuree. (After Ref. 710

t]



CONDUCTION €
BAND ] N
g =0 T . 12 £i2
: 6 Conduction band
edge
— k
HEAVY-HOLE
BAND donor
g 32 4312

p=1 I

*1/2 \

Conducton band edge

ORBIT

SPLITTING
SPLIT-OFF 7 L2 =12 Valence band edge
PLIT-OFF 17
Valence band edge ==0— acceplor
(a} (b}
Al,Gay_yAs GaAs Al Gay 4 As

Figure 1

Figure 2



e )

Ei

E
_ | Quantized
energy
levels
k. or k
DOS o
Figure 3

E (meV)

40 - 60 SPLIT

0)

—— Coupling Included (1)

i ~. - — - Parabulic Approx.
10 1 ~ .

- ~

B \\E €
-15

L ! . ‘ |
0.0 0.5 1.0 1.5 2.0

K (100cm-h

Figure 4



GCa Al As Ga As

EclT) =
by /
Euly) /;

Ec(rs )

e
Eyilp)



Fivure [

tal

Gosb

Gash

InAs

NN

b

fru— WIOTH

Figure

Aa

LOWEST
ONOUCTICH
MUPHE AND

HIGHEST
HEAVY L ©
WUNEH AND



Lt

u [=] W
] 1 :
e =] =]

AT 40

F

0.0 -

0.05

2.0

LAYER WD TH (ANGSTROMS)

Figure Bb

4

Figure



— eam e ——

— — — —_———

AlAs GaAs AlAs

(a)



I (eV)

T w i Tul 1 w I [ b
a c |
- +
- -+ + | M - _.\ 1] S A 4 _ X 'd ( W Y
= My AL % ' « "
. . | M, W,
0N a T - v, Maf - . ~ L
- + + O Vo Ay v, w: “ W, o
| a ® <4 T Yol e~ i Xz !
T o + I [} ) A AY " X
O -+
_ ~ Q + : o _
- | o T D+ 1: B0 7,11 710 8,11
a - + 1I“+D+ ] 5% I - 14
Ej E] Cj C] : Ej
+ + .o+
+ 0 g n 04X
= EID + +D++_ Mol 2o ol - 1 Ko e X
~ g - o, +t T B I TP PR e M S
o O o, F3 3% B L
- + o
i +
=3 O +D+ D+CI.. oy {a) (b} () ()
T O (m
O TO+o.
L EJ'+'E§%—E3 | L ' Elitﬂ l:{
| —0+4 UTD+D+D— 0X
0 - Figure 13}
a
0
o_ QOr
o
a
ol o by B
- 10 20
N/N

Figure 12



M l‘“\\
mg=0- Spn Aowh Landau leval

O+ SPin wp

b4

Figure |5




Figure l&

<

e

e

ENERGY (em™)

1100 |-

1000

800

800

700

800

500

400

Figure i7

- 1100
- — A1 1000
e
. - . L
— — = \// -1 900
-— — = —{ 800
\
- - “\‘\_
= — 2] 700

T 600

-1 5600




160

140

© 100

ENERGY (
N 5 3 8

(=

- x
i Gin) = = - :"
| (D
. “ } = - + }
0 5 10 15

FIELD (T)

Figure 19

Floure 18



SELU-ENERGY Xeyx Yol (neV)

- Y

Lo

-

— *
+ 6 8 LOLIL4LG6LSZN

MUAGNETIC FIELD (T)

Figure

0

Uy

ENERGY  (meV)

919

300

396

1r -z
x=92xIldcan

InP/InGaAs

830
3-3
370
r.z
360
1-1 aaz
T -1 aiTan38a"
450 . R i
o v —ro's s &
o z + 6 8 10

MAGNETIC FIELD (T)

Figure X1



Sde;hch ru(e
“'[ .
A m™m

5 I |
.; rs, Q
' M, o™ G;?. d:' ar G-
PN i |
| Al &Ga As
Gra. A
AL Ga As

- T ¥ o




POLARIZATION

POLARIZATION

POLARIZATION

1.6 ————
08 p-doped QW“ 2
Yl on=8¥X 107 (em) ‘
06 ot l.z=90 (A) e —=- )
o
1
04 ‘| e SN Sl
10
nxr b
| € —-m1(
0.4
e e e e
0.3 - n-doped (}W 2
n=2 X0 (em”)
Lr=120 (A)
28 —= 2
1 1 1 1
0.8 A un-doped QW N
. Lz=120 (A)
0.6 |- . .
A 1€ -—» [L 20— 2C
0 40 80 120 160 200

EXCITATION ENERGY (meV)

Flaure I4

{)

(b}

{c)

ALz
2o

M

—
2t e

) b
A &
’ d
Qe *-J'“
|
i
—_—
e
————
24
!
|
|
|

ot

-l



Taitia] bole distribution e"E/ru -

Bmmdmin} S

i

1]

i) T _L f \’\ i R

N
g
=

c.

S
—_—— e
iy

.

1

|
~F

[ 5 o0

Py
/{\4 Toixin J,ﬂ‘ Y ‘
B I ) \

i

SAMPLE A

I g [ -
x { Y 5, ! “ N
: / o ! b, J TR
- . . SN 3
= ~ > N
' \ = Lo
—— N I‘ - b \7 —
o - re L S i e T -
" o e 20 30 -10 n 10 ~ a "
I"‘io {(E-E.)lmev
L l,.”
o g + ih
- N “ — o~ - :
| ! D L. v - Tk bar :
i 1 ‘\ ' ' ‘.
N J ¢ o t
! [ HEEAN I i
' (S s !
! H 4 . 1 L 2 i
' i ! N ML Lo} i v ie3 3
. ! \ T ! W - i
i . ] N g : . ¢
' ; \ | N i
i t, ) TN i e
L b L3 i / . . M ~ i
e . i " J 1, S ’J: -~ ;
1> Ja i S el ; E
o ‘g 3 K\w ) el 2 . T i
‘ 10 20 0 ) 10 o0 i 3

.o Inplane polarization  +++++ Normal polarization X 18
) (E-E.imev

Yigure b

Figure 7

1

- Dk bar

e G

2



— .- — ¢
(a)
k! -
TN

2
(c)
W
k! o
K

(f)

Figure

24

k! -
: —
!
(d)
>

Volence Subband Energy (meV)

Figure 29

X || [wot] [T - ‘[ [-uu}‘i
n.
ol N 10 o 10 !
20 |- o 20 | Iy o0 ly
30+ 30—
who h, "
40 a0 . a0 |-
{al X=0 (bl X =095 kpar ) X =3 kbar
PR TS WS SN VA S N S | IR S T DU NUN NN T B TS N W R S SRS S SO
05 a5 05
k/kF k/kF k/kF



